JPH0113215B2 - - Google Patents

Info

Publication number
JPH0113215B2
JPH0113215B2 JP57025141A JP2514182A JPH0113215B2 JP H0113215 B2 JPH0113215 B2 JP H0113215B2 JP 57025141 A JP57025141 A JP 57025141A JP 2514182 A JP2514182 A JP 2514182A JP H0113215 B2 JPH0113215 B2 JP H0113215B2
Authority
JP
Japan
Prior art keywords
tube
quartz glass
silicon carbide
furnace core
glass tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57025141A
Other languages
Japanese (ja)
Other versions
JPS58141525A (en
Inventor
Masayoshi Yamaguchi
Takashi Tanaka
Toshiaki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP57025141A priority Critical patent/JPS58141525A/en
Publication of JPS58141525A publication Critical patent/JPS58141525A/en
Publication of JPH0113215B2 publication Critical patent/JPH0113215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は半導体用炭化珪素構成部材の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a silicon carbide component for semiconductors.

半導体素子の製造において、拡散工程、酸化工
程等で用いられる炉芯管等の構成部材は石英ガラ
ス製のものが多かつた。しかし、石英ガラス炉芯
管を用いて半導体素子を製造した場合、石英ガラ
スは高温では軟化変形しやすく、又容易に失透す
るため炉芯管の寿命が短い等の欠点がある。そこ
で、近年、炭化珪素炉芯管が用いられるようにな
つてきている。
In the manufacture of semiconductor devices, many structural members such as furnace core tubes used in the diffusion process, oxidation process, etc. are made of quartz glass. However, when a semiconductor device is manufactured using a quartz glass furnace tube, the quartz glass easily softens and deforms at high temperatures, and is easily devitrified, resulting in drawbacks such as a short lifespan of the furnace tube. Therefore, in recent years, silicon carbide furnace core tubes have come into use.

従来、炭化珪素炉芯管はトリクロルシラン、四
塩化珪素、モノシラン等を原料としてCVD法
(chemical vapor deposition法)によりカーボ
ン基体の表面にシリコンを気相析出させるととも
にSiCを生成させ、この後カーボン基体を酸化除
去するという方法により製造されている。
Conventionally, silicon carbide furnace core tubes use trichlorosilane, silicon tetrachloride, monosilane, etc. as raw materials to deposit silicon in a vapor phase on the surface of a carbon substrate using the CVD method (chemical vapor deposition method) and generate SiC. It is manufactured by oxidizing and removing.

しかし、上述した従来方法には以下の如き欠点
がある。
However, the conventional method described above has the following drawbacks.

(1) カーボン基体は一般に不純物の少ないものを
製造することが困難である。したがつて、カー
ボン基体に何ら処理を施さずに製造された炭化
珪素炉芯管を半導体素子の製造に用いた場合に
は半導体素子の特性を悪化させる。このため、
カーボン基体をハロゲンガス雰囲気中で高温熱
処理を施す等の方法により純化処理を施す必要
があり、莫大な経費を要し経済的でない。この
ことは大型形状品を造る場合に特に顕著であ
る。
(1) It is generally difficult to produce carbon substrates with few impurities. Therefore, when a silicon carbide furnace core tube manufactured without performing any treatment on the carbon substrate is used for manufacturing a semiconductor device, the characteristics of the semiconductor device will be deteriorated. For this reason,
It is necessary to purify the carbon substrate by a method such as subjecting the carbon substrate to high-temperature heat treatment in a halogen gas atmosphere, which requires a huge amount of expense and is not economical. This is particularly noticeable when manufacturing large-sized products.

