JPH01132793A - Production of steel plate plated with zn-ni alloy - Google Patents

Production of steel plate plated with zn-ni alloy

Info

Publication number
JPH01132793A
JPH01132793A JP63211330A JP21133088A JPH01132793A JP H01132793 A JPH01132793 A JP H01132793A JP 63211330 A JP63211330 A JP 63211330A JP 21133088 A JP21133088 A JP 21133088A JP H01132793 A JPH01132793 A JP H01132793A
Authority
JP
Japan
Prior art keywords
plating
plating solution
current density
ion
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63211330A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
亮一 向
Shigeru Kobayashi
繁 小林
Hajime Kimura
肇 木村
Kazuo Mochizuki
望月 一雄
Toshiro Ichida
市田 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63211330A priority Critical patent/JPH01132793A/en
Publication of JPH01132793A publication Critical patent/JPH01132793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To carry out plating of a steel plate with a Zn-Ni alloy stably and industrially by specifying each pH of a plating bath, a concn. of contained ion, flow rate, and current density in a plating bath acidified with sulfuric acid contg. Zn ion and Ni ion. CONSTITUTION:In a stage of carrying out Zn-Ni alloy plating of a steel plate using a plating bath acidified with sulfuric acid contg. Zn ion and Ni ion, the pH of the plating soln. is regulated to 1-2.5, the sum of the concn. of Zn<2+> ion, Ni<2+> ion, H<+> ion, and SO4<2-> ion is regulated to 2, 3 mol/liter, and the concn. of at least one ion among Na<+> ion, K<+> ion, and NH4<+> ion is regulated to >=0.1 mol/liter. Further, the anode of each plating bath is divided to plural segments, and the current density of an anode segment at each discharging side of the plating soln. between each anode and the steel plate is held at by 20-30% lower current density than that of the the anode segment at each inlet side of the plating soln. By this constitution, a Zn-Ni alloy plated steel plate having high quality is obtd. stably.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、Zn−Niめっき鋼板を工業的に低ラインス
ピードから高ラインスピードまで安定的に製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for industrially stably manufacturing Zn-Ni plated steel sheets from low line speeds to high line speeds.

〈従来の技術〉 Zn−Ni合金めっきは、同一目付量のZnめっきと比
較して数倍から十数倍の耐食性を示すため、近年その使
用量が大幅に増加してきている。 ここでこの高耐食性
を発揮させるためにはめっき層中のNi含有率を10〜
15wt%の範囲に制御することが必要とされる。
<Prior Art> Since Zn-Ni alloy plating exhibits corrosion resistance several to ten times higher than Zn plating with the same basis weight, its usage has increased significantly in recent years. In order to exhibit this high corrosion resistance, the Ni content in the plating layer must be 10 to 10%.
It is necessary to control the content within a range of 15 wt%.

これは、Zn−Niの合金相のうち N15Znz+という固溶型のγ相をとる領域での耐食
性が最も良好となるからである。この合金組成範囲を超
えると、腐食電位が責になりすぎて、かえって鋼板に対
する犠牲防食性が悪くなるので好ましくない。
This is because the corrosion resistance is best in the region of the Zn-Ni alloy phase, which is a solid solution type γ phase called N15Znz+. Exceeding this range of alloy composition is not preferable because the corrosion potential becomes too much of a liability and the sacrificial corrosion protection against steel sheets deteriorates.

Ni含有率10〜15wt%のZn−Niめっき鋼板を
高品質に安定的に製造するには、一般にめっき電流密度
を一定にすること、浴組成を一定にすること、液流速お
よび液温度を一定にすることなど様々なめっき条件を制
御する必要があるが、さらに工業的に大量に低コストで
製造するためは第1に高ラインスピードで製造でき、第
2にラインスピードの変化、電流密度の変化にかかわら
ず一定の品質が保持されるように製造できるようにする
ことが必要となる。 ここで高ラインスピードで所望の
Zn−Ni合金めっきをするには、電気めっきの付着量
が電流密度とめっき時間の積に依存することから、高電
流密度でめっきを行うことが必要とされる。 そして、
高電流密度操業になればなる程、極間抵抗(めっき液抵
抗)による電圧の全めっき電圧に対して占める割合が大
きくなるので、鋼板のめっきの運転コストを減少させる
ためにめっき液の電気伝導度を上昇させることが必要と
される。
In order to stably produce high-quality Zn-Ni plated steel sheets with a Ni content of 10 to 15 wt%, it is generally necessary to keep the plating current density constant, the bath composition constant, and the liquid flow rate and temperature constant. It is necessary to control various plating conditions such as changing the plating temperature, but in order to manufacture it industrially in large quantities at low cost, firstly, it can be manufactured at high line speed, and secondly, it is necessary to control various plating conditions such as changes in line speed and current density. It is necessary to be able to manufacture products so that a constant quality is maintained regardless of changes. In order to perform the desired Zn-Ni alloy plating at a high line speed, it is necessary to perform plating at a high current density because the amount of electroplating depends on the product of current density and plating time. . and,
The higher the current density operation is, the larger the ratio of the voltage due to inter-electrode resistance (plating solution resistance) to the total plating voltage becomes. It is necessary to increase the degree of

現在高電流密度下での工業的Zn−Ni合金めっきを意
図とした技術としては、操業条件として特開昭55−1
52194号公報に記載のようにめっき液と鋼板の相対
速度を20 spm以上に維持する方法、めっき装置と
して特公昭61−21319号公報に記載のように電極
とめっき鋼板の距ll!(極間距!!I)を短かくした
水平電解装置を用いたもの、めっぎ液として特開昭61
−133394号公報に記載のように支持電解質を一定
量加えるもの等が開示されており、めっき液の電気伝導
度を上昇させる方法としては特公昭61−19719号
公報にZ n S 04とNiSO4をある一定量加え
るという方法が開示されている。 またラインスピード
あるいは電流密度等製造条件の変化にかかわらず一定の
品質が保持されるようにする技術に関しては特公昭60
−106992号公報に記載のように液中にアンモニウ
ムイオンを混入させることによって電流密度依存性を少
なくするようなめっき浴が開示されている。
Currently, as a technology intended for industrial Zn-Ni alloy plating under high current density, the operating conditions are JP-A-55-1
As described in Japanese Patent Publication No. 52194, the relative speed between the plating solution and the steel plate is maintained at 20 spm or more, and as a plating apparatus, as described in Japanese Patent Publication No. 61-21319, the distance between the electrode and the plated steel plate is 11! A device using a horizontal electrolytic device with a shortened (distance between poles!!I), used as a plating solution in JP-A-61
As described in Japanese Patent Publication No. 133394, a method in which a certain amount of supporting electrolyte is added is disclosed, and as a method for increasing the electrical conductivity of a plating solution, Japanese Patent Publication No. 19719-1987 discloses a method in which Z n S 04 and NiSO4 are added. A method of adding a certain amount is disclosed. Also, regarding technology to maintain constant quality regardless of changes in manufacturing conditions such as line speed or current density,
As described in Japanese Patent No. 106992, a plating bath is disclosed in which current density dependence is reduced by mixing ammonium ions into the solution.

