JPS6218504B2 - - Google Patents

Info

Publication number
JPS6218504B2
JPS6218504B2 JP55161336A JP16133680A JPS6218504B2 JP S6218504 B2 JPS6218504 B2 JP S6218504B2 JP 55161336 A JP55161336 A JP 55161336A JP 16133680 A JP16133680 A JP 16133680A JP S6218504 B2 JPS6218504 B2 JP S6218504B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
reinforced cement
molded article
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55161336A
Other languages
Japanese (ja)
Other versions
JPS5788050A (en
Inventor
Yasuo Nakagawa
Hideharu Sasaki
Akihiro Aoki
Tooru Sawaki
Hiroshi Mera
Keizo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16133680A priority Critical patent/JPS5788050A/en
Publication of JPS5788050A publication Critical patent/JPS5788050A/en
Publication of JPS6218504B2 publication Critical patent/JPS6218504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐アルカリ性に優れ、高強度、高ヤン
グ率である芳香族ポリエーテルアミド共重合体繊
維を配合してなる繊維補強セメント成形体に関す
るものである。 セメント製品に繊維状補強材を混合する事は一
般に知られている。セメント製品が引張り強度が
低く、曲げ変形に弱いためそれを改良するためで
ある。 現在最も多く用いられているセメント補強材は
石綿であるが、けい肺など人体に害をおよぼすた
め、取り扱いに制約が加えられつつある。石綿に
代る繊維状物として耐アルカリ性ガラス繊維が使
用されている。しかしその耐アルカリ性は、石綿
と比べてまだ不充分であり、効率的で、高強度の
成形体が得られる方法であるオートクレーブ養生
を行えないという欠点をもつている。 一方、合成繊維を補強材に用いることも多く研
究されている。ナイロン、ポリエステルは、耐ア
ルカリ性が劣るため、またポリオレフインは耐ア
ルカリ性は良いが引張り強度、ヤング率が低く、
耐熱性が低いため、補強効果が充分でない。 全芳香族ポリアミドは耐熱性、耐熱焼性に加え
て、高強力、高ヤング率であり、耐アルカリ性に
優れている繊維であることが知られている。そし
てポリメタフエニレンイソフタルアミド繊維を用
いた繊維補強セメント成形体(Defensive
Publication USP1974.9.3)、ポリメタフエニレン
イソフタルアミド繊維と耐アルカリガラス繊維と
を混合して用いる繊維強化セメント製品(特開昭
49−104918)また全芳香族ポリアミド繊維特にポ
リパラフエニレンテレフタルアミド繊維を用いた
繊維補強セメント成形体(特開昭53−138422)や
直線配位性芳香族ポリアミド繊維とポリオレフイ
ン繊維を混合して用いる繊維強化セメント(特開
昭54−155222)は公知である。 しかしながら、ポリメタフエニレンイソフタル
アミド繊維は強度、ヤング率が低いため、その補
強効果は充分でない。またポリパラフエニレンテ
レフタルアミド繊維などの直線配位性芳香族ポリ
アミド繊維は高強度、高ヤング率ではあるが、そ
の耐アルカリ性が不充分であり、充分に補強効果
を発揮しているとはいえない。 本発明者らはこのような欠点を改良すべく鋭意
研究した結果、高強度、高ヤング率であり、耐ア
ルカリ性の著しく優れた繊維を用いて引張り強
度、曲げ強度、耐衝撃値の優れた繊維補強セメン
ト成形体を発明するに至つた。すなわち本発明
は、セメントに芳香族ポリエーテルアミド共重合
体からなる熱延伸繊維を配合してなる繊維補強セ
メント成形体である。 本発明の繊維補強セメント成形体を構成する芳
香族ポリエーテルアミド共重合体からなる熱延伸
繊維は、好ましくは、下記構造単位()、()
及び()からなる共重合体によつて構成され
る。 〔上記()式において、Xはハロゲン原子、n
は0または1の数、上記()式において、Ar1
はパラフエニレン基、Ar2はパラフエニレン基ま
たはメタフエニレン基を表わす。〕 かかる共重合体としては、例えば次のような共
重合体があげられる。 (イ) 下記の繰返し単位(A)(B)からなるポリ(パラフ
エニレン/3・4′ジフエニルエーテル・テレフ
タルアミド)共重合体 (ロ) 下記の繰返し単位(A)(B′)からなるポリ(パ
ラフエニレン/4・4′ジフエニルエーテル・テ
レフタルアミド)共重合体 (ハ) 下記の繰返し単位(A)(A′)(B)からなる共重
合体 上記共重合体において、構造単位()と
()との合計モル数が構造単位()のモル数
と実質的に同一であり、かつ構造単位()
()()の合計を100モル%とするとき、構造
単位()が45〜10モル%、構造単位()が5
〜40モル%のものが好ましい。 かかる共重合体は、上記構造単位()()
()に対応する芳香族ジアミン及び芳香族ジカ
ルボン酸誘導体を所定の割合で反応させることに
よつて得られる。ジカルボン酸誘導体としては、
ジカルボン酸ハライド中でもジカルボン酸クロラ
イドを用いるのが好ましい。 本発明に用いられる繊維を構成する重合体は、
これらのモノマー類を用いて、通常のポリアミド
の製造に用いられる重合方法、例えば熔融重合
法、固相重合法、界面重合法、溶液重合法を用い
て得ることができる。中でも熔液重合法が好まし
い。 溶液重合法に用いる溶媒としては、テトラメチ
ル尿素、ヘキサメチルホスホルアミド、ジメチル
アセトアミド、N−メチル−2−ピロリドン、ジ
メチルホルムアミドなどの非プロトン系アミド極
性溶媒が好ましい。これらは単独でも混合して用
いてもよい。 重合に際しては、重合前、重合中及び重合後に
添加剤を添加してもよい。このような添加剤には
各種の無機化合物がまず挙げられるが、あるもの
は副生するハイドロハライドを中和するために及
び/または溶解を容易にするために添加される。
このような、無機化合物の例としてはリチウムク
ロライド、炭酸リチウム、酸化カルシウム、水酸
化カルシウム、カルシウムクロライド、炭酸カル
シウムなどが挙げられる。そして重合溶液はこれ
らの各種の塩を添加しても添加しなくともそのま
ま紡糸、製膜などの成形用溶液として用いること
もできる。他の添加剤としては必要に応じて末端
停止剤を用いることができる。さらに繊維、フイ
ルム等の成形品に混入せしめ、その性質を改良す
るための光安定剤、架橋剤などの各種高分子用添
加剤を添加することができる。重合反応及び/ま
たは中和反応後の溶液を水などの沈殿剤と混合し
て生じた沈殿を洗浄乾燥することによつて重合体
を単離でき、これを再び溶媒に溶解して紡糸、製
膜などの成形用溶液として用いることもできる。 本発明に用いられる繊維は上記の様にして得ら
れた溶液を過、脱泡後、水性凝固液中に紡出
し、洗浄乾燥、熱延伸を行うことによつて得られ
る。 ポリマー溶液の吐出は液体中で行つても、一度
空中吐出させその後液中に導びくいわゆるドライ
ジエツト湿式法で行つてもよく、ドライジエツト
湿式法が好ましい。 また熱延伸は250℃以上600℃以下の温度におい
て延伸倍率2倍上行うことが好ましい。 高強力で高モジユラスのKevlarに代表され
る直線配位性芳香族ポリアミドは、紡糸したまま
セメント製品の補強繊維として使用されてもよ
く、紡糸した繊維を例えば200℃以上一般に300℃
以上の温度で緊張下あるいは弛緩状態で熱処理す
ることによつて、さらに強度、ヤング率、アルカ
リ抵抗性を向上させた後セメント製品の補強繊維
として使用してもよいことは公知である。(特開
昭53−138422、特開昭54−155222) しかしながら、直線配位性繊維のアルカリ抵抗
性は本発明に用いられる芳香族ポリエーテルアミ
ド共重合体繊維よりも劣る。直線配位性芳香族ポ
リアミド繊維は200℃以上の温度で熱延伸倍率が
1.5倍以下の緊張熱処理あるいは弛緩状態での熱
処理しかできないのに対して、本発明に用いられ
る繊維は200℃以上の温度で2倍以上好ましくは
5倍以上に熱延伸され、高い強度と高いヤング率
を発現するとともに高いアルカリ抵抗性を示す。 例えば100℃のポルトランドセメント飽和溶液
中95℃で50時間後の強力保持率(%)を比較して
みると、直線配位性繊維であるポリパラフエニレ
ンテレフタルアミド繊維(Kevlar−29)は35
%であり、それをさらに緊張熱処理したところの