(2) カーボン基体は一般に多孔質であるので、そ
の表面に気相析出されるシリコンはカーボン基
体の気孔にも入り込んだ、いわゆる“足つき”
構造をなす。このため、カーボン基体を焼き抜
き(酸化除去)して製造された炭化珪素炉芯管
は“足つき”構造が逆に突起となり平滑性が失
われる。このように内面に平滑性のない炉芯管
はたとえ化学的に高純度であつても、半導体ウ
エハの熱処理工程でウエハを炉芯管に出し入れ
する際、ウエハに振動を与えるため、これがウ
エハ中に結晶欠陥(スリツプ転位)を発生させ
る原因となつている。この結果、製造される半
導体素子の特性を悪化させる。
(2) Since carbon substrates are generally porous, the silicon deposited on their surfaces in a vapor phase also enters the pores of the carbon substrate, resulting in so-called “footing”.
form a structure. For this reason, in a silicon carbide furnace core tube manufactured by burning out (oxidizing and removing) a carbon base, the "footed" structure becomes a protrusion and loses its smoothness. Even if a furnace core tube with an uneven inner surface has high chemical purity, it causes vibrations to the wafer when the wafer is taken in and out of the furnace core tube during the heat treatment process for semiconductor wafers. This causes crystal defects (slip dislocations) to occur. As a result, the characteristics of the manufactured semiconductor device deteriorate.

(3) カーボン基体表面の凹凸はCVD法特有のペ
ブルの発生を促進し、気相析出膜の表面が荒れ
るため、製品の使用前における酸処理等の取り
扱いを困難なものにしている。
(3) The unevenness of the surface of the carbon substrate promotes the generation of pebbles that are characteristic of the CVD method, and the surface of the vapor-phase deposited film becomes rough, making it difficult to handle the product with acid treatment before use.

本発明は上記欠点を解消するためになされたも
のであり、不純物が少なく、平滑な表面を有する
半導体用炭化珪素構成部材の製造方法を提供しよ
うとするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide a method for manufacturing a silicon carbide component for semiconductors that has few impurities and has a smooth surface.

以下、本発明を炭化珪素炉芯管の製造に適用し
た実施例を図を参照して説明する。
EMBODIMENT OF THE INVENTION Hereinafter, an embodiment in which the present invention is applied to manufacturing a silicon carbide furnace core tube will be described with reference to the drawings.

図は本発明の半導体用炭化珪素炉芯管の製造に
用いるCVD装置であり、図中1は石英ガラス製
外筒管である。この外筒管1の上下端面には夫々
上蓋2及び下蓋3が配設されている。この上蓋2
の中央開孔には排気管4が挿着されている。前記
外筒管1の外周には高周波誘導コイル5が配設さ
れている。また、外筒管1内部の前記下蓋3上に
は環状の絶縁性支持材6が設置されており、かつ
該支持材6上には内径200mm、長さ2000mmの筒状
のカーボン電極7が配設されている。このカーボ
ン電極7と前記外筒管1間には断熱用のカーボン
フエルト8が充填されている。更に、カーボン電
極7内部の前記下蓋3上には支持台9が設置され
ており、かつ該支持台9上には外径100mm、長さ
1800mm、肉厚1.0mmの石英ガラス管10が配置さ
れている。この石英ガラス管10と前記カーボン
電極7間には前記下蓋3を貫通して外部からガス
導入管11が挿入されている。
The figure shows a CVD apparatus used for manufacturing the silicon carbide furnace core tube for semiconductors of the present invention, and in the figure, 1 is a quartz glass outer tube. An upper cover 2 and a lower cover 3 are disposed on the upper and lower end surfaces of the outer cylindrical tube 1, respectively. This top lid 2
An exhaust pipe 4 is inserted into the central opening. A high frequency induction coil 5 is disposed on the outer periphery of the outer cylindrical tube 1. Further, an annular insulating support member 6 is installed on the lower lid 3 inside the outer tube 1, and a cylindrical carbon electrode 7 with an inner diameter of 200 mm and a length of 2000 mm is mounted on the support member 6. It is arranged. A carbon felt 8 for heat insulation is filled between the carbon electrode 7 and the outer cylindrical tube 1. Furthermore, a support stand 9 is installed on the lower cover 3 inside the carbon electrode 7, and on the support stand 9 there is provided an outer diameter of 100 mm and a length of
A quartz glass tube 10 of 1800 mm and a wall thickness of 1.0 mm is arranged. A gas introduction tube 11 is inserted from the outside between the quartz glass tube 10 and the carbon electrode 7 by penetrating the lower cover 3.

