JPH01132055A - Manufacture of electrode catalyst layer for fuel cell - Google Patents

Manufacture of electrode catalyst layer for fuel cell

Info

Publication number
JPH01132055A
JPH01132055A JP62290972A JP29097287A JPH01132055A JP H01132055 A JPH01132055 A JP H01132055A JP 62290972 A JP62290972 A JP 62290972A JP 29097287 A JP29097287 A JP 29097287A JP H01132055 A JPH01132055 A JP H01132055A
Authority
JP
Japan
Prior art keywords
catalyst
fine particles
catalyst layer
catalyst carrier
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62290972A
Other languages
Japanese (ja)
Inventor
Yusuke Ito
裕介 伊藤
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62290972A priority Critical patent/JPH01132055A/en
Publication of JPH01132055A publication Critical patent/JPH01132055A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve cell performance and durability by using a catalyst carrier partially having graphitized part and remaining amorphous part in an electrode catalyst layer. CONSTITUTION:Carbon black is heated in an atmosphere of inert gas, and fine platinum particles as the first component and fine particles of transition element or rhodium as the second component are bonded to the carbon black, then thery are heated to form a fine catalyst particle 7 in which fine platinum alloy particle 1 is supported on a catalyst carrier 2. The carbon catalyst support 2 is partially graphitized, and the amorphous part of the carbon catalyst support 2 disturbs the crystal growth of the fine platinum particle 1 to optimize its crystalline size. An electrode catalyst layer 5 having excellent performance and high long term stability is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料電池電極触媒層の製造方法に保り、特に
電極触媒層の触媒微粒子の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a fuel cell electrode catalyst layer, and particularly to a method for manufacturing catalyst fine particles for the electrode catalyst layer.

〔従来の技術〕[Conventional technology]

燃料電池は燃料の持つ化学エネルギを直接電気エネルギ
に変換する装置であり、その構成は電解液層をはさんで
第5図に示すようなi!電極を対向して配し、外部のガ
ス供給系より前記各電極へ燃料ガスおよび酸化剤ガスを
供給し、各々の電極の触媒上で燃料ガスおよび酸化剤ガ
スを電気化学的に反応させるもので、その結果として系
外に電気エネルギを取出す、ことができる。
A fuel cell is a device that directly converts the chemical energy of fuel into electrical energy, and its configuration is as shown in Figure 5, with an electrolyte layer sandwiched between the i! Electrodes are arranged facing each other, and fuel gas and oxidizing gas are supplied to each electrode from an external gas supply system, and the fuel gas and oxidizing gas are electrochemically reacted on the catalyst of each electrode. As a result, it is possible to extract electrical energy outside the system.

電極6は多孔質の電極基材4の上に電極触媒層5が付着
する構造であり、ざらにこの電極触媒層5は触媒担体2
の表面に合金の微粒子1が担持された触媒微粒子7がフ
ッ素樹脂の微粒子3を介して結着された構造となってい
る。
The electrode 6 has a structure in which an electrode catalyst layer 5 is attached on a porous electrode base material 4, and this electrode catalyst layer 5 is roughly attached to the catalyst carrier 2.
It has a structure in which catalyst fine particles 7 on which alloy fine particles 1 are supported are bound together via fluororesin fine particles 3.

電極触媒層5の内部においては触媒微粒子7の表面にお
いて電解液と反応ガスが接触して3相界面を形成し電気
化学反応がおこる。電気化学反応が進行するにはこの3
相界面が電極触媒層5の内7とを均一によく混合分散さ
せることがTL要となる。また、電池の特性、、寿命を
向上させるためには電極触媒層5の触媒微粒子7中の触
媒担体2の選定が1要となる。
Inside the electrode catalyst layer 5, the electrolytic solution and the reaction gas come into contact with each other on the surface of the catalyst fine particles 7 to form a three-phase interface and an electrochemical reaction occurs. These three things are necessary for the electrochemical reaction to proceed.
It is essential for the phase interface to uniformly and well mix and disperse the electrode catalyst layer 5 and the electrode catalyst layer 5. In addition, in order to improve the characteristics and life of the battery, it is necessary to select the catalyst carrier 2 in the catalyst fine particles 7 of the electrode catalyst layer 5.