繊維(Kevlar−49)は70%であるのに対し
て、本発明に用いられる繊維は95%以上である。
さらに、10%のカセイソーダ水溶液95℃に侵セキ
した場合の10時間後の強力保持率を比較すると、
直線配位性繊維であるポリパラフエニレンテレフ
タルアミド繊維(Kevlar−29)は20%であ
り、それをさらに緊張熱処理したところの繊維
(Kevlar−49)は60%であるのに対して、本発
明に用いられる繊維は95%以上である。 本発明に用いられる繊維のこの様な優れたアル
カリ抵抗性は、先に述べたところの該繊維のポリ
マー組成に起因し、200℃以上の温度で2倍以上
に熱延伸されたことによる。 熱延伸の加熱方法としては、加熱板上、加熱ピ
ン上、加熱管中非接触、加熱液体中及びこれらの
組合せた方法が用いられ、繊維の周囲の雰囲気は
空気、あるいはチツ素、アルゴンなどの不活性気
体が用いられる。 本発明に用いられる繊維は通常の合成繊維に比
べて高い引つ張り強度と高いモジユラスを有して
いるが、その値はフイラメントとして、通常180
Kg/mm2以上好ましくは350Kg/mm2、さらに好まし
くは420Kg/mm2の引つ張り強度、また4×103Kg/
mm2、好ましくは6×103Kg/mm2、さらに好ましく
は11×103Kg/mm2のモジユラスを有している。 また本発明に用いられる繊維は単繊維の繊度は
0.5〜15デニルのものが好ましい。 該繊維には製造上また用途上必要な油剤あるい
は表面処理剤を使用することが好ましい。 本発明の繊維補強セメント成形体はどのような
形状でも、またどのような混合法であつてもよ
く、用いられる繊維の形状もカツトされた状態で
あつても連続繊維であつてもよい。 セメントスラリーと繊維の混合はプレミツクス
法、ダイレクトスプレー法、スプレーサクシヨン
法などの公知の方法を用いることができる。 短繊維で混入する場合その切断長は、5〜50mm
程度が好ましい。 連続繊維として用いる場合、フイラメントワイ
ンデイング法などが好ましい。 本発明の繊維補強セメント成形体に用いられる
セメントスラリーと繊維との比率は、用途によつ
て異なるが通常、硬化後のセメント重量に対して
0.1〜20重量%、好ましくは1〜8重量%であ
る。 また、本発明に用いられる繊維と他の繊維とを
混合して使用した繊維補強セメント成形体であつ
てもよい。他の繊維とは一般の有機繊維、無機繊
維、炭素繊維を含む。また混合割合は用途要求特
性によつて選定されるべきである。 さらに本繊維をフイブリル化した後に使用して
もよい。 また、本発明に用いられる繊維とは、それを構
成する重合体よりなるパルプ状フイブリツドも含
むものである。重合体溶液から、パルプ状フイブ
リツドの製造方法は公知の方法で得ることができ
る。重合体溶液を高剪断力下に沈殿剤中に混合
後、過洗浄することにより得られる。 またこのパルプ状フイブリツドと通常の繊維、
さらにフイブリル化した繊維とを混合して、本発
明の繊維補強セメント成形体に用いてもよい。 繊維で補強されたセメント成形体を作るには硬
化、養生しなければならない。一般に広く用いら
れているガラス繊維を用いる繊維補強セメント成
形体の養生方法は、常温で数十日放置する。この
方法はセメント強度が高くなく、かつ生産効率も
悪い。 オートクレーブ養生法は、2〜3日常温で放置
後100〜200℃の温度でオートクレーブ養生するの
で生産効率が高く、かつ強度も向上する。 ガラス繊維の場合、アルカリ抵抗性が充分でな
く、セメントのアルカリ性のためこの方法は余り
用いられない。本発明の繊維補強セメント成形体
は、アルカリ抵抗性がすぐれた繊維を用いるため
オートクレーブ養生法に適したものといえる。 セメントとしては、ポルトランドセメント、ア
ルミナセメント及び高スラグセメントなどを用
いることが出来る。 以下実施例に従い本発明を詳細に説明する。 実施例 1 パラフエニレンジアミン25mol%、3・4′−ジ
アミノジフエニルエーテル25mol%、テレフタル
酸クロライド50mol%を用いて、NMP中で重合
し、水酸化カルシウムで中和し、ポリマー濃度
6.0%の紡糸用溶液とした。この溶液を孔径0.2mm
φ、孔数1000のキヤツプから一旦空気中に押し出
した後、水性凝固浴中に入れ、水洗乾燥した。乾
燥された繊維は、510℃の熱板上で11.0倍に延伸
し、油剤をつけてワインダーに巻きとつた。 この繊維は、1.5デニールの単糸デニールを有
し、単糸で測定した引張り強度は、430Kg/mm2
初期モジユラスは7.5×103Kg/mm2、比重は1.35で
あつた。 この繊維を12.7mmに切断した短繊維をポルトラ
ンドセメントスラリーと混合し、成形体を作り、
室温で28日間放置し硬化し、養生を行つた後、引
張り強度と曲げ強度を測定し、表−1に示した。 表−1では、硬化成形後のセメント重量は対す
る繊維重量の比率(%)、すなわち繊維充填比率
(%)に対する特性として示した。
The present invention relates to a fiber-reinforced cement molded article blended with aromatic polyetheramide copolymer fibers having excellent alkali resistance, high strength, and high Young's modulus. It is generally known to incorporate fibrous reinforcement into cement products. This is to improve cement products, which have low tensile strength and are susceptible to bending deformation. Currently, asbestos is the most commonly used cement reinforcement material, but restrictions are being placed on its handling because it can cause harm to the human body, including silicosis. Alkali-resistant glass fiber is used as a fibrous material to replace asbestos. However, its alkali resistance is still insufficient compared to asbestos, and it has the disadvantage that it cannot be cured in an autoclave, which is an efficient method for obtaining molded articles with high strength. On the other hand, there is also a lot of research into using synthetic fibers as reinforcing materials. Nylon and polyester have poor alkali resistance, while polyolefin has good alkali resistance but low tensile strength and Young's modulus.
Due to its low heat resistance, the reinforcing effect is not sufficient. Fully aromatic polyamide is known to be a fiber that has high strength, high Young's modulus, and excellent alkali resistance in addition to heat resistance and heat sintering resistance. Then, a fiber-reinforced cement molded body (Defensive
Publication USP1974.9.3), Fiber-reinforced cement products using a mixture of polymetaphenylene isophthalamide fibers and alkali-resistant glass fibers (Publication USP1974.9.3);