次に、上述したCVD装置による半導体用炭化
珪素炉芯管の製造方法を説明する。まず、排気管
4から真空引きして外筒管1内を1mmHg以下の
真空とした。次に、高周波誘導コイル5に通電す
ることによりカーボン電極7を加熱し、1200〜
1400℃に昇温して石英ガラス管10を間接的に加
熱した。つづいて、一定温度に達した後、ガス導
入管11から水素をキヤリヤガスとしてトリクロ
ルメチルシランを導入した。原料ガスは加熱部分
に到達すると熱分解を起し、石英ガラス管10外
壁にSiC膜12として気相析出し始めた。この
SiC膜12の膜厚が3mm以上となるように反応時
間を設定し、所定時間経過後原料ガスの導入を止
めて反応を停止した。つづいて、高周波誘導コイ
ル5の通電を停止して自然放冷した。十分に冷却
した後、外筒管1からSiC膜12がコーテイング
された石英ガラス管10を取り出した。つづい
て、フツ化水素酸に浸漬し、石英ガラス管10を
溶解除去してSiC膜12からなる半導体用炭化珪
素炉芯管を得た。ここで、SiC膜12がコーテイ
ングされた石英ガラス管10を外筒管1から取り
出した時点で両者の熱膨張差により石英ガラス管
10にクラツクが発生していたが、これはフツ化
水素酸を用いて石英ガラス管10を溶解除去する
際に有利な条件となる。また、SiC膜10にはほ
とんどクラツクが発生することはなかつたが、ク
ラツクが発生する場合もあつた。しかし、SiC膜
10のクラツクの発生は石英ガラス管10の径と
肉厚及びSiC膜12の厚さを変化させることによ
つて解決し得る。
Next, a method for manufacturing a silicon carbide furnace core tube for semiconductors using the above-mentioned CVD apparatus will be described. First, the exhaust pipe 4 was evacuated to create a vacuum of 1 mmHg or less inside the outer tube 1. Next, the carbon electrode 7 is heated by energizing the high frequency induction coil 5, and
The quartz glass tube 10 was heated indirectly by increasing the temperature to 1400°C. Subsequently, after reaching a certain temperature, trichloromethylsilane was introduced from the gas introduction pipe 11 using hydrogen as a carrier gas. When the raw material gas reached the heated part, it was thermally decomposed and began to be deposited in the vapor phase as a SiC film 12 on the outer wall of the quartz glass tube 10. this
The reaction time was set so that the thickness of the SiC film 12 was 3 mm or more, and after the predetermined time, the introduction of the raw material gas was stopped to stop the reaction. Subsequently, the high frequency induction coil 5 was de-energized and allowed to cool naturally. After sufficiently cooling, the quartz glass tube 10 coated with the SiC film 12 was taken out from the outer tube 1. Subsequently, the tube was immersed in hydrofluoric acid to dissolve and remove the quartz glass tube 10 to obtain a semiconductor silicon carbide furnace core tube made of the SiC film 12. Here, when the quartz glass tube 10 coated with the SiC film 12 was taken out from the outer tube 1, cracks had occurred in the quartz glass tube 10 due to the difference in thermal expansion between the two. This is an advantageous condition when the quartz glass tube 10 is dissolved and removed using this method. Further, although almost no cracks occurred in the SiC film 10, cracks did occur in some cases. However, the occurrence of cracks in the SiC film 10 can be solved by changing the diameter and wall thickness of the quartz glass tube 10 and the thickness of the SiC film 12.