従来は、触媒担体2として、比表面積が400〜700
rr?/gと比較的大きなカーボンブラックが用いられ
ていた。
Conventionally, the catalyst carrier 2 has a specific surface area of 400 to 700.
rr? /g, a relatively large carbon black was used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述のようなカーボンブラックを触媒担体
として用いる場合においては、これに通常の方法に従っ
て白金等の貴金属を担持させて電極触媒層を形成し、電
池を組立てると、電池作動条件下、特に高電位のもとて
触媒担体2がリン酸に腐蝕され1合金の微粒子が脱落し
、その結果電池の寿命が短か(なるという問題が生ずる
However, when using carbon black as a catalyst carrier as described above, when a noble metal such as platinum is supported on carbon black according to a normal method to form an electrode catalyst layer and a battery is assembled, it is difficult to maintain high potential under battery operating conditions, especially when a battery is assembled. At this point, the catalyst carrier 2 is corroded by the phosphoric acid and fine particles of Alloy 1 fall off, resulting in a problem that the life of the battery is shortened.

この問題に対処するためカーボンブラックを3000℃
の温度で熱処理してグラファイト化することが試みられ
た。このようにすると、熱処理されない場合°に比較し
て腐蝕の程度は115に減り耐蝕性は向上する。しかし
このグラファイト化された触媒担体はその比表面積がx
orrt/gと非常に小さく合金の微粒子1を触媒担体
2の上に高分散状態で担持することができず、高電位下
において長時間電池を運転した場合1合金の微粒子1の
シンタリングがおこり、比較的短かい時間で電池の特性
が劣化するという欠点がある。
To deal with this problem, carbon black was heated to 3000℃.
Attempts were made to graphitize by heat treatment at a temperature of . In this way, the degree of corrosion is reduced to 115% compared to the case without heat treatment, and the corrosion resistance is improved. However, the specific surface area of this graphitized catalyst support is x
The alloy particles 1, which are extremely small (orrt/g), cannot be supported in a highly dispersed state on the catalyst carrier 2, and when the battery is operated for a long time under a high potential, sintering of the alloy particles 1 occurs. However, the disadvantage is that the battery characteristics deteriorate in a relatively short period of time.

この発明は上述の点に鑑みてなされ、その目的はカーボ
ン触媒担体を部分的にグラファイト化することにより合
金の微粒子が高分散化するとともに触媒担体の耐蝕性が
良好な電極触媒層の製造方法を提供することにある。
This invention has been made in view of the above points, and its purpose is to provide a method for producing an electrode catalyst layer in which the fine particles of the alloy are highly dispersed by partially graphitizing the carbon catalyst carrier, and the catalyst carrier has good corrosion resistance. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的はこの発明によれば触媒金属の微粒子をカー
ボンの触媒担体上に担持させて触媒微粒子となしこれを
フッ素樹脂微粒子で結Hさせる電極触媒層の製造方法に
おいて、カーボンブラックを不活性ガス中で熱処理し、
ついでこれに第1成分としての白金の微粒子と第2成分
としての遷移元素またはロジウムの微粒子とを被着させ
かつ熱処理して白金合金の微粒子を触媒担体上に担持さ
せた触媒微粒子を形成することにより達成される。
According to the present invention, the above object is achieved by a method for producing an electrode catalyst layer in which catalyst metal fine particles are supported on a carbon catalyst carrier to form catalyst fine particles, which are then sulfurized with fluororesin fine particles. heat treated in
Next, fine particles of platinum as a first component and fine particles of a transition element or rhodium as a second component are deposited on this and heat treated to form fine catalyst particles in which fine particles of platinum alloy are supported on a catalyst carrier. This is achieved by

カーボンの触媒担体としてはアセチレンブラック、ファ
ーネスブラックなどのカーボンブラックが用いられる。
Carbon black such as acetylene black and furnace black is used as the carbon catalyst carrier.

