JPH01133217A - Magnetic recording body - Google Patents

Magnetic recording body

Info

Publication number
JPH01133217A
JPH01133217A JP29151987A JP29151987A JPH01133217A JP H01133217 A JPH01133217 A JP H01133217A JP 29151987 A JP29151987 A JP 29151987A JP 29151987 A JP29151987 A JP 29151987A JP H01133217 A JPH01133217 A JP H01133217A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
metal layer
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29151987A
Other languages
Japanese (ja)
Inventor
Makoto Mizukami
誠 水上
Toshikazu Nishihara
西原 敏和
Yasuyuki Natsubori
夏堀 泰行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP29151987A priority Critical patent/JPH01133217A/en
Publication of JPH01133217A publication Critical patent/JPH01133217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve coercive force and to decrease noises by providing a magnetic metallic layer having magnetic anisotropy within the intra-surface direction of the prescribed compsn. via a Cr layer on the surface of a nonmagnetic substrate. CONSTITUTION:The Cr layer 4 is formed on the surface of the nonmagnetic substrate 1 and the magnetic metallic layer 5 is formed thereon. The magnetic layer 5 has the compsn. ratios 1<=x<=18, 2<=y<=9 expressed by Co100-(x+y)CrxTay when X, Y are designated as atom.% and has the magnetic anisotropy in the intra-surface direction. The coercive force is thereby improved and the noises are decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、ディスク状の磁気記録体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to, for example, a disk-shaped magnetic recording body.

〔従来の技術〕[Conventional technology]

従来、この種の磁気記録体、特に薄膜磁気記録体は高密
度記録用として用いられている。この薄膜磁気記録体の
製法には、蒸着法、メツキ法等がある。最近では、特に
スパッタリング法による製法が用いられる。このスパッ
タリング法による薄膜磁気記録体は第8図に示すように
NiPからなる非磁性基材1上にCr/Co、N i系
あるいはCr/Co、Ni、Cr系の下層2上層3の二
層構造が多くとられている。即ち、下層2は数100人
から数1 、000人のCrからなり、上N3はC。
Conventionally, this type of magnetic recording medium, particularly a thin film magnetic recording medium, has been used for high-density recording. Methods for manufacturing this thin film magnetic recording material include vapor deposition, plating, and the like. Recently, a manufacturing method using a sputtering method is particularly used. As shown in FIG. 8, the thin film magnetic recording material produced by this sputtering method is made of two layers: a lower layer 2 and an upper layer 3 based on Cr/Co, Ni, or Cr/Co, Ni, Cr on a nonmagnetic base material 1 made of NiP. It has a lot of structure. That is, the lower layer 2 consists of several hundred to several thousand Cr people, and the upper layer N3 consists of C.

系合金からなっている。その他、この種の磁気記録体と
しては、特開昭61−190716号公報、特開昭61
.−204836号公報、で示すものがある。
It is made of alloys. In addition, as this type of magnetic recording medium, JP-A-61-190716, JP-A-61
.. There is one shown in Japanese Patent No.-204836.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、最近の磁気記録分野では、ますます高記
録密度化の傾向が高まり、高い保磁力、低ノイズ化の磁
気記録体が要求されており、従来の技術によっては、望
ましい高い保持力を得ることができず、又変調ノイズも
まだ高い値であるという問題点があった。
However, in recent years in the field of magnetic recording, there has been a growing trend toward higher recording densities, and magnetic recording media with high coercive force and low noise are required, and it is not possible to obtain the desired high coercive force depending on conventional technology. However, there were problems in that the modulation noise was still high.

そこで、本発明は上記問題点に鑑みなされたものであっ
て、高保持力、低ノイズの磁気記録体を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic recording medium with high coercivity and low noise.

〔問題点を解決するための手段〕[Means for solving problems]

本発明における上記目的を達成させるための手段は、非
磁性基材面上にCr層を介して磁性金属層を形成してな
る磁気記録体において、前記磁性金属層は、X、Yを原
子%としたときGolo。−(X+V)CrXTa、で
表され1≦×≦18.2≦Y≦9の組成比をもち面内方
向に磁気異方性を有することを特徴とする磁気記録体に
係るものである。
Means for achieving the above object in the present invention is a magnetic recording body formed by forming a magnetic metal layer on a non-magnetic base material surface via a Cr layer, in which the magnetic metal layer contains atomic percent of X and Y. When you say Golo. -(X+V)CrXTa, having a composition ratio of 1≦×≦18.2≦Y≦9, and having magnetic anisotropy in the in-plane direction.

