JPS58141525A - Preparation of silicon carbide structural member for semiconductor - Google Patents

Preparation of silicon carbide structural member for semiconductor

Info

Publication number
JPS58141525A
JPS58141525A JP57025141A JP2514182A JPS58141525A JP S58141525 A JPS58141525 A JP S58141525A JP 57025141 A JP57025141 A JP 57025141A JP 2514182 A JP2514182 A JP 2514182A JP S58141525 A JPS58141525 A JP S58141525A
Authority
JP
Japan
Prior art keywords
tube
quartz glass
silicon carbide
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57025141A
Other languages
Japanese (ja)
Other versions
JPH0113215B2 (en
Inventor
Masayoshi Yamaguchi
山口 正好
Takashi Tanaka
隆 田中
Toshiaki Suzuki
俊明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP57025141A priority Critical patent/JPS58141525A/en
Publication of JPS58141525A publication Critical patent/JPS58141525A/en
Publication of JPH0113215B2 publication Critical patent/JPH0113215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To economically manufacture a silicon carbide structural member for semiconductor including less impurity and having smooth surface by removing the quartz glass tube after the gas phase deposition of SiC on the internal wall or external wall of the quartz glass tube through reaction of gas compound including C and Si. CONSTITUTION:An external tube 1 is exhausted to a vacuum condition of 1mm.Hg or less, a carbon electrode 7 is heated up to 1,200-1,400 deg.C by supplying a power to a high frequency induction coil 5 in view of indirectly heating a quartz glass tube 10. When it reaches a certain temperature, trichloromethylsilane is introduced from the gas supply tube 11 with hydrogen used as the carrier gas. A raw material gas is thermally decomposed and deposited as SiC film 12 on the external wall of tube 10 by the gas phase deposition method. When the specified time has passed resulting in deposition of film in the thickness of 3mm. or more, supply of raw material gas is stopped. AFter the film is sufficiently cooled, the tube 10 on which the SiC film 12 is coated is taken out of the external tube 1 and it is dipped into the hydrofluoric acid, the tube 10 is removed by dissolving and thereby a silicon carbide furnace core tube for semiconductor consisting of the SiC film 12 can be obtained.

Description

【発明の詳細な説明】 本発明は半導体用炭化珪素構成部材の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a silicon carbide component for semiconductors.

半導体素子の製造において、拡散工程、酸化工程等で用
いられる炉芯管等の構成部材は石英ガラス製のものが多
かった。しかし、石英ガラス炉芯管を用いて半導体素子
を製造1−た場合、石英ガラスは高温では軟化変形しや
すく、又容易に失透するため炉芯管の寿命が短い寺の欠
点がある。そこで、近年、炭化珪素炉芯管が用いられる
ようになってきている。
In the manufacture of semiconductor devices, many structural members such as furnace core tubes used in the diffusion process, oxidation process, etc. are made of quartz glass. However, when semiconductor devices are manufactured using a quartz glass furnace tube, the quartz glass easily softens and deforms at high temperatures, and is easily devitrified, so the life of the furnace tube is short. Therefore, in recent years, silicon carbide furnace core tubes have come into use.

従来、炭化珪素炉芯管はトリクロルシラン。Conventionally, silicon carbide furnace core tubes are made of trichlorosilane.

四塩化珪素、モノシラン等を原料としてCVD法(ch
emical vapor depoai口On法)に
よりカーボン基体の表面にシリコンを気相析出させると
ともにSiCを生成させ、この後カーボン基体を酸化除
去するという方法により製造されている。
CVD method (ch.
It is manufactured by a method in which silicon is deposited in a vapor phase on the surface of a carbon substrate using a chemical vapor deposition method) and SiC is generated, and then the carbon substrate is oxidized and removed.

しかし、上述した従来方法には以下の如き欠点がある。However, the conventional method described above has the following drawbacks.

(1)  カーボン基体は一般に不純物の少ないものを
製】青することが困難である。したがって、カーボン基
体に何ら処理を施さずに製造された炭化珪素炉芯管を半
導体素子の製造に用いた場合には半導体素子の%性を悪
化させる。このため、カーがン基体をハロゲンガス雰囲
気中で高温熱処理を施す等の方法により純化処理を施す
必要があり、美大な経費を要し経済的でない。このこと
は、大型形状品を造る場合に特に顕著である。
(1) Carbon substrates are generally manufactured with few impurities; it is difficult to blue them. Therefore, when a silicon carbide furnace core tube manufactured without any treatment on the carbon substrate is used for manufacturing a semiconductor device, the % performance of the semiconductor device is deteriorated. Therefore, it is necessary to perform a purification treatment on the carbon substrate by a method such as subjecting it to high temperature heat treatment in a halogen gas atmosphere, which requires a huge amount of expense and is not economical. This is particularly noticeable when manufacturing large-sized products.