不活性ガスはアルゴン、ヘリウム等が用いられる。熱処
理温度は1400℃乃至2200℃の範囲が好適である
。この温度でカーボンブラックは部分的にグラファイト
化される。第2成分としての遷移元素は、鉄、クロム、
コバルト、バナジウム等が用いられる。第1成分と第2
成分とがカーボン担体に被着されたあと熱処理によりこ
れらは合金化され触媒金属である白金合金となる。
Argon, helium, etc. are used as the inert gas. The heat treatment temperature is preferably in the range of 1400°C to 2200°C. At this temperature the carbon black becomes partially graphitized. The transition elements as the second component are iron, chromium,
Cobalt, vanadium, etc. are used. 1st component and 2nd component
After the components are deposited on the carbon carrier, they are alloyed by heat treatment to form a platinum alloy, which is the catalyst metal.

〔作用〕[Effect]

カーボンブラックは熱処理により部分的にグラファイト
化され、耐蝕性が増す。カーボンブラックのアモルファ
スの部分は第1成分の貴金属と第2成分の遷移元素とが
合金化する際に結晶子径の成長を阻害する。
Carbon black is partially graphitized by heat treatment, increasing its corrosion resistance. The amorphous portion of carbon black inhibits the growth of crystallite size when the first component of the noble metal and the second component of the transition element are alloyed.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

触媒担体として用いるカーボンブラックを不活性ガス中
で熱処理し、カーボンブラックを部分的にグラファイト
化する。熱処理温度(時間は2時間)と得られた触媒担
体の比表面積との関係を第1図に示す。また熱処理温度
と得られた触媒担体の腐蝕電流との関係を第2図に示す
。腐蝕電流は触媒担体をリン酸中でアノード分極したと
きの電極の溶解にもとづく電流である。第2図は、カー
ボンブラックの熱処理温・度が1400℃以上で腐蝕電
流が殆んどフラットな低い値を示している。一方第1図
は熱処理温度が高くなる程触媒担体の比表面積が減るこ
とを示すが経験上100 d19以上の比表面積が有効
なことがわかっているので熱処理温度としては2200
℃以下が適当であることがわかる。結局第1図と第2図
とからカーボンブラックの熱処理温度としては1400
℃〜2200℃の範囲が好適であると考えられる。この
範囲ではカーボンブラックは部分的にグラファイト化さ
れる。
Carbon black used as a catalyst carrier is heat treated in an inert gas to partially graphitize the carbon black. FIG. 1 shows the relationship between the heat treatment temperature (duration: 2 hours) and the specific surface area of the obtained catalyst carrier. Further, FIG. 2 shows the relationship between the heat treatment temperature and the corrosion current of the obtained catalyst carrier. The corrosion current is the current based on the dissolution of the electrode when the catalyst carrier is anodic polarized in phosphoric acid. FIG. 2 shows that when the carbon black heat treatment temperature is 1400° C. or higher, the corrosion current is almost flat and low. On the other hand, Figure 1 shows that the higher the heat treatment temperature, the lower the specific surface area of the catalyst carrier, but experience has shown that a specific surface area of 100 d19 or more is effective, so the heat treatment temperature should be 2200.
It can be seen that a temperature below ℃ is appropriate. In the end, from Figures 1 and 2, the heat treatment temperature for carbon black was 1400.
It is considered that a range of 0.degree. C. to 2200.degree. C. is suitable. In this range the carbon black is partially graphitized.