〔作用〕[Effect]

上記構成において、磁性金属層をX、Yを原子%とした
ときにCO+oo−+**y+  CrXTa、で表わ
され1≦×≦18.2≦Y≦9の組成比で成膜し、これ
により面内方向に磁気異方性を有する記録媒体となるこ
とによって保磁力の向上とノイズの低減を図っている。
In the above structure, the magnetic metal layer is expressed as CO+oo-+**y+ CrXTa, where X and Y are atomic %, and is formed at a composition ratio of 1≦×≦18.2≦Y≦9. This results in a recording medium having magnetic anisotropy in the in-plane direction, thereby improving coercive force and reducing noise.

〔実施例〕〔Example〕

以下、図面によって本発明の一実施例を説明する。本発
明者は以下に説明する各種の実験の結果、第1図で示す
ような磁気記録体を得た。これは非磁性基材1の面上に
01層4を形成し、その上に磁性金属層5を形成したも
のである。そして、磁性金属層5は、X、Yを原子%と
したときCo100−tx−v、crXTayで表され
1≦×≦18,2≦Y≦9の組成比をもつものである。
An embodiment of the present invention will be described below with reference to the drawings. As a result of various experiments described below, the inventor obtained a magnetic recording body as shown in FIG. This has an 01 layer 4 formed on the surface of a non-magnetic base material 1, and a magnetic metal layer 5 formed thereon. The magnetic metal layer 5 is expressed by Co100-tx-v and crXTay, where X and Y are expressed as atomic %, and has a composition ratio of 1≦×≦18, 2≦Y≦9.

まず、第1の実験について説明する。First, the first experiment will be explained.

これは、15 cm (61nch)のターゲットを用
いたDCマグネトロンスパンタリング法により磁気記録
体を形成したものである。この磁気記録体はNiP非磁
非磁性基材面上に下地層として1 、000人の01層
4を形成し、その上に、CoCr、□原子%にTaチッ
プ(5mx5mm)の個数を変化させてTaの添加量を
変化させながら600人のるn性金屈層5を成膜する。
This is a magnetic recording medium formed by a DC magnetron sputtering method using a 15 cm (61 nch) target. This magnetic recording body is made by forming an 01 layer 4 of 1,000 layers as an underlayer on a NiP non-magnetic base material surface, and on top of this, the number of CoCr, Ta chips (5 m x 5 mm) is varied to □ atomic %. An n-type gold-converting layer 5 of 600 layers was formed while changing the amount of Ta added.

このときの他の条件はバックグランド気圧として2.4
 X 10−6To r r、 A rガス圧5mTo
rr、基板温度170℃である。この条件におけるTa
添加量と面内方向における保磁力Hcとの関係を第2図
によって表わすと、Taが約6%で保磁力が約1,20
0 (Oe )の最大値となり、CoCr、□原子%だ
けで成膜を形成した場合に比しTaの添加による成膜の
方が保6■力を高(できる。Taの添加IYは2≦Y≦
9の範囲内で保磁力の優位性が現われてくることが判明
された。またこれらの膜はすべて面内方向に磁気異方性
を有していることがli!認されている。これはVSM
を用い膜面に平行及び垂直方向に磁界を印加し、ヒステ
リシスカーブより判断したものである。
Other conditions at this time are 2.4 as background pressure.
X 10-6Torr, Ar gas pressure 5mTo
rr, and the substrate temperature is 170°C. Ta under this condition
The relationship between the amount added and the coercive force Hc in the in-plane direction is shown in Figure 2. When Ta is about 6%, the coercive force is about 1.20
0 (Oe), and compared to the case of forming a film with only CoCr, □ atomic %, the film formed by adding Ta has a higher holding power (IY of Ta addition is 2≦ Y≦
It was found that the superiority of coercive force appears within the range of 9. Furthermore, all of these films have magnetic anisotropy in the in-plane direction li! It has been certified. This is VSM
A magnetic field was applied in parallel and perpendicular directions to the film surface using a 3D film, and the results were determined based on the hysteresis curve.

次に、第2の実験について説明する。Next, the second experiment will be explained.