〈発明が解決しようとする課題〉 しかしながら、これらはいずれも100 mpm以上の
高ラインスピード、あるいは100〜250 A/da
”という高電流密度のめつと条件下では十分には実用に
供し得ない。 これは、めっきの電流密度が5〜10 
A/dm2を超える上記条件下では析出機構が電気化学
的に卑なZnが優先的に析出する異常型となるのでめっ
き層組成はめっき液の組成と異なるものになりめっき層
組成の制御が困難になること、めっき電圧上昇による電
力費の増加を抑制することが困難であること等による他
、特に高電流密度めっきに伴うめつき時に発生する酸素
ガスが組成に及ぼすの影響、めっき時のジュール発熱が
組成に及ぼす影響などの問題点が解決されていなかった
ことによる。
<Problem to be solved by the invention> However, all of these require a high line speed of 100 mpm or more or 100 to 250 A/da.
It cannot be put to practical use under the conditions of high current density of 5 to 10%.
Under the above conditions exceeding A/dm2, the precipitation mechanism becomes an abnormal type in which electrochemically base Zn preferentially precipitates, so the composition of the plating layer differs from the composition of the plating solution, making it difficult to control the composition of the plating layer. In addition to the difficulty of suppressing the increase in power costs due to the increase in plating voltage, the effect of oxygen gas generated during plating due to high current density plating on the composition, and the joule during plating. This is because problems such as the effect of heat generation on the composition had not been resolved.

加えて、めっき層の組成は電流密度にも依存することか
ら、被めっき鋼板の板巾、めっき目付量等に応じて電流
密度を変化させる工場ラインでは、安定的に一定の品質
のめっきをすることが一層困難になるという問題点も解
決されていなかった。
In addition, the composition of the plating layer also depends on the current density, so in a factory line where the current density is changed depending on the width of the steel sheet to be plated, the coating weight, etc., it is necessary to stably achieve plating with a constant quality. The problem of making things even more difficult has not been resolved.

ここで、めっき時にめっき液中に発生する酸素ガスの影
響とは電流密度の増加に伴い正比例的に発生する酸素ガ
スがめつき層中のNi含有率を上昇させ、所定のNi含
有率のZn−Ni合金を安定的に製造できなくさせてし
まう原因となることをいう。 実際、第5図に示したよ
うに、めっき液中に含まれる酸素ガス量とめっき層中の
Ni含有率上昇割合との関係かられかるように、めっき
液中の酸素ガスが10%を超えると極端にめっき層のN
i含有率が上昇する。 なお、この測定に使用しためっ
き液はZn+、Ni+、H”および304′−イオンの
総濃度が2 、9 mol/J!、N a ” 0 、
 2 mol/j!、K” 0.2mol/fL、 p
 H1、8である。
Here, the effect of oxygen gas generated in the plating solution during plating is that the oxygen gas generated in direct proportion to the increase in current density increases the Ni content in the plating layer, and the Zn- This is a cause that makes it impossible to stably manufacture Ni alloys. In fact, as shown in Figure 5, it can be seen from the relationship between the amount of oxygen gas contained in the plating solution and the rate of increase in the Ni content in the plating layer that the amount of oxygen gas in the plating solution exceeds 10%. and extremely low N in the plating layer.
i content increases. The plating solution used in this measurement had a total concentration of Zn+, Ni+, H" and 304'- ions of 2.9 mol/J!, Na"0,
2 mol/j! , K” 0.2mol/fL, p
H1, 8.

以下、まずこのような酸素ガスの影響について説明する
Hereinafter, the influence of such oxygen gas will be explained first.

酸素ガスの影響はラインスピードによって変化する。 
従ってNi含有率10〜15wt%の範囲内のZn−N
i合金めっきをラインスピード10〜300 w+pm
の範囲で安定的に製造することを困難にするという問題
点を生じさせていた。
The effect of oxygen gas changes depending on line speed.
Therefore, Zn-N with Ni content in the range of 10 to 15 wt%
i-alloy plating at line speed of 10 to 300 w+pm
This has caused a problem in that it is difficult to stably manufacture the material within this range.

このことは、ラジアル型めっきセルを10セル並べて、
長さ2mのアノードを使用し、めっき液組成Zn+、N
i+、HoおよびSO42−の和が4 mol/41、
pH2,0,めっき温度60℃、液流速0 、 5 m
/secという条件下でめっきした場合のめっき電流密
度、ラインスピードおよびNi含有率の関係を示す第3
図のグラフから実証される。 第3図から分るようにラ
インスピードあるいはめっき電流密度が変化するとめっ
き層中のNi含有率も大幅に変化し、めっき層中のNi
含有率が好適範囲であるtoel 5wt%に入らない
場合のあることがわかる。
This means that by arranging 10 radial plating cells,
Using a 2m long anode, the plating solution composition was Zn+, N
The sum of i+, Ho and SO42- is 4 mol/41,
pH 2.0, plating temperature 60℃, liquid flow rate 0.5 m
The third diagram shows the relationship between plating current density, line speed, and Ni content when plating is performed under the condition of /sec.
This is demonstrated from the graph in Figure. As can be seen from Figure 3, when the line speed or plating current density changes, the Ni content in the plating layer also changes significantly.
It can be seen that the content may not fall within the preferred range of 5 wt% for toel.

このような酸素ガスの影響は、100〜250 A/d
■2の高電流密度条件下でめっき電圧を低く押さえてめ
っきするため、特公昭61−21319号公報に記載の
ように極間距離を小さくしためっきセルを用いる場合に
特に問題となる。 極間距離を小さくしためっきセルの
アノードには一般に不溶性電極が用いられるので、めう
き時には必然的に酸素ガスが発生し、後述するように、
めっき表面に存在する酸素ガスの量が増加するからであ
る。
The influence of such oxygen gas is 100 to 250 A/d
(2) Since plating is carried out under the high current density conditions of (2) while keeping the plating voltage low, this becomes a particular problem when using a plating cell with a small distance between electrodes as described in Japanese Patent Publication No. 61-21319. Since an insoluble electrode is generally used for the anode of a plating cell with a small distance between electrodes, oxygen gas is inevitably generated during plating, and as described later,
This is because the amount of oxygen gas present on the plating surface increases.