次にカーボンブラックの熱処理温度と得られた触媒担体
に担持される白金合金の微粒子の結晶子径との関係を調
べた。触媒担体を塩化白金酸の水溶液中に分散させ公知
の方法で塩化白金酸を還元して触媒担体上にd金の微粒
子を被着させる。続いて白金の被着した触媒担体を硝酸
第2鉄の水溶液中に分散させ、硝酸第2鉄をアンモニア
を用いてアルカリ還元し、鉄の微粒子を担体衣面上fこ
被着させる。次に白金と鉄の微粒子の被着した触媒担体
を窒素雰囲気中、900℃の温度で2時間反応させ白金
と鉄を合金化させ、合金の微粒子を触媒担体上に担持さ
せる。このようにして得られた白金合金の微粒子の結晶
子径を触媒担体の熱処理温度との関係において求めたも
のが第3図である。
Next, the relationship between the heat treatment temperature of carbon black and the crystallite diameter of the platinum alloy fine particles supported on the obtained catalyst carrier was investigated. The catalyst carrier is dispersed in an aqueous solution of chloroplatinic acid, and the chloroplatinic acid is reduced by a known method to deposit fine gold particles on the catalyst carrier. Subsequently, the catalyst carrier coated with platinum is dispersed in an aqueous solution of ferric nitrate, and the ferric nitrate is reduced with alkali using ammonia to deposit fine iron particles on the surface of the carrier. Next, the catalyst carrier on which the fine particles of platinum and iron are adhered is reacted in a nitrogen atmosphere at a temperature of 900° C. for 2 hours to alloy platinum and iron, and the fine particles of the alloy are supported on the catalyst carrier. FIG. 3 shows the crystallite diameter of the platinum alloy fine particles thus obtained in relation to the heat treatment temperature of the catalyst carrier.

第3図は熱処理温度が1400℃と2200℃の間にお
いて白金合金の微粒子の結晶子径がほとんど平たんで3
0A〜38Aの範囲にあることがわかる。
Figure 3 shows that when the heat treatment temperature is between 1400°C and 2200°C, the crystallite diameter of the platinum alloy fine particles becomes almost flat and 3.
It can be seen that it is in the range of 0A to 38A.

このようにして得られた触媒微粒子7を用いて電極触媒
層を形成し、電池を組立ててその寿命特性を調べた。結
果を第4図に示す。電池は温度200℃、電流密度20
0 mA/cm” 、動作ガス圧力は4に9/α2で運
転された。第4図において曲線12が本発明の実施例に
係る電極触媒層を用いた電池の特性で、曲線11はカー
ボンブラックを熱処理して完全にグラファイト化した触
媒担体を用いて電極触媒層を形成した電池の寿命特性で
ある。この発明に係る電極触媒層を用いた電池の4期信
頼性が優れていることがわかる。この理由はこの発明に
係る電極触媒層の触媒担体が部分的にグラファイト化し
、アモルファスの部分を残しているためこの部分が白金
合金の微粒子の成長を阻止し結果として白金合金の微粒
子の結晶子径を最適化したためで、これにより電池特性
、耐久性共に優れた燃料電池を可能にしたものである。
An electrode catalyst layer was formed using the catalyst fine particles 7 thus obtained, a battery was assembled, and its life characteristics were investigated. The results are shown in Figure 4. The battery has a temperature of 200℃ and a current density of 20
0 mA/cm", and the operating gas pressure was 4:9/α2. In FIG. These are the life characteristics of a battery in which an electrode catalyst layer is formed using a catalyst carrier that has been completely graphitized by heat treatment.It can be seen that the battery using the electrode catalyst layer according to the present invention has excellent 4-term reliability. The reason for this is that the catalyst carrier of the electrode catalyst layer according to the present invention is partially graphitized and leaves an amorphous portion, which prevents the growth of the platinum alloy fine particles and, as a result, crystallites of the platinum alloy fine particles. This is because the diameter has been optimized, making it possible to create a fuel cell with excellent cell characteristics and durability.