49-104918) Also, fiber-reinforced cement molded products using fully aromatic polyamide fibers, particularly polyparaphenylene terephthalamide fibers (Japanese Patent Application Laid-Open No. 138422), and mixtures of linearly coordinated aromatic polyamide fibers and polyolefin fibers are also available. The fiber-reinforced cement used (Japanese Unexamined Patent Publication No. 54-155222) is known. However, since polymetaphenylene isophthalamide fibers have low strength and Young's modulus, their reinforcing effect is not sufficient. Furthermore, although linearly coordinated aromatic polyamide fibers such as polyparaphenylene terephthalamide fibers have high strength and high Young's modulus, their alkali resistance is insufficient, and although they do not have sufficient reinforcing effects. do not have. The inventors of the present invention have conducted intensive research to improve these drawbacks, and as a result, we have developed fibers with excellent tensile strength, bending strength, and impact resistance using fibers with high strength, high Young's modulus, and extremely excellent alkali resistance. This led to the invention of a reinforced cement molded body. That is, the present invention is a fiber-reinforced cement molded article made by blending hot drawn fibers made of an aromatic polyetheramide copolymer with cement. The hot drawn fibers made of an aromatic polyetheramide copolymer constituting the fiber-reinforced cement molded article of the present invention preferably have the following structural units (), ()
It is composed of a copolymer consisting of and (). [In the above formula (), X is a halogen atom, n
is a number of 0 or 1, in the above formula (), Ar 1
represents a paraphenylene group, and Ar 2 represents a paraphenylene group or a metaphenylene group. ] Examples of such copolymers include the following copolymers. (a) Poly(paraphenylene/3,4' diphenyl ether terephthalamide) copolymer consisting of the following repeating units (A) and (B) (b) Poly(paraphenylene/4,4' diphenyl ether terephthalamide) copolymer consisting of the following repeating units (A) (B') (c) Copolymer consisting of the following repeating units (A) (A') (B) In the above copolymer, the total number of moles of the structural units () and () is substantially the same as the number of moles of the structural unit (), and the structural unit ()
When the total of () and () is 100 mol%, the structural unit () is 45 to 10 mol%, and the structural unit () is 5 mol%.
~40 mol% is preferred. Such a copolymer has the above structural unit ()()
It is obtained by reacting an aromatic diamine and an aromatic dicarboxylic acid derivative corresponding to () in a predetermined ratio. As dicarboxylic acid derivatives,
Among the dicarboxylic acid halides, it is preferable to use dicarboxylic acid chlorides. The polymer constituting the fiber used in the present invention is
Using these monomers, it can be obtained using polymerization methods commonly used in the production of polyamides, such as melt polymerization, solid phase polymerization, interfacial polymerization, and solution polymerization. Among these, the melt polymerization method is preferred. As the solvent used in the solution polymerization method, aprotic amide polar solvents such as tetramethylurea, hexamethylphosphoramide, dimethylacetamide, N-methyl-2-pyrrolidone, and dimethylformamide are preferred. These may be used alone or in combination. During polymerization, additives may be added before, during, and after polymerization. Such additives include various inorganic compounds, some of which are added to neutralize by-produced hydrohalides and/or to facilitate dissolution.