Cr ffi 4を1 、000人としCo Cr +
bT a b原子%で600人の磁性金属層5を成膜し
たものと、01層4を同じ<  1.000人としTa
を取り除いたCoCr、□原子%で600人の磁性金属
層5を比較した。このときの条件は、両者共に第1の実
験と同一である。その結果、保磁力はCo Cr Hb
T a b原子%の方が8500eでCoCr+を原子
%の方が5200eであった。従って、Taを添加する
ことによって保磁力が高くなることが判明された。
If Cr ffi 4 is 1,000 people, then Co Cr +
The magnetic metal layer 5 was formed with bT a b atomic % of 600 people, and the 01 layer 4 was formed with the same < 1.000 people Ta
The magnetic metal layer 5 of 600 people was compared in terms of CoCr and □ atomic %. The conditions at this time were the same as in the first experiment. As a result, the coercive force is Co Cr Hb
The T a b atomic % was 8500e, and the CoCr+ atomic % was 5200e. Therefore, it was found that the addition of Ta increases the coercive force.

次に、第3の実験について説明する。Next, a third experiment will be explained.

実施例1と同様に6”Targetを用いDCマグネト
ロン法により、NiP基板上に、Crを1 、000人
成膜する。次にCoCrxTabになる様にCr添加4
]Xを変化させながら600人の磁性膜を成膜しディス
クとした。
As in Example 1, 1,000 Cr films are formed on a NiP substrate by the DC magnetron method using a 6" target. Next, 4 layers of Cr are added to form CoCrxTab.
] 600 magnetic films were formed by varying X to form disks.

このディスクにおいてCr添加量と保磁力Hcとの関係
について調べた結果を第3図に示す。Crの添加量の増
加とともにHcは増大し約11at%程度で極大となる
。その後添加量が増えるとHcは低下していく傾向をも
つ。この図よりCr添加量は1≦×≦18at%になる
ことが望ましいことがわかる。
FIG. 3 shows the results of investigating the relationship between the amount of Cr added and the coercive force Hc in this disk. As the amount of Cr added increases, Hc increases and reaches a maximum at about 11 at%. Thereafter, as the amount added increases, Hc tends to decrease. From this figure, it can be seen that it is desirable that the amount of Cr added be 1≦×≦18 at%.

次に、第4の実験について説明する。Next, a fourth experiment will be explained.

これは、15 cm (61nch)のターゲットを用
いてNiPを基板としてC1を4.000人の厚さにし
たCr層層上上COCr +o、 sT a 6.3の
磁性金属層5を600人の厚さに成膜したものと、01
層4を同じくしてal性金属層5をCoNf+aCrq
の600人の厚さに成膜したものとを比較した。このと
きの条件は、両者共にバンクグランド気圧2×10−’
To r r、 A rガス圧5mTorr、基板温度
170℃である。この両者の結果は、磁性金属層5の表
面を走査電子顕微鏡で同一倍率の状態で観察してみると
、第4図(A)、  (B)で示すように第4図(A)
のCOCr +o、sT a b、yの方がCON i
 1sCr qよりも粒子サイズが微細化され高密度記
録に適していることが判明された。
This was done by using a 15 cm (61 nch) target, using a NiP substrate as a substrate, and depositing a magnetic metal layer 5 of COCr+o, sTa 6.3, on a Cr layer with a thickness of 4,000 nm, and a magnetic metal layer 5 of 600 nm. The film formed to a thickness of 01
Al metal layer 5 of layer 4 is made of CoNf+aCrq.
A comparison was made with a film formed to a thickness of 600 people. The conditions at this time are bank ground pressure 2×10-' for both
Torr, Ar gas pressure was 5 mTorr, and substrate temperature was 170°C. When the surface of the magnetic metal layer 5 is observed at the same magnification using a scanning electron microscope, both results are as shown in FIG. 4(A) and (B).
COCr +o, sT a b, y is CON i
It was found that the grain size was finer than that of 1sCr q and that it was suitable for high-density recording.

次に第5の実験について説明する。Next, the fifth experiment will be explained.

これは、20 cm (81nch)のターゲットを用
いてN i P%板としてCrを600人の厚さにした
Cr層4上にCoCr、、、、Ta、の磁性金属層5を
350人〜860人まで変化させて成膜したものと、磁
性金属層5の素材のみをCoNi+5Crqに変更し厚
さを250人〜750人まで変化させて成膜したものと
を比較した。このときの他の条件は、両者共にバンクグ
ランド気圧I X I O−’To r r。
This is done by using a 20 cm (81 nch) target and depositing a magnetic metal layer 5 of CoCr, ..., Ta, on a Cr layer 4 with a thickness of 350 to 860 nm using Cr as a NiP% plate. A comparison was made between a film formed by changing the number of people and a film formed by changing only the material of the magnetic metal layer 5 to CoNi+5Crq and changing the thickness from 250 to 750 people. The other conditions at this time are bank ground pressure IXIO-'Torr for both.