〔発明の効果〕〔Effect of the invention〕

この発明によれば触媒金属の微粒子をカーボンの触媒担
体上に担持させて触媒微粒子となしこれをフッ素樹脂微
粒子で結着させる電極触媒層の製造方法において、カー
ボンブラックを不活性ガス中で熱処理し、ついでこれに
第1成分としての白金の微粒子と第2成分としての遷移
元素またはロジウムの微粒子とを被着させかつ熱処理し
て白金合金の微粒子を触媒担体すに担持させた触媒微粒
子を形成するのでカーボンの触媒担体は部分的にグラフ
ァイト化して耐蝕性が向上するとともにカーボン触am
体のアモルファス部分が白金合金の微粒子の結晶成長を
妨げて、その結晶半径を最適化し、その結果特性と長期
信頼性に優れる燃料電池の電極触媒層が得られる。
According to this invention, in the method for producing an electrode catalyst layer in which catalyst metal fine particles are supported on a carbon catalyst carrier to form catalyst fine particles and these are bound with fluororesin fine particles, carbon black is heat-treated in an inert gas. Then, fine particles of platinum as a first component and fine particles of a transition element or rhodium as a second component are deposited on this and heat treated to form fine catalyst particles in which fine particles of platinum alloy are supported on a catalyst carrier. Therefore, the carbon catalyst carrier is partially graphitized to improve corrosion resistance and to improve the carbon catalyst carrier.
The amorphous part of the body impedes the crystal growth of the platinum alloy fine particles and optimizes the crystal radius, resulting in a fuel cell electrode catalyst layer with excellent characteristics and long-term reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカーボンブラックの熱処理温度と得られた触媒
担体の比責面積の関係を示す特性図%第2図はカーボン
ブラックの熱処理温度と得られた触媒担体の腐蝕電流の
関係を示す特性図、第3図はカーボンブラックの熱処理
温度とそれに担持される合金の微粒子の結晶子径の関係
を示す特性図、第4図はこの発明の実施例に係る電極触
媒層を用いた電池と従来の電極触媒層を用いる電池の寿
命特性図、第5図は燃料電池の@極を示す模式断面図で
ある。 1・・・白金合金の微粒子、2・・・触媒担体、5・・
・電極触媒層、6・・・電極、7・・・触媒微粒子。 」15qヒノeu−シ味(’C) C第1図 稗処珪五友(”C) 第2図 熱息狸龜度(0C) 第3図 運iP@時間(Hr) 第4図 第5図
Figure 1 is a characteristic diagram showing the relationship between the heat treatment temperature of carbon black and the specific area of the catalyst carrier obtained. Figure 2 is a characteristic diagram showing the relationship between the heat treatment temperature of carbon black and the corrosion current of the catalyst carrier obtained. , Fig. 3 is a characteristic diagram showing the relationship between the heat treatment temperature of carbon black and the crystallite diameter of the fine particles of the alloy supported thereon, and Fig. 4 shows the relationship between the battery using the electrode catalyst layer according to the embodiment of the present invention and the conventional FIG. 5 is a life characteristic diagram of a battery using an electrode catalyst layer, and is a schematic cross-sectional view showing the @ electrode of a fuel cell. 1... Platinum alloy fine particles, 2... Catalyst carrier, 5...
- Electrode catalyst layer, 6... electrode, 7... catalyst fine particles. 15q Hino eu-shi taste ('C) C Fig. 1 Hidokoro Keigoyu (''C) Fig. 2 Heat breath raccoon temperature (0C) Fig. 3 Luck iP @ time (Hr) Fig. 4 Fig. 5 figure

Claims (1)