Examples of such inorganic compounds include lithium chloride, lithium carbonate, calcium oxide, calcium hydroxide, calcium chloride, calcium carbonate, and the like. The polymerization solution can be used as it is as a forming solution for spinning, film forming, etc., with or without the addition of these various salts. As other additives, a terminal capping agent can be used as necessary. Furthermore, various polymer additives such as light stabilizers and crosslinking agents can be added to molded products such as fibers and films to improve their properties. The polymer can be isolated by mixing the solution after the polymerization reaction and/or neutralization reaction with a precipitant such as water and washing and drying the resulting precipitate, which is then dissolved in a solvent again and used for spinning and production. It can also be used as a solution for forming films and the like. The fibers used in the present invention are obtained by filtering and defoaming the solution obtained as described above, then spinning it into an aqueous coagulating solution, washing, drying, and hot stretching. The polymer solution may be discharged into a liquid or by a so-called dry jet wet method in which it is once discharged into the air and then introduced into the liquid, with the dry jet wet method being preferred. Further, the hot stretching is preferably carried out at a temperature of 250° C. or higher and 600° C. or lower at a stretching ratio of 2 times. Linear aromatic polyamides such as Kevlar, which has high strength and high modulus, may be used as reinforcing fibers for cement products as they are spun, and the spun fibers can be heated at temperatures of, for example, 200°C or higher and generally 300°C.
It is known that the fibers can be heat-treated under tension or in a relaxed state at the above temperature to further improve strength, Young's modulus, and alkali resistance, and then used as reinforcing fibers for cement products. (JP-A-53-138422, JP-A-54-155222) However, the alkali resistance of the linear coordination fiber is inferior to that of the aromatic polyetheramide copolymer fiber used in the present invention. Linear coordination aromatic polyamide fiber has a hot drawing ratio of 200°C or higher.
Whereas the fibers used in the present invention can only be heat-treated under tension of 1.5 times or less or in a relaxed state, the fibers used in the present invention are heat-stretched at a temperature of 200°C or higher to 2 times or more, preferably 5 times or more, resulting in high strength and high elasticity. It exhibits high alkali resistance and high alkali resistance. For example, when comparing the strength retention rate (%) after 50 hours at 95°C in a saturated Portland cement solution at 100°C, polyparaphenylene terephthalamide fiber (Kevlar-29), which is a linear coordination fiber, has a strength retention rate of 35%.
%, and the fiber (Kevlar-49) which is further subjected to tension heat treatment has a fiber strength of 70%, whereas the fiber used in the present invention has a fiber strength of 95% or more.
Furthermore, when comparing the strength retention rate after 10 hours when immersed in a 10% caustic soda aqueous solution at 95℃,
The polyparaphenylene terephthalamide fiber (Kevlar-29), which is a linear coordination fiber, has a concentration of 20%, and the fiber obtained by further tension heat treatment (Kevlar-49) has a concentration of 60%. The fiber used in the invention is more than 95%. The excellent alkali resistance of the fibers used in the present invention is due to the aforementioned polymer composition of the fibers, and is due to the fact that they are hot-stretched by more than twice the amount at a temperature of 200° C. or higher. Heating methods for hot stretching include on a heating plate, on a heating pin, in a heating tube without contact, in a heated liquid, and a combination of these methods.The atmosphere around the fiber is air, nitrogen, argon, etc. An inert gas is used. The fibers used in the present invention have higher tensile strength and higher modulus than ordinary synthetic fibers, but these values are usually 180% as filaments.
Tensile strength of Kg/mm 2 or more, preferably 350 Kg/mm 2 , more preferably 420 Kg/mm 2 , or 4×10 3 Kg/mm 2
mm 2 , preferably 6×10 3 Kg/mm 2 , more preferably 11×10 3 Kg/mm 2 . In addition, the fiber used in the present invention has a single fiber fineness of