一方、前述した高電流密度めっきに伴うジュール発熱の
影響とは、高電流密度にした場合の大きなジュール発熱
量がめつき液温度を上昇させ、めつき液温度が極間内で
一定に維持されず、一定の組成のめっきを安定的に得ら
れなくなることをいう。
On the other hand, the above-mentioned effect of Joule heat generation associated with high current density plating is that the large amount of Joule heat generated at high current density increases the temperature of the plating solution, and the temperature of the plating solution is not maintained constant within the gap between the electrodes. , refers to the inability to stably obtain plating with a constant composition.

このことはアノード長1m1めっき液の電導塵100 
m57cm  (めっき液は前記第5図に係るめっき液
と同じ)、液流速0 、 5 m/sec 、極間路w
i10IIIIIlの場合のめっき電流密度とめっき液
の温度上昇幅(めっき液セル出側の液温とめっき液セル
入側の液温との差)の関係を表わす第6図により明らか
にされる。
This means that 100% of conductive dust in 1m1 of anode length and plating solution
m57cm (the plating solution is the same as the plating solution shown in FIG. 5 above), liquid flow rate 0, 5 m/sec, path between poles w
This is clarified by FIG. 6, which shows the relationship between the plating current density and the temperature rise width of the plating solution (difference between the solution temperature on the outlet side of the plating solution cell and the solution temperature on the inlet side of the plating solution cell) in the case of i10IIIIIIl.

第6図からめっき電流密度が100〜180A/dm”
の場合めっき液温度が4〜13℃上昇することがわかる
From Figure 6, the plating current density is 100 to 180 A/d”
It can be seen that the plating solution temperature increases by 4 to 13°C in the case of .

上記のように、工業的に安定的に高ラインスピードZn
−Ni合金めっきを行うには高電流密度めっきに伴う酸
素ガスの影響、ジュール発熱の影響による問題点を解決
することが必要とされるが、この他粘度の低いめっき液
を使用することも必要とされる。
As mentioned above, industrially stable high line speed Zn
-In order to perform Ni alloy plating, it is necessary to solve the problems caused by the effects of oxygen gas and Joule heat generation associated with high current density plating, but it is also necessary to use a plating solution with low viscosity. It is said that

これは粘度の高いめっき液を使用するとドラッグアウト
と称するめっき液の系外への持ち出しが必然的に起こり
、高価なNiが浪費され、めっきの製造コストが高くな
るからであり、また前述しためっき液中の酸素ガスの滞
留が促進されるからである。
This is because when a highly viscous plating solution is used, the plating solution is dragged out of the system, which is called drag-out, which wastes expensive Ni and increases the production cost of plating. This is because retention of oxygen gas in the liquid is promoted.

従って液の粘度は低い方が好ましく、めっき液の粘度を
低くする点からめっき液の密度を低くすることが好まし
い。
Therefore, the viscosity of the plating solution is preferably lower, and from the viewpoint of lowering the viscosity of the plating solution, it is preferable to lower the density of the plating solution.

本発明は上記事情を鑑みてなされたものであって、鋼板
のZn−Ni合金めっきが低ラインスピードから高ライ
ンスピードまで大量に低コストで工業的に安定的になさ
れるようにすることを特徴とする 特に本発明は安定的な高ラインスピードのめりきがなさ
れるようにするため、高電流密度めっきをするに当り、
発生する酸素およびジュール熱のめっき組成への影響が
抑制されるようにし、それによりラインスピードおよび
電流密度の変化にかかわらず一定の品質のめっきが施さ
れるようにすることを目的とする。
The present invention has been made in view of the above circumstances, and is characterized in that Zn-Ni alloy plating of steel sheets can be carried out industrially and stably in large quantities at low cost from low line speeds to high line speeds. In particular, the present invention provides stable plating at high line speeds when performing high current density plating.
The purpose is to suppress the effects of generated oxygen and Joule heat on the plating composition, thereby ensuring that plating is of constant quality regardless of changes in line speed and current density.

さらにまた、本発明は製造ラインをコンパクト化するた
め、!セル当りのアノード長を十分に長くしてめっきラ
インにおけるセル数を減少させることができるようにす
ることを目的とする。
Furthermore, the present invention makes the production line more compact! It is an object of the present invention to make it possible to reduce the number of cells in a plating line by making the anode length per cell sufficiently long.

〈課題を解決するため手段〉 本発明者らは従来の高電流密度に伴う種々の問題点、特
にアノードから発生する酸素の影響について鋭意研究し
た結果、アノードと鋼板間のめっき液中の気泡の存在状
態には第7図(a)〜(e)に示すように気泡浮上途中
、気泡完全分散、気泡部分浮上の3 fffi類あるこ
と、このうち気泡浮上途中状態はめっき層のNi含有率
に影響を与えないこと、気泡完全分散状態ではめつき液
中に酸素ガスが10%混入するとめっき層のNi含有率
が上昇すること、気泡部分浮上状態ではめっき液中に酸
素ガスが2%混入してもめっき層のNi含有率が上昇す
ることを見出した。 気泡完全分散状態と気泡部分浮上
の状態の差は、めっきされる鋼板表面近傍の酸素ガスの
量の差である。
<Means for Solving the Problems> As a result of intensive research into various problems associated with conventional high current densities, especially the influence of oxygen generated from the anode, the present inventors have found that air bubbles in the plating solution between the anode and the steel sheet As shown in Figures 7(a) to (e), there are three types of fffi: bubbles in the process of floating, bubbles completely dispersing, and bubbles partially floating. The Ni content of the plating layer will increase if 10% of oxygen gas is mixed into the plating solution when the bubbles are completely dispersed, and the Ni content of the plating layer will increase when the bubbles are partially floating. It has been found that the Ni content of the plating layer increases even when the plated layer is used. The difference between the completely dispersed state of the bubbles and the state of partially floated bubbles is the difference in the amount of oxygen gas near the surface of the steel plate to be plated.

また、この3 fffi類の状態は、液流速、アノード
長、めっき電流密度に応じて生じることを見出した。−
すなわち−船釣に液流速が大きくアノード長が短い(例
えば30c+n未満)場合には、発生した気泡は極間で
完全に分散する前にめっきセルを出てしまうため気泡浮
上途中状態となり、気泡完全分散状態あるいは気泡部分
浮上状態になることはない。
It has also been found that these three fffi states occur depending on the liquid flow rate, anode length, and plating current density. −
In other words, when fishing by boat, when the liquid flow rate is high and the anode length is short (for example, less than 30c+n), the generated air bubbles will leave the plating cell before being completely dispersed between the poles, resulting in a state where the air bubbles are floating, and the air bubbles will not completely disappear. There is no possibility of a dispersed state or a partially floating state of bubbles.