Arガス圧10mTo r r、基板温度220℃であ
る。この第5の実験における上記2例について磁性金属
層5の厚さと変調ノイズの最大値との関係をみると第5
図に示すように前者のCoCr、、、。
The Ar gas pressure was 10 mTorr, and the substrate temperature was 220°C. Looking at the relationship between the thickness of the magnetic metal layer 5 and the maximum value of modulation noise for the above two examples in this fifth experiment, the fifth
As shown in the figure, the former CoCr...

Ta4の方が最大ノイズの少ないことが判明された。こ
の測定方法は、第6図に示すように再生出力レベルの基
準マーカと2.5MH2の再生出力信号以外が変調ノイ
ズであって、A点がノイズの最大値である。更に、2.
5MIIZの再生出力信号のレベルと変調ノイズの最大
値との関係を測定してみると第7図に示す結果が得られ
た。この測定方法5は、得られた磁気記録体をディスク
状とし、これを2.597 rpmで回転させ、半径2
5mmの位置でトラック幅20μmの測定用磁気ヘッド
を用いフライング高さ0.25μmの条件で行なったも
のである。即ち、同一膜厚600人ならば、Co Cr
 、、、S’T’ a aの方がCON ! +eCr
qよりも約3dBノイズが少ないことが判明された。又
、同一出力でもCo Cr z、5Ta4の方がCoN
i、、Cr、よりも約1.5dllノイズが少ないこと
が判明された。
It was found that Ta4 had less maximum noise. In this measurement method, as shown in FIG. 6, the signals other than the reproduction output level reference marker and the 2.5 MH2 reproduction output signal are modulation noise, and point A is the maximum value of the noise. Furthermore, 2.
When the relationship between the level of the reproduced output signal of 5MIIZ and the maximum value of modulation noise was measured, the results shown in FIG. 7 were obtained. In this measurement method 5, the obtained magnetic recording medium is formed into a disk shape, and this is rotated at 2.597 rpm, and the radius is 2.
The measurement was carried out using a measuring magnetic head with a track width of 20 .mu.m at a position of 5 mm and a flying height of 0.25 .mu.m. That is, if the film thickness is the same for 600 people, CoCr
,,,S'T' a a is more CON! +eCr
It was found that the noise was about 3 dB lower than that of q. Also, even with the same output, CoCr z, 5Ta4 has more CoN
It was found that the noise was about 1.5 dll less than that of i,,Cr,.

以上の実験結果から、磁性金属層5はCrの添加量が1
8原子%以内であることが望ましく、かつTaを添加す
る必要性があることが判明される。
From the above experimental results, it is clear that the magnetic metal layer 5 has an additive amount of Cr of 1
It has been found that it is desirable that the content be within 8 atomic %, and that it is necessary to add Ta.

そして、これらの実験結果によりtn性金属層5は1≦
×≦18.2≦Y≦9の組成比のCO+ oo−(X*
y)CrXTayから形成することにより磁性体粒子を
微粒子化して保磁力とノイズの低減を図ることができる
According to these experimental results, the tn metal layer 5 is 1≦
CO+ oo-(X*
y) By forming the magnetic material from CrXTay, it is possible to make the magnetic particles finer and reduce the coercive force and noise.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、磁性金属層は磁性体粒子
が微粒子化し、そして保磁力とノイズの低減を図ること
によって高密度記録に好適な磁気記録媒体を提供するこ
とができる。
As described above, according to the present invention, the magnetic particles in the magnetic metal layer are finely divided, and coercive force and noise are reduced, thereby providing a magnetic recording medium suitable for high-density recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における磁気記録体を示す断
面図、第2図は本発明における第1の実験結果を示す特
性回、第3図は本発明における第3の実験結果を示す特
性図、第4図(A)、(B)は本発明における第4の実
験結果を示す磁性金属層の表面を観察した写真、第5図
は本発明における第5の実験結果を示す特性図、第6図
は第5の実験における測定時の特性を示す特性図、第7
図は本発明における第5の実験の他の結果を示す特性図
、第8図は従来の磁気記録体を示す断面図である。 1・・・非磁性基材 4・・・Cr層 5・・・磁気記録体 第1図 第2図 Ta J≦殉t(J船Vム) 0     5    10     Is     
20Cr(Xl  :  Content   CLJ
p乞第4間 第4図          (8) に1 第5図 盾颯剥6ネ厚(入) − 第6図
FIG. 1 is a cross-sectional view showing a magnetic recording medium in an embodiment of the present invention, FIG. 2 is a characteristic diagram showing the results of a first experiment in the present invention, and FIG. 3 is a diagram showing the results of a third experiment in the present invention. Characteristic diagrams, Figures 4 (A) and (B) are photographs of the surface of the magnetic metal layer showing the results of the fourth experiment in the present invention, and Figure 5 is a characteristic diagram showing the results of the fifth experiment in the present invention. , Figure 6 is a characteristic diagram showing the characteristics during measurement in the fifth experiment, and Figure 7 is a characteristic diagram showing the characteristics during measurement in the fifth experiment.
The figure is a characteristic diagram showing other results of the fifth experiment in the present invention, and FIG. 8 is a cross-sectional view showing a conventional magnetic recording body. 1...Nonmagnetic base material 4...Cr layer 5...Magnetic recording body Fig. 1 Fig. 2 Ta J≦T (J ship V) 0 5 10 Is
20Cr(Xl: Content CLJ
Figure 4 (8) 1 Figure 5 Shield 6th thickness (included) - Figure 6