しかして、上記実施例によれば、SiC膜12を
気相析出させる基体として、表面が極めて平滑な
石英ガラス管10を用いているので、製造される
炭化珪素炉芯管の内壁は平滑である。また、石英
ガラス管10は炭化珪素炉芯管の品質を悪化させ
るような不純物を含まず、かつ、フツ化水素酸に
よつて完全に除去されるので、製造される炭化珪
素炉芯管は不純物の少ないものである。
According to the above embodiment, since the quartz glass tube 10 with an extremely smooth surface is used as the substrate on which the SiC film 12 is vapor-phase deposited, the inner wall of the manufactured silicon carbide furnace tube is smooth. . In addition, since the quartz glass tube 10 does not contain impurities that would deteriorate the quality of the silicon carbide furnace tube and is completely removed by hydrofluoric acid, the manufactured silicon carbide furnace tube contains no impurities. It is something with few.

また、以下の実験例からスリツプ転位が発生し
ないことが確められた。
Furthermore, it was confirmed from the following experimental examples that slip dislocations did not occur.

実験例 本発明方法で製造された外径110mm、内径100
mm、長さ1500mmの炭化珪素炉芯管を酸化装置にセ
ツトし、炉芯管両端を石英ガラス製キヤツプで気
密性を取る構造(テーパー摺り合せ)とした。こ
の炉芯管中にシリコンウエハを導入し、1200℃の
ドライO2雰囲気中、10mm/minの速度でウエハの
出し入れ操作を10回繰り返した。この操作後ウエ
ハを検査したが、石英ガラス製炉芯管を用いた場
合と同様スリツプ転位は認められなかつた。
Experimental example Outer diameter 110mm, inner diameter 100mm manufactured by the method of the present invention
A silicon carbide furnace core tube with a length of 1,500 mm was set in the oxidizer, and both ends of the furnace core tube were made airtight with quartz glass caps (tapered). A silicon wafer was introduced into this furnace core tube, and the operation of loading and unloading the wafer was repeated 10 times at a speed of 10 mm/min in a dry O 2 atmosphere at 1200°C. After this operation, the wafer was inspected, but no slip dislocations were observed, as was the case when a quartz glass furnace tube was used.

上記実験例から本発明方法で製造された炭化珪
素炉芯管の内面の平滑性は石英ガラス製炉芯管と
同等であることが分つた。
From the above experimental examples, it was found that the smoothness of the inner surface of the silicon carbide furnace core tube manufactured by the method of the present invention was equivalent to that of a quartz glass furnace core tube.

なお、上記実施例では石英ガラス管10の外壁
にSiC膜12を気相析出させたが、石英ガラス管
10の内壁にSiC膜を気相析出させてもよい。ま
た、高周波ワークコイルを移動しながら上記実施
例と同様な方法でSiC膜を気相析出させれば、長
尺で径の大きい炭化珪素炉芯管を得ることができ
る。この方法により、例えば外径150mm、内径140
mm、長さ2000mmの炭化珪素炉芯管を得ることがで
きた。
In the above embodiment, the SiC film 12 was deposited on the outer wall of the quartz glass tube 10 in a vapor phase, but the SiC film 12 may be deposited on the inner wall of the quartz glass tube 10 in a vapor phase. Moreover, if a SiC film is vapor-phase deposited in the same manner as in the above embodiment while moving a high-frequency work coil, a long silicon carbide furnace core tube with a large diameter can be obtained. With this method, for example, an outer diameter of 150 mm and an inner diameter of 140 mm can be obtained.
We were able to obtain a silicon carbide furnace core tube with a length of 2000 mm.

また、上述した方法と同様な方法で、炭素源及
び窒素源となる気体化合物を反応させ、石英ガラ
ス管の内壁又は外壁にSi3N4を気相析出せしめた
後、石英ガラス管を除去すれば、半導体用窒化珪
素構成部材を製造することができる。
In addition, by a method similar to the method described above, gaseous compounds serving as a carbon source and a nitrogen source are reacted to deposit Si 3 N 4 on the inner or outer wall of the quartz glass tube in a vapor phase, and then the quartz glass tube is removed. For example, silicon nitride components for semiconductors can be manufactured.