Those of 0.5 to 15 denyl are preferred. It is preferable to use an oil agent or a surface treatment agent for the fibers as required for production and use. The fiber-reinforced cement molded article of the present invention may have any shape and may be mixed using any mixing method, and the fibers used may be in a cut state or continuous fibers. For mixing the cement slurry and the fibers, a known method such as a premix method, a direct spray method, or a spray suction method can be used. When short fibers are mixed in, the cutting length is 5 to 50 mm.
degree is preferred. When used as a continuous fiber, a filament winding method or the like is preferred. The ratio of cement slurry to fiber used in the fiber-reinforced cement molded product of the present invention varies depending on the application, but is usually based on the cement weight after hardening.
It is 0.1 to 20% by weight, preferably 1 to 8% by weight. Furthermore, it may be a fiber-reinforced cement molded product using a mixture of the fibers used in the present invention and other fibers. Other fibers include general organic fibers, inorganic fibers, and carbon fibers. Also, the mixing ratio should be selected depending on the required characteristics of the application. Furthermore, the present fiber may be used after being fibrillated. Furthermore, the fibers used in the present invention include pulp-like fibrils made of the polymer that constitutes the fibers. Pulp-like fibrids can be produced from a polymer solution by a known method. It is obtained by mixing the polymer solution in a precipitant under high shear and then overwashing. In addition, these pulpy fibrids and normal fibers,
Furthermore, it may be mixed with fibrillated fibers and used in the fiber-reinforced cement molded article of the present invention. To create a fiber-reinforced cement compact, it must be cured and cured. A commonly used method for curing fiber-reinforced cement molded bodies using glass fibers is to leave them at room temperature for several tens of days. This method does not provide high cement strength and has low production efficiency. In the autoclave curing method, the product is left at a temperature of 2 to 3 days and then cured in an autoclave at a temperature of 100 to 200°C, resulting in high production efficiency and improved strength. In the case of glass fibers, this method is rarely used because of the insufficient alkali resistance and the alkalinity of cement. The fiber-reinforced cement molded article of the present invention can be said to be suitable for autoclave curing because it uses fibers with excellent alkali resistance. As the cement, portland cement, alumina cement, high slag cement, etc. can be used. The present invention will be described in detail below with reference to Examples. Example 1 Polymerization was carried out in NMP using 25 mol% of paraphenylene diamine, 25 mol% of 3,4'-diaminodiphenyl ether, and 50 mol% of terephthalic acid chloride, and the polymer concentration was neutralized with calcium hydroxide.
A 6.0% spinning solution was prepared. Apply this solution to a pore size of 0.2 mm.
After extruding into the air through a cap with φ and 1000 holes, it was placed in an aqueous coagulation bath, washed with water, and dried. The dried fibers were stretched 11.0 times on a hot plate at 510°C, coated with oil, and wound around a winder. This fiber has a single yarn denier of 1.5 denier and a tensile strength measured as a single yarn of 430 Kg/mm 2 ,
The initial modulus was 7.5×10 3 Kg/mm 2 and the specific gravity was 1.35. The short fibers are cut into 12.7mm pieces and mixed with Portland cement slurry to make a molded body.
After curing and curing for 28 days at room temperature, the tensile strength and bending strength were measured and are shown in Table 1. In Table 1, the cement weight after hardening and molding is shown as the ratio (%) of the fiber weight to the cement weight, that is, the characteristics with respect to the fiber filling ratio (%).