これに対して液流速がやや小さくアノード長が大きい場
合には、気泡完全分散状態となり、液流速がさらに小さ
い場合には気泡部分浮上状態となる。
On the other hand, when the liquid flow rate is slightly low and the anode length is long, the bubbles are completely dispersed, and when the liquid flow rate is even lower, the bubbles are partially floated.

このような状態の変化はラインスピードにも左右される
Such changes in conditions also depend on line speed.

第8a図および第8b図に示すように、ラインスピード
が変化すると、めっき層中のNi含有率に影響を与える
濃度境界層5の厚みが変化する。 特に、高電流密度お
よび高ラインスピードで操業を行っている場合(第8a
図参照)から、ラインスピードが減少し、高電流密度お
よび低ラインスピードの操業となった場合(第8b図参
照)は、第8b図に示すように濃度境界層内また濃度境
界層近傍に酸素ガスが存在することになり、酸素ガスの
影響がより顕著になる。
As shown in FIGS. 8a and 8b, when the line speed changes, the thickness of the concentration boundary layer 5, which affects the Ni content in the plating layer, changes. Particularly when operating at high current densities and high line speeds (8a
(see Figure 8), when the line speed is reduced and operation is performed at high current density and low line speed (see Figure 8b), oxygen is present in the concentration boundary layer or near the concentration boundary layer, as shown in Figure 8b. gas will be present, and the influence of oxygen gas will become more pronounced.

上記のような3種のめっき液中の気泡の存在状態を実際
のラインに関してさらに検討した結果以下の知見を得た
。 すなわち、実際のラインでは、アノード長は太きく
 (50cm以上)、まためっき液の流動状態は乱流に
なっているのでアノードに生じた気泡は乱流拡散の影響
で分散され、従ってアノードと鋼板間のめっき液中には
気泡浮上途中状態が少なくなり大部分は気泡完全分散状
態か気泡部分浮上状態になっていることを見出した。 
そしてこのことを詳細に検討したところ、めっぎセルの
アノード長が1mを超える場合は、めっぎ液の進行方向
に気泡完全分散状態と気泡部分浮上状態の2種類の状態
が存在すること、また気泡部分浮上状態の領域はめっき
液のセルからの出側近傍に形成されるが、液流速を大き
くするほどまためっき液の粘度を小さくするほど乱流状
態が促進されるので、この気泡部分浮上状態の長さは短
くなることを見出した。
As a result of further examination of the existence state of air bubbles in the three types of plating solutions mentioned above with respect to actual lines, the following findings were obtained. In other words, in an actual line, the anode length is long (50 cm or more) and the plating solution is in a turbulent flow state, so air bubbles generated in the anode are dispersed by the influence of turbulent diffusion, and therefore the anode and steel plate are separated. It was found that the number of bubbles in the middle of floating in the plating solution decreased, and most of the bubbles were completely dispersed or partially floated.
After examining this matter in detail, we found that when the anode length of the plating cell exceeds 1 m, there are two types of states in the direction of travel of the plating solution: a fully dispersed state of bubbles and a partially floating state of bubbles. In addition, a region where bubbles are partially floating is formed near the exit side of the plating solution from the cell, but as the flow rate increases and the viscosity of the plating solution decreases, the turbulent flow is promoted. It was found that the length of the partially levitating state becomes shorter.

また、めっき液流速が大きくなって乱流状態が促進され
、めっき液の出側近傍付近が気泡部分浮上状態よりはめ
っき層組成への影響が小さい気泡完全分散状態になって
いたとしても、めっき液中のガス量が多いのでそれだけ
でめっき組成への影響を十分に少なくすることはできな
いこと、これに対してはめっき液出側のめっき電流密度
を減少させればよいことを見出した。
In addition, even if the flow rate of the plating solution increases and a turbulent state is promoted, and the air bubbles near the outlet side of the plating solution are completely dispersed, which has a smaller effect on the plating layer composition than when the air bubbles are partially floating, the plating It has been found that since the amount of gas in the solution is large, it is not possible to sufficiently reduce the effect on the plating composition by itself, and that the solution to this problem is to reduce the plating current density on the outlet side of the plating solution.

さらにまた、ジュール発熱の影響の問題はめっき液の伝
導度を上昇させめっき液流量を上昇させれば良いことも
見出した。
Furthermore, it has been found that the problem of the effects of Joule heat generation can be solved by increasing the conductivity of the plating solution and increasing the flow rate of the plating solution.

そして以上のような知見を総合することにより、めっき
時に発生する酸素ガスの影響とジュール発熱の影響を小
さくするには、粘度が小さく電気伝導度の高いめっき液
を使用し、アノードと鋼板間のめっき液が十分に乱流状
態になるようにめっき液流速を高くし、さらにアノード
と鋼板間のめっき液出側のめっき電流密度を減少させれ
ばよいことを見出し本発明を完成させるに至った。
Combining the above knowledge, we believe that in order to reduce the effects of oxygen gas and Joule heat generated during plating, it is necessary to use a plating solution with low viscosity and high electrical conductivity, and to improve the The present inventors discovered that it is sufficient to increase the flow rate of the plating solution so that the plating solution becomes sufficiently turbulent, and further reduce the plating current density on the outlet side of the plating solution between the anode and the steel plate, leading to the completion of the present invention. .

すなわち、本発明はZnおよびNiイオンを含む硫酸酸
性めっき浴を用い、鋼板上にZn−Ni合金めっきを行
うのに際し、 めっき液のpHを1〜2.5、該めつき液中のZn+、
N i +、H+およびSO4”−イオンの総和を2〜
3 mol/1 、かつNa+、K”および、NH4”
イオンのうち一種類以上を0. 1mol/j!以上と
し、前記めっき液の流速を1 m/sec以上とし、ア
ノードと前記鋼板との間の前記めっき液出側の電流密度
を前記めっき液入側の電流密度よりも低くすることを特
徴とするZn−Ni合金めっき鋼板の製造方法を提供す
る。
That is, in the present invention, when performing Zn-Ni alloy plating on a steel plate using a sulfuric acid acidic plating bath containing Zn and Ni ions, the pH of the plating solution is 1 to 2.5, and the Zn+ in the plating solution is
The sum of N i +, H+ and SO4”- ions is 2~
3 mol/1 and Na+, K" and NH4"
One or more types of ions are 0. 1mol/j! The plating solution has a flow rate of 1 m/sec or more, and the current density on the plating solution outlet side between the anode and the steel plate is lower than the current density on the plating solution inlet side. A method for manufacturing a Zn-Ni alloy plated steel sheet is provided.