以上詳述した如く本発明によれば、不純物が少
なく、平滑な表面を有する半導体用炭化珪素構成
部材の製造方法を提供できるものである。
As detailed above, according to the present invention, it is possible to provide a method for manufacturing a silicon carbide component for semiconductors having a smooth surface with few impurities.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例において用いられたCVD
装置を示す断面図である。 1……石英ガラス製外筒管、2……上蓋、3…
…下蓋、4……排気管、5……高周波誘導コイ
ル、6……絶縁性支持材、7……カーボン電極、
8……カーボンフエルト、9……支持台、10…
…石英ガラス管、11……ガス導入管、12……
SiC膜。
The figure shows a CVD used in an example of the present invention.
FIG. 2 is a cross-sectional view showing the device. 1... Quartz glass outer tube, 2... Top lid, 3...
... lower lid, 4 ... exhaust pipe, 5 ... high frequency induction coil, 6 ... insulating support material, 7 ... carbon electrode,
8...Carbon felt, 9...Support stand, 10...
...Quartz glass tube, 11...Gas introduction tube, 12...
SiC film.

Claims (1)

【特許請求の範囲】[Claims] 1 CとSiとを含む気体化合物を反応させ、石英
ガラス管の内壁又は外壁にSiCを気相析出せしめ
た後、石英ガラス管を除去することを特徴とする
半導体用炭化珪素構成部材の製造方法。
1. A method for producing a silicon carbide component for semiconductors, which comprises reacting a gaseous compound containing C and Si to deposit SiC in a vapor phase on the inner or outer wall of a quartz glass tube, and then removing the quartz glass tube. .
JP57025141A 1982-02-18 1982-02-18 Preparation of silicon carbide structural member for semiconductor Granted JPS58141525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025141A JPS58141525A (en) 1982-02-18 1982-02-18 Preparation of silicon carbide structural member for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025141A JPS58141525A (en) 1982-02-18 1982-02-18 Preparation of silicon carbide structural member for semiconductor

Publications (2)

Publication Number Publication Date
JPS58141525A JPS58141525A (en) 1983-08-22
JPH0113215B2 true JPH0113215B2 (en) 1989-03-03

Family

ID=12157700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025141A Granted JPS58141525A (en) 1982-02-18 1982-02-18 Preparation of silicon carbide structural member for semiconductor

Country Status (1)

Country Link
JP (1) JPS58141525A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2926396B1 (en) * 2008-01-16 2010-03-19 Commissariat Energie Atomique METHOD FOR MANUFACTURING AMORPHOUS HYDROGENIC SILICON CARBIDE FILMS WITH THROUGH PORES AND FILMS THUS OBTAINED

Also Published As

Publication number Publication date
JPS58141525A (en) 1983-08-22

Similar Documents

Publication Publication Date Title
US5119541A (en) Wafer succeptor apparatus
JP2003151737A (en) Heater
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
JPH062637B2 (en) Single crystal pulling device
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP2923260B2 (en) Single crystal pulling apparatus, high-purity graphite material and method for producing the same
JPH0377655B2 (en)
JPH0113215B2 (en)
JP2000302576A (en) Graphite material coated with silicon carbide
US5881090A (en) Quartz used in semiconductor manufacturing device, apparatus for manufacturing the quartz, and method for manufacturing the same
JP3410380B2 (en) Single crystal pulling equipment and high purity graphite material
JPS61291484A (en) Graphite crucible
JPS5821826A (en) Apparatus for manufacturing semiconductor
JPH03246931A (en) Susceptor
JPH06163439A (en) Semiconductor diffusion oven boat and manufacture thereof
JP2549030B2 (en) Semiconductor processing member and method of manufacturing the same
JPH10256108A (en) Silicon carbide dummy wafer
JP2003183837A (en) Semiconductor device manufacturing process and substrate treating device
JPH1097960A (en) Silicon carbide deposited dummy wafer
JPH0465374A (en) Formation of silicon carbide coating film on silicon impregnated silicon carbide-based ceramics
JPH0397691A (en) Jig for producing semiconductor device
JPH0426576A (en) Silicon carbide coated carbon product and production thereof
JPS61123132A (en) Wafer heating processing jig
JPS62214613A (en) Formation of sio buffer layer
JPS6277466A (en) Formation of thin film