【表】 比較例 1 ポリパラフエニレンテレフタルアミド繊維
(Kevlar−29、Kevlar−49)を実施例1と同
じ様に使用した場合の測定値を表−2に示す。
[Table] Comparative Example 1 Table 2 shows the measured values when polyparaphenylene terephthalamide fibers (Kevlar-29, Kevlar-49) were used in the same manner as in Example 1.

【表】【table】

【表】 比較例 2 耐アルカリガラス(ビルキントプラザース社
製;セムフイル)を用いて、実施例1と同様に行
つた測定結果は表−3の通りであつた。
[Table] Comparative Example 2 Table 3 shows the results of measurements conducted in the same manner as in Example 1 using alkali-resistant glass (manufactured by Birkind Prathers; Semfil).

【表】 実施例 2 実施例1に使用したのと同じ繊維を用いて、同
様の方法で成形体を作り、室温で28日間放置する
代りに10日間放置した後、170℃で5時間オート
クレーブ養生を行つた。 その結果は第−4表の通りであつた。
[Table] Example 2 Using the same fibers as those used in Example 1, a molded body was made in the same manner, and instead of being left at room temperature for 28 days, it was left for 10 days, and then autoclaved at 170°C for 5 hours. I went there. The results were as shown in Table 4.

【表】 比較例 3 耐アルカリガラス繊維(ビルキントプラザース
社製;セムフイル)を用いて、実施例2と全く同
様に行つた結果は第−5表の通りであつた。
[Table] Comparative Example 3 The same procedure as in Example 2 was carried out using alkali-resistant glass fiber (manufactured by Birkind Prathers; Semfil). The results are shown in Table 5.