【特許請求の範囲】[Claims] 1)触媒金属の微粒子をカーボンの触媒担体上に担持さ
せて触媒微粒子となしこれをフッ素樹脂微粒子で結着さ
せる電極触媒層の製造方法において、カーボンブラック
を不活性ガス中で熱処理し、ついでこれに第1成分とし
ての白金の微粒子と第2成分としての遷移元素またはロ
ジウムの微粒子とを被着させかつ熱処理して白金合金の
微粒子を触媒担体上に担持させた触媒微粒子を形成する
ことを特徴とする燃料電池用電極触媒層の製造方法。
1) In the method for manufacturing an electrode catalyst layer in which catalyst metal fine particles are supported on a carbon catalyst carrier to form catalyst fine particles and these are bound with fluororesin fine particles, carbon black is heat treated in an inert gas, and then this is It is characterized by depositing fine particles of platinum as a first component and fine particles of a transition element or rhodium as a second component and heat-treating the catalyst to form fine catalyst particles in which fine particles of platinum alloy are supported on a catalyst carrier. A method for producing an electrode catalyst layer for a fuel cell.
JP62290972A 1987-11-18 1987-11-18 Manufacture of electrode catalyst layer for fuel cell Pending JPH01132055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290972A JPH01132055A (en) 1987-11-18 1987-11-18 Manufacture of electrode catalyst layer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290972A JPH01132055A (en) 1987-11-18 1987-11-18 Manufacture of electrode catalyst layer for fuel cell

Publications (1)

Publication Number Publication Date
JPH01132055A true JPH01132055A (en) 1989-05-24

Family

ID=17762815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290972A Pending JPH01132055A (en) 1987-11-18 1987-11-18 Manufacture of electrode catalyst layer for fuel cell

Country Status (1)

Country Link
JP (1) JPH01132055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158350A (en) * 2003-11-21 2005-06-16 Mitsubishi Pencil Co Ltd Electrode catalyst for fuel cell and its manufacturing method
JP2006313756A (en) * 2006-07-07 2006-11-16 Mitsubishi Pencil Co Ltd Direct methanol type fuel cell
US7556877B2 (en) 2002-07-26 2009-07-07 Mitsubishi Pencil Kabushiki Kaisha Direct methanol fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556877B2 (en) 2002-07-26 2009-07-07 Mitsubishi Pencil Kabushiki Kaisha Direct methanol fuel cell
US7625656B2 (en) 2002-07-26 2009-12-01 Mitsubishi Pencil Kabushiki Kaisha Direct methanol fuel cell
JP2005158350A (en) * 2003-11-21 2005-06-16 Mitsubishi Pencil Co Ltd Electrode catalyst for fuel cell and its manufacturing method
JP2006313756A (en) * 2006-07-07 2006-11-16 Mitsubishi Pencil Co Ltd Direct methanol type fuel cell

Similar Documents

Publication Publication Date Title
JPS59141169A (en) 3-element metal alloy catalyst for fuel battery and method of producing same
KR101202104B1 (en) Catalyst, method for producing the same, and use of the same
JPS62155940A (en) Ternary alloy catalyst and its production
JP5374387B2 (en) Catalyst, method for producing the same and use thereof
JPS5919731B2 (en) Precious metal-base metal alloy catalyst
CA2666634A1 (en) Catalyst support for fuel cell
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
JP2003200051A (en) Catalyst for oxygen oxidation-reduction device and electrode using the same
JP4448792B2 (en) Metal oxynitride oxygen reduction electrode catalyst and method for producing the same
US4711829A (en) Ordered ternary fuel cell catalysts containing platinum and cobalt
US5126216A (en) Ternary alloy electrocatalysts
JPH05217586A (en) Fuel cell and manufacture thereof
KR100797173B1 (en) Metal oxide electrode catalyst
JP3236686B2 (en) Gas electrode and its manufacturing method
JPH01132055A (en) Manufacture of electrode catalyst layer for fuel cell
JP2013164929A (en) Method of producing electrode catalyst for fuel cell
JP2006236778A (en) Catalyst for fuel cell, membrane electrode complex, and solid polymer electrolyte fuel cell
JPH0629027A (en) Fuel cell and its manufacture
JP2504397B2 (en) Hydrogen storage alloy electrode
JPH03236160A (en) Electrode catalyst layer for fuel cell and manufacture thereof
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JP2009001846A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JPH01132057A (en) Electrode catalyst layer of fuel cell
JP2009001845A (en) Electroplating method with noble metal, noble metal-carried conductive material, electrode for solid polymer type fuel cell, and solid polymer type fuel cell
JPH08138683A (en) Manufacture of electrode for fuel cell