(2)  カーボン基体は一般に多孔質であるので、そ
の光面に気相析出されるシリコンはカーボン基体の気孔
にも入り込んだ、いわゆる足つき″構造をなす7.この
ため、カーがン基体を焼き抜き(酸化除去)して製造さ
れた炭化珪素炉芯管は′°足つき″構造が逆に突起とな
り平滑性が失われる。このように内面に平滑性のない炉
芯管はたとえ化学的に高純度であっても、半導体ウェハ
の熱処理工程でウエノ・を炉芯管に出し入れする際、9
エバに振動を与えるため、これがウェハ中に結晶欠陥(
スリップ転位)を発生させる原因となっている。この結
果、製造される半導体素子の%性を悪化させる。
(2) Since carbon substrates are generally porous, the silicon deposited in a vapor phase on the optical surface also enters the pores of the carbon substrate, forming a so-called "legged" structure7.For this reason, when the carbon substrate is baked, In silicon carbide furnace core tubes manufactured by punching (oxidation removal), the ``footed'' structure becomes protrusions and loses smoothness. Even if a furnace core tube with an unsmooth inner surface has high chemical purity, it is difficult to insert or remove the wafer from the furnace core tube during the heat treatment process for semiconductor wafers.
This gives vibration to the evaporator, which causes crystal defects (
(slip dislocation). As a result, the % performance of the manufactured semiconductor device deteriorates.

(3)  カーデン基体表面の凹凸はCVD法特有の(
プルの発生を促進し、気相析出膜の表面が荒れるため、
製品の使用前における酸処理等の取り扱いを困難なもの
にしている。
(3) The unevenness on the surface of the cardin substrate is unique to the CVD method (
This promotes the generation of pull and roughens the surface of the vapor deposited film.
This makes handling such as acid treatment before use of the product difficult.

本発明は上記欠点を解消するためになされたものであり
、不純物が少なく、平滑な表向を有する半導体用炭化珪
素構成部材の製造方法を提供しようとするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an object of the present invention to provide a method for manufacturing a silicon carbide constituent member for semiconductors that has few impurities and has a smooth surface.

。 以下、本発明を炭化珪素炉芯管の製造に適用した冥施例
を図を参照し2て説明する。、図は本発明の半導体用炭
化珪素炉芯管の製造に用いるCVD装置gでおり、図中
1は石英ガラス製外筒管である。この外筒管1の上下端
面には夫々上着2及び下蓋3が配設されている。この上
蓋2の中火開孔には排気管4が挿漸されている。前記外
筒管1の外周には高周波誘導コイル5が配設されている
。また、外筒管1内部の前記下蓋3上には環状の絶縁性
支持材6が設置されておυ、かつ該支持材6上には内径
200 wm。
. Hereinafter, an embodiment in which the present invention is applied to the manufacture of a silicon carbide furnace core tube will be described with reference to the drawings. The figure shows a CVD apparatus g used for manufacturing the silicon carbide furnace core tube for semiconductors of the present invention, and in the figure 1 is a quartz glass outer cylinder tube. A jacket 2 and a lower lid 3 are disposed on the upper and lower end surfaces of the outer cylindrical tube 1, respectively. An exhaust pipe 4 is inserted into the medium heat opening of the upper cover 2. A high frequency induction coil 5 is disposed on the outer periphery of the outer cylindrical tube 1. Further, an annular insulating support member 6 is installed on the lower cover 3 inside the outer tube 1, and has an inner diameter of 200 wm on the support member 6.

長さ2000mmの筒状のカーボン電極7が配設されて
いる。このカーがン′醒極7と前記外筒管1間には断熱
用のカー?ンフエルト8が充填されている。史に、カー
がン′電極7内部の前記下蓋3上には支持台9が設置さ
れており、かつ該支持台9上には外径100 tram
 r長さ1800 tm。
A cylindrical carbon electrode 7 with a length of 2000 mm is provided. Is there a heat insulating car between this car and the outer tube 1? Filled with felt 8. Historically, a support stand 9 is installed on the lower cover 3 inside the carbon electrode 7, and on the support stand 9 there is a diameter of 100 tram.
r length 1800 tm.