【表】 実施例 3 パラフエニレンジアミン15mol%、3・4′−ジ
アミノジフエニルエーテル15mol%、クロルパラ
フエニレンジアミン20mol%、テレフタル酸クロ
ライド50mol%を用いてNMP中で重合し、水酸化
カルシウムで中和し、ポリマー濃度6.0%の紡糸
用溶液とした。この溶液を用いて、実施例1と全
く同様に紡糸延伸した。得られた繊維は2.0デニ
ールの単糸デニールを有し、単糸測定の引張り強
度は390Kg/mm2、初期モジユラスは9.5×103Kg/
mm2、比重は1.36であつた。この繊維を用いて、実
施例1と全く同様にして繊維補強セメント成形体
をつくり、引張り強度と曲げ強度を測定した結果
を表−6に示す。
[Table] Example 3 Polymerization in NMP using 15 mol% of paraphenylene diamine, 15 mol% of 3,4'-diaminodiphenyl ether, 20 mol% of chlorparaphenylene diamine, and 50 mol% of terephthalic acid chloride, and calcium hydroxide The solution was neutralized with water to prepare a spinning solution with a polymer concentration of 6.0%. Using this solution, spinning and stretching were carried out in exactly the same manner as in Example 1. The obtained fiber has a single yarn denier of 2.0 denier, a tensile strength of single yarn measurement of 390 Kg/mm 2 and an initial modulus of 9.5×10 3 Kg/
mm 2 and specific gravity was 1.36. Using this fiber, a fiber-reinforced cement molded body was made in exactly the same manner as in Example 1, and the tensile strength and bending strength were measured. Table 6 shows the results.

【表】 実施例 4 実施例1で得られたポリマー溶液をNMPで希
釈し、ポリマー濃度3重量%のポリマー溶液と
し、それを高速撹拌中の水の中に投入し、パルプ
状フイブリツドを得た。 この様にして得られたパルプ状フイブリツドを
用いて、実施例1と同様の方法で繊維補強セメン
ト成形体を得た。 繊維充填率は4wt%とした。 得られた成形体の引張強度は125Kg/cm2、曲げ
強度は404Kg/cm2であつた。
[Table] Example 4 The polymer solution obtained in Example 1 was diluted with NMP to obtain a polymer solution with a polymer concentration of 3% by weight, which was poured into water under high speed stirring to obtain pulpy fibrids. . A fiber-reinforced cement molded body was obtained in the same manner as in Example 1 using the pulp-like fibrids thus obtained. The fiber filling rate was 4wt%. The resulting molded article had a tensile strength of 125 Kg/cm 2 and a bending strength of 404 Kg/cm 2 .

Claims (1)

【特許請求の範囲】 1 セメントに芳香族ポリエーテルアミド共重合
体からなる熱延伸繊維を配合してなる繊維補強セ
メント成形体。 2 芳香族ポリエーテルアミド共重合体が、下記
構造単位(A)、(B)及び(C)からなる共重合体である特
許請求の範囲第1項記載の繊維補強セメント成形
体。 〔上記()式において、Xはハロゲン原子、n
は0又は1の数、上記()式において、Ar1
パラフエニレン基、Ar2はパラフエニレン基又は
メタフエニレン基を表わす。〕 3 芳香族ポリアミド共重合体が、上記構造単位
()と()の合計モル数が上記構造単位
()のモル数と実質上等しく、かつ上記構造単
位()の比率が5〜40モル%の共重合体である
特許請求の範囲第2項記載の繊維補強セメント成
形体。 4 熱延伸繊維が、250℃以上600℃以下の温度で
2倍以上の延伸倍率で延伸したものである特許請
求の範囲第1項、第2項又は第3項記載の繊維補
強セメント成形体。 5 熱延伸繊維が少くとも180Kg/mm2の引張り強
度と少くとも4×103Kg/mm2のモジユラスを有す
る特許請求の範囲第4項記載の繊維補強セメント
成形体。
[Scope of Claims] 1. A fiber-reinforced cement molded article obtained by blending hot drawn fibers made of an aromatic polyetheramide copolymer with cement. 2. The fiber-reinforced cement molded article according to claim 1, wherein the aromatic polyetheramide copolymer is a copolymer consisting of the following structural units (A), (B) and (C). [In the above formula (), X is a halogen atom, n
is a number of 0 or 1, and in the above formula (), Ar 1 represents a paraphenylene group, and Ar 2 represents a paraphenylene group or a metaphenylene group. ] 3. The aromatic polyamide copolymer is such that the total number of moles of the above structural units () and () is substantially equal to the number of moles of the above structural units (), and the ratio of the above structural units () is 5 to 40 mol%. The fiber-reinforced cement molded article according to claim 2, which is a copolymer of. 4. The fiber-reinforced cement molded article according to claim 1, 2, or 3, wherein the hot-drawn fibers are drawn at a stretching ratio of 2 times or more at a temperature of 250° C. or higher and 600° C. or lower. 5. A fiber-reinforced cement molded article according to claim 4, wherein the hot-drawn fibers have a tensile strength of at least 180 Kg/mm 2 and a modulus of at least 4×10 3 Kg/mm 2 .
JP16133680A 1980-11-18 1980-11-18 Fiber reinforced cement moldings Granted JPS5788050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16133680A JPS5788050A (en) 1980-11-18 1980-11-18 Fiber reinforced cement moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16133680A JPS5788050A (en) 1980-11-18 1980-11-18 Fiber reinforced cement moldings

Publications (2)