さらに、本発明では、上記の発明において各めっき浴の
アノードを複数個のセグメントに分割し、アノードと前
記鋼板との間の前記めっき液出側のアノードセグメント
の電流密度を前記めっき液入側のアノードセグメントの
電流密度よりも5〜20%低くするのが好ましい。
Furthermore, in the present invention, the anode of each plating bath is divided into a plurality of segments in the above invention, and the current density of the anode segment on the plating solution outlet side between the anode and the steel plate is changed from the current density of the anode segment on the plating solution inlet side between the anode and the steel plate. Preferably, the current density is 5 to 20% lower than the current density of the anode segment.

上記発明において、Zn−Ni合金めつきはラジアル型
セルあるいは水平セルで行うのが好ましい。
In the above invention, Zn--Ni alloy plating is preferably performed in a radial cell or a horizontal cell.

以下本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明で使用するめっき液は、めつき液のpHが1〜2
.5、Zn+、Ni+、HoおよびSO42−イオンの
総和を2〜3 mol/fLかつNa+、K”およびN
H4+イオンのいずれか1種類以上を0.11QO1/
JZ以上含有するように調整した液とする。
The plating solution used in the present invention has a pH of 1 to 2.
.. 5. The total amount of Zn+, Ni+, Ho and SO42- ions is 2 to 3 mol/fL and Na+, K'' and N
One or more types of H4+ ions at 0.11QO1/
The liquid is adjusted to contain JZ or more.

めっき液のpHが1未満では、実際のラインでZn−N
i電気めっきを行った際に、鋼板から鉄が大量に溶は出
し、めっき液中に不純物イオンとして存在するため好ま
しくない、 また、pHが2.5を超えると、めっきラ
インの連続運転を行った場合、pHの変動が非常に大き
くなり、Zn−Niめっき層中のNi含有量が変化する
ため実用的でない。
If the pH of the plating solution is less than 1, Zn-N
i When electroplating is performed, a large amount of iron is leached from the steel sheet and exists as impurity ions in the plating solution, which is undesirable.Also, if the pH exceeds 2.5, the plating line must not be operated continuously. In this case, the pH fluctuation becomes very large and the Ni content in the Zn-Ni plating layer changes, which is not practical.

めっき液中のZn+、H+、SO4”−イオンの総和が
2moJ2zξ未満では、Zn−Ni合金めつきを行っ
た場合めっきやけを起すため不適であり、3 m o 
fl / 11超では電導助剤による電気伝導度の向上
効果が少ないので好ましくない。
If the total amount of Zn+, H+, SO4''- ions in the plating solution is less than 2moJ2zξ, it is unsuitable for Zn-Ni alloy plating because it will cause plating burn.
If it exceeds fl/11, it is not preferable because the effect of improving electrical conductivity by the conductive additive is small.

Na+、K”およびNH4”などの電導助剤の総量が0
.1moj!/J!未満であれば添加する意味がなくな
る。 また上限は特に限定する必要はないがその種類に
よって溶解限は決まっており、溶解限をこえる添加は無
意味である。
The total amount of conductive aids such as Na+, K'' and NH4'' is 0.
.. 1moj! /J! If it is less than that, there is no point in adding it. Further, there is no need to specifically limit the upper limit, but the solubility limit is determined depending on the type, and addition beyond the solubility limit is meaningless.

このようなめっき液は本発明者らが特願昭62−026
011号公報にすでに開示したように、めっき液の粘度
が低く、めっき液の伝導度が高いので好適である。 す
なわち、めっき液の粘度が低いので、めっき液の乱流状
態が促進され、めっき組成中のNi含有率に影響を及ぼ
しやすい気泡部分浮上状態の形成が抑制される。 従っ
て100〜250^/dad”の高電流密度でライン生
産する際に発生する酸素ガスの影響を小さくすることが
できる。  また、めっき液の電導塵が高いのでめっき
電圧を低くでき、ジュール発熱も低下させにとができる
ので好ましい。
Such a plating solution was developed by the present inventors in Japanese Patent Application No. 62-026.
As already disclosed in Japanese Patent No. 011, the viscosity of the plating solution is low and the conductivity of the plating solution is high, so it is suitable. That is, since the viscosity of the plating solution is low, the turbulent state of the plating solution is promoted, and the formation of floating bubbles that tend to affect the Ni content in the plating composition is suppressed. Therefore, it is possible to reduce the influence of oxygen gas generated during line production at a high current density of 100 to 250^/dad''.In addition, since the plating solution has high conductive dust, the plating voltage can be lowered and Joule heat generation can be reduced. It is preferable because it can be sharpened to lower the temperature.

めっきを行なう際のめっき液流速は1 m/sec以上
とする。
The flow rate of the plating solution during plating is 1 m/sec or more.

めっき液流速が1 m/sec未満であるとアノードと
鋼板間が十分に乱流状態にならず、めっき時に発生する
酸素ガスのめつき組成への影響が大きくなる。 そして
それによりめっき層中のNi含有率がラインスピードあ
るいは電流密度に大きく左右されるようになるので好ま
しくない、 めっき液流速の上限は特に定めないが、最
高で3 m / s e c程度が実操業上好ましい。
If the plating solution flow rate is less than 1 m/sec, sufficient turbulence will not be created between the anode and the steel plate, and the influence of oxygen gas generated during plating on the plating composition will increase. As a result, the Ni content in the plating layer becomes largely dependent on the line speed or current density, which is undesirable.Although there is no particular upper limit to the flow rate of the plating solution, a maximum of about 3 m/sec is practical. Favorable for operation.

このことはラインスピード10mpmと300mpmと
におけるNi含有率の差をめっき液流速を変化させるこ
とにより測定して得られた第4図に示す結果に基づくも
のである。 第4図からめっき液流速が1 a+/se
c未満ではNi含有率変化が大きいが、1 a+/se
c以上ではNi含有率変化は5%未満であることがわか
る。 なお、この測定に使用しためりき液はZn+、N
 i +、Hoおよび5042−イオンの総濃度が2.
9mol/JZ、 Na”  0.2mol/fL。
This is based on the results shown in FIG. 4 obtained by measuring the difference in Ni content between line speeds of 10 mpm and 300 mpm by changing the plating solution flow rate. From Figure 4, the plating solution flow rate is 1 a+/se.
Below c, the change in Ni content is large;
It can be seen that above c, the change in Ni content is less than 5%. The quenching liquid used for this measurement was Zn+, N
The total concentration of i +, Ho and 5042- ions is 2.
9 mol/JZ, Na” 0.2 mol/fL.

K” 0. 2wol/j2、pH1,8であり、ラジ
アル型めつきセルを10セル用いた。
K" 0.2 wol/j2, pH 1.8, and 10 radial type plating cells were used.

本発明ではアノードと鋼板との間のめっき液出側の電流
密度をめフき液入側よりも低くすることが重要である。
In the present invention, it is important to make the current density on the plating solution outlet side between the anode and the steel plate lower than on the plating solution inlet side.