肉厚1,0關の石英ガラス管10が配置されている。こ
の石英ガラス管10と前記カーボン電極7間には前記下
蓋3を貫通して外部からガス導入管1)が挿入されてい
る。
A quartz glass tube 10 with a wall thickness of 1.0 mm is arranged. A gas introduction tube 1) is inserted from the outside between the quartz glass tube 10 and the carbon electrode 7 by penetrating the lower cover 3.

次に、上述したC’VD装置による半導体用炭化珪素炉
芯管の製造方法を説明する1、まず、排気管4から真空
引きして外筒I#1内を1+nmHg以ドの真空とした
。次に、高周波誘導コイル5に通電することによりカー
ボン電極7を加熱し、1200〜1400℃に昇温して
石英ガラス管lθを間接的に加熱した。つづいて、一定
温度に達した後、ガス導入管11から水素をキャリヤガ
スとしてトリクロルメチルシランを導入した。
Next, a method of manufacturing a silicon carbide furnace core tube for a semiconductor using the above-mentioned C'VD apparatus will be explained.1. First, the exhaust pipe 4 was evacuated to make the inside of the outer cylinder I#1 a vacuum of 1+nmHg or less. Next, the carbon electrode 7 was heated by energizing the high-frequency induction coil 5, and the temperature was raised to 1200 to 1400°C, thereby indirectly heating the quartz glass tube lθ. Subsequently, after reaching a certain temperature, trichloromethylsilane was introduced from the gas introduction pipe 11 using hydrogen as a carrier gas.

原料ガスは加熱部分に到達すると熱分解を起し、石英ガ
ラス管10外壁にSIC膜12として気相析出し始めた
。このSIC膜12の膜厚が3弯以上となるように反応
時間を設定し、所定時間経過後原料ガスの導入を止めて
反応を停止した。。
When the raw material gas reached the heated part, it was thermally decomposed and began to be deposited in the vapor phase as the SIC film 12 on the outer wall of the quartz glass tube 10. The reaction time was set so that the film thickness of this SIC film 12 was 3 curvature or more, and after a predetermined period of time, the introduction of the raw material gas was stopped to stop the reaction. .

つづいて、高周波誘導コイル5の通電を停止して自然放
冷した。十分に冷却した後、外筒管1からS1C膜12
がコーティングされた石英ガラス管10を取り出した。
Subsequently, the high frequency induction coil 5 was de-energized and allowed to cool naturally. After sufficiently cooling, the S1C film 12 is removed from the outer tube 1.
The quartz glass tube 10 coated with was taken out.

つづいて、フッ化水素酸に浸漬し、石英ガラス管10を
溶解除去してSiC膜12からなる半導体用炭化珪素炉
芯管を得た。ここで、SiC膜12がコーティングされ
5− た石英ガラス管10を外筒管1から取り出した時点で両
者の熱膨張差により石英ガラス管1゜にクラックが発生
していたが、これはフッ化水素酸を用いて石英ガラス管
1oを溶解除去する際に有利な条件となる。また、sl
c膜1oにはほとんどクラックが発生することはなかっ
たが、クラックが発生する場合もあった。しかし、S五
〇膜10のクラ、りの発生は石英ガラス管10の径と肉
厚及びSiC膜J2の厚さを変化させることによって解
決し得る。l しかして、上記実施例によれば、SfC膜12を気相析
出させる基体として、表面が極めて平滑な石英ガラス管
1oを用いているので、製造される炭化珪素炉芯管の内
壁は平滑である。また、石英ガラス管10は炭化珪素炉
芯管の品質を悪化させるような不純物を含まず、かつ、
フッ化水素酸によって完全に除去されるので、製造され
る炭化珪素炉芯管は不純物の少ないものである。
Subsequently, the tube was immersed in hydrofluoric acid to dissolve and remove the quartz glass tube 10 to obtain a semiconductor silicon carbide furnace core tube made of the SiC film 12. Here, when the quartz glass tube 10 coated with the SiC film 12 was taken out from the outer tube 1, cracks had occurred in the quartz glass tube 1° due to the difference in thermal expansion between the two. These conditions are advantageous when the quartz glass tube 1o is dissolved and removed using hydrogen acid. Also, sl
Although there were almost no cracks in the C film 1o, cracks did occur in some cases. However, the occurrence of cracks and cracks in the S50 film 10 can be solved by changing the diameter and wall thickness of the quartz glass tube 10 and the thickness of the SiC film J2. l According to the above embodiment, since the quartz glass tube 1o with an extremely smooth surface is used as the substrate on which the SfC film 12 is deposited in a vapor phase, the inner wall of the silicon carbide furnace core tube to be manufactured is smooth. be. Furthermore, the quartz glass tube 10 does not contain any impurities that would deteriorate the quality of the silicon carbide furnace core tube, and
Since it is completely removed by hydrofluoric acid, the silicon carbide furnace tube produced has fewer impurities.