Publication Number Publication Date
JPS5788050A JPS5788050A (en) 1982-06-01
JPS6218504B2 true JPS6218504B2 (en) 1987-04-23

Family

ID=15733138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16133680A Granted JPS5788050A (en) 1980-11-18 1980-11-18 Fiber reinforced cement moldings

Country Status (1)

Country Link
JP (1) JPS5788050A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151363A (en) * 1982-03-01 1983-09-08 帝人株式会社 Fiber reinforced cement product
JPS59115807A (en) * 1982-12-23 1984-07-04 帝人株式会社 Fiber reinforced cement product
JPS6032608A (en) * 1983-08-04 1985-02-19 株式会社栗本鐵工所 Fiber reinforced cement molding
JP2533562B2 (en) * 1987-09-07 1996-09-11 電気化学工業株式会社 Method for preventing cracking of high strength cement hardened product
JP2538459B2 (en) * 1991-09-05 1996-09-25 ニチアス株式会社 Manufacturing method of machinable high strength insulation
JPH08245277A (en) * 1996-01-25 1996-09-24 Nichias Corp Machinable heat insulating material
JP4768275B2 (en) * 2005-01-28 2011-09-07 帝人テクノプロダクツ株式会社 Fiber reinforced cement products
FR2964456B1 (en) 2010-09-08 2013-05-10 Commissariat Energie Atomique DEVICE FOR DETECTING LEAKAGE AND COATING OF TRANSPORTATION MEMBER OR STORAGE OF FLUID COMPRISING SAID DETECTION DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138422A (en) * 1977-05-11 1978-12-02 Asahi Chemical Ind Formed product of fiberrreinforced cement
JPS53143670A (en) * 1977-05-20 1978-12-14 Teijin Ltd Copolymerized aromatic polyamide molded article of high hydrolysis resistance and manufacture of the same
JPS54155222A (en) * 1978-05-29 1979-12-07 Asahi Chemical Ind Production of fiber reinforced cement product
JPS55115428A (en) * 1979-02-26 1980-09-05 Teijin Ltd Aromatic compolyamide and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53138422A (en) * 1977-05-11 1978-12-02 Asahi Chemical Ind Formed product of fiberrreinforced cement
JPS53143670A (en) * 1977-05-20 1978-12-14 Teijin Ltd Copolymerized aromatic polyamide molded article of high hydrolysis resistance and manufacture of the same
JPS54155222A (en) * 1978-05-29 1979-12-07 Asahi Chemical Ind Production of fiber reinforced cement product
JPS55115428A (en) * 1979-02-26 1980-09-05 Teijin Ltd Aromatic compolyamide and preparation thereof

Also Published As

Publication number Publication date
JPS5788050A (en) 1982-06-01

Similar Documents

Publication Publication Date Title
WO2001061086A1 (en) Meta-form wholly aromatic polyamide fiber and process for producing the same
JPS63288237A (en) Cord from poly-p-phenylene-terephthalaminde
JP6629296B2 (en) High strength copolymerized aramid fiber and method for producing the same
RU2534767C2 (en) Fibre from completely aromatic metatype polyamide
JPH0134254B2 (en)
JPS6218504B2 (en)
JP3937050B2 (en) Method for producing meta-type wholly aromatic polyamide fiber and fiber obtained thereby
US5177175A (en) Fiber of wholly aromatic copolyamide from 2,6-naphthalene dicarboxylic acid and 3,4'-diaminodiphenylether
US5432255A (en) Preparation of fiber-forming meta-aramids
JP2004003049A (en) Method for producing compact meta type wholly aromatic polyamide fiber
JPH0874121A (en) Production meta-aromatic polyamide fiber
JPH03234731A (en) Wholly aromatic polyamide and its molding
JP3847515B2 (en) Method for producing dense meta-type aromatic polyamide fiber
JPH0327119A (en) Fiber having improved hydrolytic stability
JPS63165515A (en) Aromatic polyamide copolymer fiber
KR101432874B1 (en) Aramid Fiber and Method for Manufacturing The Same
JP2732879B2 (en) Wholly aromatic copolymer polyamide
RU2130980C1 (en) Method of manufacturing high-strength fiber
JP4664794B2 (en) Method for producing meta-type aromatic polyamide fiber
JP2001348726A (en) Method for producing dense poly(metaphenyleneisophthalamide)-based fiber
JPH0874122A (en) Production of meta-aromatic polyamide fiber
US3748298A (en) Aromatic-oxalic polyhydrazides and solutions thereof
KR20140134031A (en) Method of manufacturing copolymerized aramid fiber
JP4563827B2 (en) Method for producing aromatic copolyamide fiber
JP7315378B2 (en) Meta-type wholly aromatic polyamide fiber and method for producing the same