  これは前述のようにめっき液出側のめっき液中の酸
素ガス含有量が多いので、その影響を抑制するためであ
る。 めっき液出側の電流密度を減少させる程度および
態様はめっき液流速、アノードと鋼板との距離、アノー
ドの長さ、めっき液の粘度等積々のめつきラインの操業
条件にもよるが、一般にめっき液入側が100〜250
 A/dm2の電流密度の場合にはめっき液出側の電流
密度をめっき液入側に対して5%〜20%減少させるの
が好ましい。
This is to suppress the influence of the high oxygen gas content in the plating solution on the plating solution outlet side as described above. The degree and mode of reducing the current density on the plating solution outlet side depend on the operating conditions of the plating line, such as the plating solution flow rate, the distance between the anode and the steel plate, the length of the anode, and the viscosity of the plating solution, but in general Plating solution inlet side is 100-250
In the case of a current density of A/dm2, it is preferable to reduce the current density on the plating solution outlet side by 5% to 20% compared to the plating solution inlet side.

減少させる態様は連続的でもめっき液出側において急に
減少させるステップ状でもよい。
The manner in which the amount is decreased may be continuous or may be in a stepwise manner such that the amount is suddenly decreased on the plating solution outlet side.

めっき液出側の電流密度を減少させる方法としては、ア
ノードを長手方向に2分割以上して電流密度に差をつけ
ればよい。
As a method of reducing the current density on the plating solution outlet side, the anode may be divided into two or more parts in the longitudinal direction to create a difference in current density.

5%未満では、ラインスピードの変化に対するめっきの
Ni含有率の変化がやや大きくなり、20%超では、各
アノードで異なったNi含有率のめっきとなワて深さ方
向に層構造のめっきとなり、好ましくない。
If it is less than 5%, the change in the Ni content of the plating due to the change in line speed will be somewhat large, and if it exceeds 20%, the plating will have a layered structure in the depth direction, with each anode having a different Ni content. , undesirable.

なお、めっき液入側の電流密度は通常高ラインスピード
めっきで必要とされる電流密度にすればよく、特に10
0〜250^/dad2の範囲では本発明の効果が顕著
に発揮される。
Note that the current density on the plating solution inlet side can be set to the current density normally required for high line speed plating, especially 10
In the range of 0 to 250^/dad2, the effects of the present invention are significantly exhibited.

本発明で使用するめっきセルは特に制限されないがラジ
アル型セルまたは水平セルが好ましい、 ラジアル型セ
ルはパスラインが安定しているため、めっき液流速の変
動が少なく局所的な電流集中が少ない等、小さい極間距
離でめっきを行なう場合に大変好ましい特徴を備えてい
るからである。
The plating cell used in the present invention is not particularly limited, but radial cells or horizontal cells are preferable. Radial cells have a stable pass line, so there are fewer fluctuations in the plating solution flow rate and less local current concentration, etc. This is because it has very desirable features when plating is performed with a small distance between poles.

水平セルにおいても本発明の改善効果は好ましく発揮さ
れる。
The improvement effect of the present invention is also preferably exhibited in horizontal cells.

ここで、1セル内のアノードの長さも特に制限的ではな
いが、アノード長が1m以上であると本発明の効果が顕
著に発揮される。  in未満(特に30cm未満)で
はもともとアノードと鋼板間に気泡部分浮上状態が生じ
にくく、めっき液出側のめっき液中の酸素ガス含有量が
高くなることもないからである。
Here, although the length of the anode within one cell is not particularly limited, the effects of the present invention are significantly exhibited when the anode length is 1 m or more. This is because if the distance is less than in (particularly less than 30 cm), a floating state of air bubbles will not occur between the anode and the steel plate, and the oxygen gas content in the plating solution on the plating solution outlet side will not become high.

〈実施例〉 以下に、本発明を実施例により具体的に説明する。<Example> The present invention will be specifically explained below using examples.

(実施例 1) 第1図に示すようなラジアル型めっきセル10セルから
なるめっきラインにおいて、そのアノードを長手方向に
2分割して(各in)めっき液の進行方向に電流密度1
.0510.95(電流密度差約10%)の差異をつけ
、めっき液として、Zn+、N i ”H”およびso
4’−の総和が2.9mol/JZ、K2 SO40,
2mol/jZ、 N at SO40,2mol/u
% pH1,8という組成のめっき液を用い、めっき液
流速2 、0 m/sec 、めっき液温度60℃で、
ラインスピードおよび電流密度を変化させて鋼板のZn
−Ni合金めっきを行い、形成されためっき層のNi含
有率を測定した。
(Example 1) In a plating line consisting of 10 radial type plating cells as shown in Fig. 1, the anode was divided into two in the longitudinal direction (each in) and a current density of 1 was applied in the direction of movement of the plating solution.
.. 0510.95 (approximately 10% difference in current density), and the plating solutions were Zn+, Ni "H" and so
The total sum of 4'- is 2.9 mol/JZ, K2 SO40,
2mol/jZ, N at SO40, 2mol/u
% using a plating solution with a composition of pH 1.8, a plating solution flow rate of 2, 0 m/sec, and a plating solution temperature of 60°C.
Zn on steel plate by changing line speed and current density
-Ni alloy plating was performed, and the Ni content of the formed plating layer was measured.

結果を第2図に示す。The results are shown in Figure 2.

(実施例 2〜9) めっき液組成、電流密度配分、めりき液流速を表1に示
すように変化させ、実施例1と同様にめっきを行なった
。結果を表1に示す。
(Examples 2 to 9) Plating was performed in the same manner as in Example 1, with the plating solution composition, current density distribution, and plating solution flow rate changed as shown in Table 1. The results are shown in Table 1.

(比較例 1.2) アノードの長手方向に電流密度の差をつけず、表1に示
すような条件で実施例1と同様にめっきを行なった。 
結果を表1にあわせて示す。
(Comparative Example 1.2) Plating was performed in the same manner as in Example 1 under the conditions shown in Table 1 without making any difference in current density in the longitudinal direction of the anode.
The results are also shown in Table 1.

表1に示した結果、および第2図を第3図と対比するこ
とにより、本発明の実施例は比較例に比べて電流密度あ
るいはラインスピードの変化に対するめっき中のNi含
有率の変化が著しく小さいこと、また電流密度あるいは
ラインスピードの変化にかかわらずめっき中のNi含有
率が10〜15wt%に維持されていることがわかる。
By comparing the results shown in Table 1 and FIG. 2 with FIG. 3, it can be seen that in the examples of the present invention, the Ni content in the plating changes significantly with changes in current density or line speed compared to the comparative examples. It can be seen that the Ni content in the plating is maintained at 10 to 15 wt% regardless of changes in current density or line speed.