また、以下の実、駿例からスリツノ転位が発生6一 しないことが確められた。In addition, from the following example, Suritsuno dislocation occurs6- It was confirmed that it would not.

実験例 本発明方法で製造された外径110mm、内径100 
ttan 、長さ1500mmの炭化珪素炉芯管を酸化
装置にセ、l−L、炉芯管両端を石英ガラス製キャップ
で気密性を取る構造(チー・デー摺り合せ)とした。こ
の炉芯管中にシリコンウエノ・を導入し、1200℃の
ドライ02雰囲気中、10 w/minの速度でフェノ
・の出し入れ操作を10回繰り返した。この操作後ウエ
ノ・を検査したが、石英ガラス製炉芯管を用いた場合と
同様スリップ転位は認められなかった。
Experimental example Outer diameter 110mm, inner diameter 100mm manufactured by the method of the present invention
A silicon carbide furnace core tube with a length of 1,500 mm was installed in the oxidizer, and both ends of the furnace core tube were made airtight with quartz glass caps (chi-day rubbing). Silicon Ueno® was introduced into this furnace core tube, and the operation of inserting and removing the Pheno® was repeated 10 times at a rate of 10 w/min in a dry 02 atmosphere at 1200°C. After this operation, Ueno was inspected, but no slip dislocation was observed as in the case of using a quartz glass furnace core tube.

上記実験例から本発明方法で製造された炭化珪素炉芯管
の内面の平滑性は石英ガラス線炉芯管と同等であること
が分った。。
From the above experimental examples, it was found that the smoothness of the inner surface of the silicon carbide furnace tube manufactured by the method of the present invention is equivalent to that of a quartz glass wire furnace tube. .

なお、上記実施例では石英ガラス管10の外壁にSiC
膜12を気相析出させたが、石英がラス′W10の内壁
にSiC膜を気相析出させてもよい。また、高周波ワー
クコイルを移動しながら上記実施例と同様な方法でSi
C膜を気相析出させれば、長尺で径の大きい炭化珪素炉
芯管を得ることができる。この方法により、例えば外径
150 w 、内径140 m 、 長さ2000 +
+aの炭化珪素炉芯管を得ることができた。
Incidentally, in the above embodiment, the outer wall of the quartz glass tube 10 is coated with SiC.
Although the film 12 was deposited in a vapor phase, a SiC film may be deposited in a vapor phase on the inner wall of the quartz lath W10. In addition, while moving the high-frequency work coil, Si
If the C film is deposited in a vapor phase, a long silicon carbide furnace core tube with a large diameter can be obtained. By this method, for example, an outer diameter of 150 w, an inner diameter of 140 m, a length of 2000 +
A +a silicon carbide furnace core tube could be obtained.