Claims (1)

【特許請求の範囲】[Claims] 非磁性基材面上にCr層を介して磁性金属層を形成して
なる磁気記録体において、前記磁性金属層は、X、Yを
原子%としたときCo_1_0_0_−_(_X_+_
Y_)Cr_xTa_yで表され1≦X≦18、2≦Y
≦9の組成比をもち面内方向に磁気異方性を有すること
を特徴とする磁気記録体。
In a magnetic recording body formed by forming a magnetic metal layer on a non-magnetic base material surface via a Cr layer, the magnetic metal layer has Co_1_0_0_-_(_X_+_
Y_) Cr_xTa_y, 1≦X≦18, 2≦Y
A magnetic recording body characterized by having a composition ratio of ≦9 and having magnetic anisotropy in an in-plane direction.
JP29151987A 1987-11-18 1987-11-18 Magnetic recording body Pending JPH01133217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29151987A JPH01133217A (en) 1987-11-18 1987-11-18 Magnetic recording body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29151987A JPH01133217A (en) 1987-11-18 1987-11-18 Magnetic recording body

Publications (1)

Publication Number Publication Date
JPH01133217A true JPH01133217A (en) 1989-05-25

Family

ID=17769946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29151987A Pending JPH01133217A (en) 1987-11-18 1987-11-18 Magnetic recording body

Country Status (1)

Country Link
JP (1) JPH01133217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349020A (en) * 1989-04-26 1991-03-01 Hitachi Metals Ltd Magnetic recording medium
JPH03237613A (en) * 1990-02-13 1991-10-23 Fuji Electric Co Ltd Magnetic recording medium and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349020A (en) * 1989-04-26 1991-03-01 Hitachi Metals Ltd Magnetic recording medium
JPH03237613A (en) * 1990-02-13 1991-10-23 Fuji Electric Co Ltd Magnetic recording medium and its production

Similar Documents

Publication Publication Date Title
JPH0714142A (en) Thin film magnetic recording medium
JP2508489B2 (en) Soft magnetic thin film
JPH01133217A (en) Magnetic recording body
JP3173490B2 (en) Perpendicular magnetic recording media
JP4453479B2 (en) Exchange coupling type soft magnetic material
US20050042481A1 (en) Information recording medium with improved perpendicular magnetic anisotropy
JP2552546B2 (en) Metal thin film magnetic recording medium
JPH11203654A (en) Perpendicular magnetic recording medium and manufacture thereof
JP3050305B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP2570337B2 (en) Soft magnetic laminated film
JPH0827927B2 (en) Magnetic recording media
JP3045797B2 (en) Perpendicular magnetic recording media
JPS6313256B2 (en)
JP2725502B2 (en) Magnetic recording media
JP2607288B2 (en) Magnetic recording medium and method of manufacturing the same
JPH04311809A (en) Perpendicular magnetic recording medium and production thereof
JPS58171717A (en) Magnetic recording medium
JP3013598B2 (en) Magnetic recording media
JPH0380445A (en) Magneto-optical recording medium
JPS6314310A (en) Prependicular magnetic recording medium
JPS6364623A (en) Magnetic recording medium
JP3880000B2 (en) High saturation magnetic flux density soft magnetic material
JP2550995B2 (en) Soft magnetic laminated thin film
JP2544205B2 (en) Metal thin film magnetic recording medium for in-plane magnetization recording
JPH01143312A (en) Amorphous soft magnetic laminated film