なお、上記実施例はラジアル型セルにおける例を示した
が、水平セルにおいても同様の効果が確認された。
In addition, although the above-mentioned example showed the example in a radial type cell, the same effect was confirmed also in the horizontal cell.

〈発明の効果〉 本発明によれば高電流密度めっきを行っても、めっき時
に発生する酸素ガスの影響およびジュール発熱の影響を
抑制できるので、めっき組成が電流密度、ラインスピー
ド等のめっきラインの操業条件の変化にかかわらず一定
に維持される。 従って、高品質のZn−Ni合金めっ
きを工業的に安定的に低ラインスピードから高ラインス
ピードまで製造することができるようになる。
<Effects of the Invention> According to the present invention, even if high current density plating is performed, the effects of oxygen gas and Joule heat generation generated during plating can be suppressed, so that the plating composition can be controlled according to the current density, line speed, etc. of the plating line. It remains constant regardless of changes in operating conditions. Therefore, high quality Zn-Ni alloy plating can be produced industrially and stably from low line speeds to high line speeds.

また、本発明によれば1セル当りのアノード長が長くて
も、アノードと鋼板間の電流密度をめっき液の進行方向
に減少させることによりめっき液中の酸素ガスの影響を
抑制できるので高品質に安定したZn−Ni合金めっき
鋼板が製造される。 従って、1セル当りのアノード長
を十分に長くとり、めっきラインにおけるセル数を減少
させることができるので、めっきラインをコンパクト化
させることができる。
Furthermore, according to the present invention, even if the anode length per cell is long, the influence of oxygen gas in the plating solution can be suppressed by reducing the current density between the anode and the steel plate in the direction of movement of the plating solution, resulting in high quality plating. A stable Zn-Ni alloy plated steel sheet is manufactured. Therefore, the anode length per cell can be made sufficiently long and the number of cells in the plating line can be reduced, so the plating line can be made more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のめつきラインの概略図である
。 第2図は本発明の実施例のラインスピードおよび電流密
度とNi含有率の関係を表わすグラフである。 第3図は従来のラインスピードおよび電流密度とNi含
有率の関係を表わすグラフである。 第4図はラインスピード10mpmと300mpmとに
おけるNi含有率の変化とめっき液流速との関係を表わ
すグラフである。 第5図はめっき液中のガス分率とNi含有率の上昇割合
の関係を表わすグラフである。 第6図はめっき電流密度とジュール発熱によるめっき液
温度上昇度幅(めっき液セル出側の液温とめっき液セル
入側の液温との差)の関係を表わすグラフである。 第7図(a)〜(C)はアノードとめっき鋼板との間の
気泡の存在状態を表わす。 第8a図および第8b図はラインスピードが変化した場
合の鋼板表面の状態を表わす線図である。 符号の説明 1・・・・めっき鋼板、 2・・・・・アノード、 3・・・・気泡、 3a・・・・鋼板に引きずられためっき液中の気泡、 4・・・・めっき液、 5・・・・濃度境界層、 50・・・・めっ台セル、 51・・・・脱脂、酸洗 52・・・・ストリップ、 53・・・・デフレクタロール、 54・・・・コンダクタロール、 55・・・・アノード FIG、I FIG、2 ラインスピード(mpm) NjA−f十変寵(%) Ni4′■% cy、> ffi、″%rj夜中のオス分率(%)電iえ密度(A
/dm”)
FIG. 1 is a schematic diagram of a plating line according to an embodiment of the present invention. FIG. 2 is a graph showing the relationship between line speed and current density and Ni content in an example of the present invention. FIG. 3 is a graph showing the relationship between conventional line speed and current density and Ni content. FIG. 4 is a graph showing the relationship between the change in Ni content and the plating solution flow rate at line speeds of 10 mpm and 300 mpm. FIG. 5 is a graph showing the relationship between the gas fraction in the plating solution and the rate of increase in the Ni content. FIG. 6 is a graph showing the relationship between the plating current density and the degree of increase in plating solution temperature due to Joule heat generation (difference between the solution temperature on the outlet side of the plating solution cell and the solution temperature on the inlet side of the plating solution cell). FIGS. 7(a) to (C) show the presence of air bubbles between the anode and the plated steel plate. FIGS. 8a and 8b are diagrams showing the state of the steel plate surface when the line speed changes. Explanation of symbols 1...Plated steel plate, 2...Anode, 3...Bubble, 3a...Bubble in the plating solution dragged by the steel plate, 4...Plating solution, 5... Concentration boundary layer, 50... Mounting cell, 51... Degreasing, pickling 52... Strip, 53... Deflector roll, 54... Conductor roll , 55...Anode FIG, I FIG, 2 Line speed (mpm) NjA-f 100% (%) Ni4'■% cy, > ffi, ″%rj Male fraction during the night (%) Electric Density (A
/dm”)

Claims (4)