また、上述した方法と同様な方法で、炭素源及び窒素源
となる気体化合物を反応させ、石英ガラス管の内壁又は
外壁にS k、%を気相析出せしめた後、石英ガラス管
を除去すれば、半導体用窒化珪素構成部材を製造するこ
とができる、以上吐述した如く本発明によれば、不純物
が少なく、平滑な表向を有する半導体用炭化珪素構成部
材の製造方法を提供できるものである。
In addition, by a method similar to the method described above, the gaseous compounds serving as the carbon source and the nitrogen source are reacted to deposit S k,% on the inner or outer wall of the quartz glass tube in a vapor phase, and then the quartz glass tube is removed. For example, a silicon nitride structural member for semiconductors can be manufactured.As described above, according to the present invention, it is possible to provide a method for manufacturing a silicon carbide structural member for semiconductors that has few impurities and has a smooth surface. be.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例において用いられたCVD装置を示
す断面図である。 1・・・石英ガラス製外筒管、2・・・上蓋、3・・・
下蓋、4・・・排気管、5・・・高周波誘導コイル、6
・・・絶縁性支持材、7・・・カー?ン電極、8・・・
カー♂ンフエルト、9・・・支持台、10・・・石英ガ
ラス管、1ノ・・・ガス導入管、12・・・SiCM。 1 ] 一一一ゴー 1 113− 督2 く3
The figure is a sectional view showing a CVD apparatus used in an example of the present invention. 1... Quartz glass outer tube, 2... Top lid, 3...
Lower lid, 4... Exhaust pipe, 5... High frequency induction coil, 6
...Insulating support material, 7...car? electrode, 8...
Carn felt, 9... Support stand, 10... Quartz glass tube, 1... Gas introduction tube, 12... SiCM. 1 ] 111 Go 1 113- Kan 2 Ku 3

Claims (1)

【特許請求の範囲】[Claims] CとSiとを含む気体化合物を反応させ、石英ガラス管
の内壁又は外壁にSiCを気相析出せしめた後、石英ガ
ラス管を除去することを%徴とする半導体用炭化珪素構
成部材の製造方法。
A method for producing a silicon carbide component for semiconductors, which comprises reacting a gaseous compound containing C and Si to deposit SiC in a vapor phase on the inner or outer wall of a quartz glass tube, and then removing the quartz glass tube. .
JP57025141A 1982-02-18 1982-02-18 Preparation of silicon carbide structural member for semiconductor Granted JPS58141525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025141A JPS58141525A (en) 1982-02-18 1982-02-18 Preparation of silicon carbide structural member for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025141A JPS58141525A (en) 1982-02-18 1982-02-18 Preparation of silicon carbide structural member for semiconductor

Publications (2)

Publication Number Publication Date
JPS58141525A true JPS58141525A (en) 1983-08-22
JPH0113215B2 JPH0113215B2 (en) 1989-03-03

Family

ID=12157700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025141A Granted JPS58141525A (en) 1982-02-18 1982-02-18 Preparation of silicon carbide structural member for semiconductor

Country Status (1)

Country Link
JP (1) JPS58141525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167094A (en) * 2008-01-16 2009-07-30 Commiss Energ Atom Method of manufacturing amorphous hydrogenated silicon carbide film having through-hole, and film made by the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167094A (en) * 2008-01-16 2009-07-30 Commiss Energ Atom Method of manufacturing amorphous hydrogenated silicon carbide film having through-hole, and film made by the same

Also Published As

Publication number Publication date
JPH0113215B2 (en) 1989-03-03

Similar Documents

Publication Publication Date Title
US5119541A (en) Wafer succeptor apparatus
JPH01301589A (en) Epitaxial growth of silicon
US20040208815A1 (en) Method for treating semiconductor processing components and components formed thereby
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
JPH062637B2 (en) Single crystal pulling device
US4598665A (en) Silicon carbide process tube for semiconductor wafers
JPS58141525A (en) Preparation of silicon carbide structural member for semiconductor
JPH0758029A (en) Susceptor
US5881090A (en) Quartz used in semiconductor manufacturing device, apparatus for manufacturing the quartz, and method for manufacturing the same
JP4447131B2 (en) Regeneration method of silicon carbide-coated graphite member and silicon carbide-coated graphite member thereby
JPH08236459A (en) Cvd device
JPS6359533B2 (en)
JPH0465376A (en) Si impregnated sic product coated by cvd and production thereof
JPH06163439A (en) Semiconductor diffusion oven boat and manufacture thereof
JPS61291484A (en) Graphite crucible
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH08259209A (en) Furnace for highly purifying graphite member
JP2003183837A (en) Semiconductor device manufacturing process and substrate treating device
JPH10256108A (en) Silicon carbide dummy wafer
JPS6145853B2 (en)
JP3803148B2 (en) Method for recycling and using laminated member and laminated member used therefor
JPS61156725A (en) Vapor growth apparatus
JPH0413853B2 (en)
JPH1097960A (en) Silicon carbide deposited dummy wafer
JPH04254328A (en) Manufacture of semiconductor device