【特許請求の範囲】[Claims] (1)ZnおよびNiイオンを含む硫酸酸性めっき浴を
用い、鋼板上にZn−Ni合金めっきを行うのに際し、 めっき液のpHを1〜2.5、該めっき液中のZn^2
^+、Ni^2^+、H^+およびSO_4^2^−イ
オンの総和を2〜3mol/l、かつNa^+、K^+
および、NH_4^+イオンのうち一種類以上を0.1
mol/l以上とし、前記めっき液の流速を1m/se
c以上とし、アノードと前記鋼板との間の前記めっき液
出側の電流密度を前記めっき液入側の電流密度よりも低
くすることを特徴とするZn−Ni合金めっき鋼板の製
造方法。
(1) When performing Zn-Ni alloy plating on a steel plate using a sulfuric acid acidic plating bath containing Zn and Ni ions, the pH of the plating solution is set to 1 to 2.5, and the Zn^2 in the plating solution is
The total amount of ^+, Ni^2^+, H^+ and SO_4^2^- ions is 2 to 3 mol/l, and Na^+, K^+
and 0.1 of one or more types of NH_4^+ ions.
mol/l or more, and the flow rate of the plating solution is 1 m/sec.
c or more, and the method for producing a Zn-Ni alloy plated steel sheet is characterized in that the current density on the plating solution outlet side between the anode and the steel plate is lower than the current density on the plating solution inlet side.
(2)ZnおよびNiイオンを含む少なくとも1個の硫
酸酸性めっき浴を用い、鋼板上にZn−Ni合金めっき
を行うのに際し、 めっき液のpHを1〜2.5、該めっき液中のZn^2
^+、Ni^2^+、H^+およびSO_4^2^−イ
オンの総和を2〜3mol/l、かつNa^+、K^+
および、NH_4^+イオンのうち一種類以上を0.1
mol/l以上とし、前記めっき液の流速を1m/se
c以上とし、各めっき浴のアノードを複数個のセグメン
トに分割し、アノードと前記鋼板との間の前記めっき液
出側のアノードセグメントの電流密度を前記めっき液入
側のアノードセグメントの電流密度よりも5〜20%低
くすることを特徴とするZn−Ni合金めっき鋼板の製
造方法。
(2) When performing Zn-Ni alloy plating on a steel plate using at least one sulfuric acid acidic plating bath containing Zn and Ni ions, the pH of the plating solution is set to 1 to 2.5, and the Zn in the plating solution is ^2
The total amount of ^+, Ni^2^+, H^+ and SO_4^2^- ions is 2 to 3 mol/l, and Na^+, K^+
and 0.1 of one or more types of NH_4^+ ions.
mol/l or more, and the flow rate of the plating solution is 1 m/sec.
c or more, the anode of each plating bath is divided into a plurality of segments, and the current density of the anode segment on the plating solution outlet side between the anode and the steel plate is lower than the current density of the anode segment on the plating solution input side. A method for manufacturing a Zn-Ni alloy plated steel sheet, characterized in that the steel sheet is lowered by 5 to 20%.
(3)前記Zn−Ni合金めっきをラジアル型セル(め
っき浴)で行う請求項1または2に記載のZn−Ni合
金めっき鋼板の製造方法。
(3) The method for manufacturing a Zn-Ni alloy plated steel sheet according to claim 1 or 2, wherein the Zn-Ni alloy plating is performed in a radial cell (plating bath).
(4)前記Zn−Ni合金めっきを水平セル(めっき浴
)で行う請求項1または2に記載のZn−Ni合金めっ
き鋼板の製造方法。
(4) The method for producing a Zn-Ni alloy plated steel sheet according to claim 1 or 2, wherein the Zn-Ni alloy plating is performed in a horizontal cell (plating bath).
JP63211330A 1987-08-28 1988-08-25 Production of steel plate plated with zn-ni alloy Pending JPH01132793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63211330A JPH01132793A (en) 1987-08-28 1988-08-25 Production of steel plate plated with zn-ni alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21442487 1987-08-28
JP62-214424 1987-08-28
JP63211330A JPH01132793A (en) 1987-08-28 1988-08-25 Production of steel plate plated with zn-ni alloy

Publications (1)

Publication Number Publication Date
JPH01132793A true JPH01132793A (en) 1989-05-25

Family

ID=26518568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63211330A Pending JPH01132793A (en) 1987-08-28 1988-08-25 Production of steel plate plated with zn-ni alloy

Country Status (1)

Country Link
JP (1) JPH01132793A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504914A (en) * 2005-08-12 2009-02-05 アイソトロン コーポレイション Composition-modulated composite material and method for forming the same
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US12077876B2 (en) 2016-09-14 2024-09-03 Modumetal, Inc. System for reliable, high throughput, complex electric field generation, and method for producing coatings therefrom
US12076965B2 (en) 2016-11-02 2024-09-03 Modumetal, Inc. Topology optimized high interface packing structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136590A (en) * 1985-12-10 1987-06-19 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136590A (en) * 1985-12-10 1987-06-19 Kawasaki Steel Corp Production of zn-ni alloy plated steel sheet

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009504914A (en) * 2005-08-12 2009-02-05 アイソトロン コーポレイション Composition-modulated composite material and method for forming the same
US9115439B2 (en) 2005-08-12 2015-08-25 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US10961635B2 (en) 2005-08-12 2021-03-30 Modumetal, Inc. Compositionally modulated composite materials and methods for making the same
US11242613B2 (en) 2009-06-08 2022-02-08 Modumetal, Inc. Electrodeposited, nanolaminate coatings and claddings for corrosion protection
US12084773B2 (en) 2013-03-15 2024-09-10 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US10808322B2 (en) 2013-03-15 2020-10-20 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
US10844504B2 (en) 2013-03-15 2020-11-24 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11118280B2 (en) 2013-03-15 2021-09-14 Modumetal, Inc. Nanolaminate coatings
US11168408B2 (en) 2013-03-15 2021-11-09 Modumetal, Inc. Nickel-chromium nanolaminate coating having high hardness
US11180864B2 (en) 2013-03-15 2021-11-23 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11851781B2 (en) 2013-03-15 2023-12-26 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11692281B2 (en) 2014-09-18 2023-07-04 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
US11560629B2 (en) 2014-09-18 2023-01-24 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US10781524B2 (en) 2014-09-18 2020-09-22 Modumetal, Inc. Methods of preparing articles by electrodeposition and additive manufacturing processes
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US12077876B2 (en) 2016-09-14 2024-09-03 Modumetal, Inc. System for reliable, high throughput, complex electric field generation, and method for producing coatings therefrom
US12076965B2 (en) 2016-11-02 2024-09-03 Modumetal, Inc. Topology optimized high interface packing structures
US11293272B2 (en) 2017-03-24 2022-04-05 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
US11286575B2 (en) 2017-04-21 2022-03-29 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation

Similar Documents

Publication Publication Date Title
JPH01132793A (en) Production of steel plate plated with zn-ni alloy
KR910000510B1 (en) Preparation of zn-ni alloy plated steel strip
Tuaweri et al. A study of process parameters for zinc electrodeposition from a sulphate bath
JPS6119719B2 (en)
CN110396704A (en) A kind of ultrathin electrolytic copper foil and preparation method
US4140596A (en) Process for the electrolytic refining of copper
JP2002294481A (en) Electrolysis apparatus for manufacturing metal foil
US3928152A (en) Method for the electrolytic recovery of metal employing improved electrolyte convection
EP0144711B1 (en) Process for electroplating a metallic material with an iron-zinc alloy
SU1243907A1 (en) Method of producing copper powder by electrolysis
JP5747441B2 (en) Method for producing electrogalvanized steel sheet
US3488264A (en) High speed electrodeposition of nickel
US3799850A (en) Electrolytic process of extracting metallic zinc
CA1174199A (en) Bipolar refining of lead
JPH0625882A (en) Electrolytic refining method for copper
JPS63192891A (en) Production of zn-ni alloy plated steel sheet
JP3178373B2 (en) Continuous electroplating method and equipment
JPS60155697A (en) Method for electroplating iron-zinc alloy
JPH01168890A (en) Electroplating device
JPS59116398A (en) Horizontal type electroplating cell
JPH0660433B2 (en) Method for producing zinc-based alloy electroplated steel sheet
JPH06136594A (en) Production of electrogalvanized steel sheet
US2458912A (en) Electroplating of tin
JP3258572B2 (en) Electroplating equipment
JPH062193A (en) Manufacture of electrogalvanized steel plate excelling in surface appearance