JP3236686B2 - Gas electrode and its manufacturing method - Google Patents

Gas electrode and its manufacturing method

Info

Publication number
JP3236686B2
JP3236686B2 JP35907792A JP35907792A JP3236686B2 JP 3236686 B2 JP3236686 B2 JP 3236686B2 JP 35907792 A JP35907792 A JP 35907792A JP 35907792 A JP35907792 A JP 35907792A JP 3236686 B2 JP3236686 B2 JP 3236686B2
Authority
JP
Japan
Prior art keywords
gold
titanium
electrode
titanium oxide
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35907792A
Other languages
Japanese (ja)
Other versions
JPH06192873A (en
Inventor
孝之 島宗
保夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP35907792A priority Critical patent/JP3236686B2/en
Priority to CA002111882A priority patent/CA2111882A1/en
Priority to FI935774A priority patent/FI935774A/en
Priority to EP93830517A priority patent/EP0606051A1/en
Priority to NO934754A priority patent/NO934754L/en
Publication of JPH06192873A publication Critical patent/JPH06192873A/en
Application granted granted Critical
Publication of JP3236686B2 publication Critical patent/JP3236686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、長寿命を有する電解用
又は電池用ガス電極とその製造方法に関し、より詳細に
は酸化雰囲気及び還元雰囲気の両雰囲気で安定して電解
を継続できる触媒金属を担持した水素ガスにより減極さ
せながら使用するガス電極及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas electrode for electrolysis or battery having a long life and a method for producing the same, and more particularly, to a catalytic metal capable of stably continuing electrolysis in both an oxidizing atmosphere and a reducing atmosphere. TECHNICAL FIELD The present invention relates to a gas electrode used while being depolarized by a hydrogen gas carrying, and a method for producing the same.

【0002】[0002]

【従来技術とその問題点】高分子固体電解質型燃料電池
や省エネルギー型電解槽の発達に伴って、これらの用途
に使用されるガス電極の開発が進められている。これら
の電極を燃料電池用として使用する場合には、カソード
における酸素還元とアノードにおける水素酸化の両者に
ガス電極が使用され,一方前記ガス電極を電解系で使用
する場合にはその殆どが酸素還元用であった。これは電
解系では陰極還元プロセスが少なく主体が陽極側の酸化
を意図したためであり、又前記酸素還元の酸素源である
酸素ガスや空気が容易に得られかつ使用できるからと推
測できる。
2. Description of the Related Art With the development of solid polymer electrolyte fuel cells and energy-saving electrolytic cells, gas electrodes used for these applications are being developed. When these electrodes are used for fuel cells, gas electrodes are used for both oxygen reduction at the cathode and hydrogen oxidation at the anode, whereas when the gas electrodes are used in an electrolytic system, most of them are used for oxygen reduction. Was for This is presumably because in the electrolytic system, the cathodic reduction process is few and the main purpose is to oxidize the anode side, and oxygen gas and air, which are the oxygen sources for the oxygen reduction, can be easily obtained and used.

【0003】高分子固体電解質型燃料電池は比較的新し
い研究分野であり、常温下又は水溶液中で使用する水素
ガス酸化電極の開発はさほど進んでいない。そのため前
記水素ガス酸化電極は通常酸素ガス還元電極と共通に使
用されている。即ち白金や白金黒を導電性炭素担体上に
担持して調製した電極を使用していた。白金や白金黒の
水素酸化触媒としての能力は極めて優秀であり、高分子
固体電解質型燃料電池用に使用した場合、担持量にも影
響されるが、温度90〜100 ℃で100 A/dm2 の大電流密度
でも過電圧は200 mV程度であり、又通常の電解に使用す
る30A/dm2 程度の電流密度では過電圧は約100 mVと非常
に低い値となり、電極特性そのものは十分満足できるも
のである。
[0003] Polymer solid oxide fuel cells are a relatively new field of research, and the development of hydrogen gas oxidation electrodes for use at room temperature or in aqueous solutions has not progressed much. Therefore, the hydrogen gas oxidation electrode is commonly used in common with the oxygen gas reduction electrode. That is, an electrode prepared by supporting platinum or platinum black on a conductive carbon carrier was used. The ability of platinum or platinum black as a hydrogen oxidation catalyst is extremely excellent, and when used for a solid polymer electrolyte fuel cell, it is affected by the amount supported, but at 100 to 100 A / dm 2 at a temperature of 90 to 100 ° C. large current overvoltage density is about 200 mV, also overvoltage becomes very low value of about 100 mV in the normal current density of about 30A / dm 2 for use in electrolysis, electrode characteristics themselves intended to fully satisfactory in is there.

【0004】しかし長期の安定性の面からは必ずしも満
足できるものではない。即ち白金は前述の通り水素酸化
には有効に機能するが、還元雰囲気での安定性に欠ける
という特性があり、例えば白金るつぼを還元炎中で焼く
と極めて迅速に消耗しかつ結晶成長が促進されて粒界に
割れが生ずることは広く知られていることである。従っ
て白金に水素を供給しながら水素酸化を起こさせること
は白金が還元雰囲気に置かれることを意味し、更に白金
が還元剤として機能しやすい炭素に担持されている場合
にはその消耗が更に早くなる。このような水素酸化電極
として長期に渡り安定した状態で使用するためには、触
媒晶を多くして表面積を大きくすることが望ましいが、
表面積増大にも限度がありかつ経済性の面からも問題が
あり満足できる結果は得られていない。
However, long-term stability is not always satisfactory. That is, although platinum functions effectively for hydrogen oxidation as described above, it has the property of lacking stability in a reducing atmosphere. For example, when a platinum crucible is baked in a reducing flame, it is extremely quickly consumed and crystal growth is promoted. It is widely known that cracks occur at grain boundaries. Therefore, causing hydrogen oxidation while supplying hydrogen to platinum means that platinum is placed in a reducing atmosphere, and when platinum is supported on carbon that easily functions as a reducing agent, its consumption is even faster. Become. In order to use such a hydrogen oxidation electrode in a stable state for a long time, it is desirable to increase the surface area by increasing the number of catalyst crystals,
There is a limit to the increase in surface area, and there is a problem in terms of economy, and satisfactory results have not been obtained.

【0005】[0005]

【発明の目的】本発明は、上述の電極の有する欠点を解
消し、長期間に渡って安定した状態で使用できる電極特
に水素ガス電極とその製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrode, particularly a hydrogen gas electrode, which can be used in a stable state for a long period of time by solving the above-mentioned disadvantages of the electrode and a method for producing the same.

【0006】[0006]

【問題点を解決するための手段】本発明は、導電性酸化
物担体及び該担体上に分散して担持された触媒である金
粒子を含んで成ることを特徴とするガス電極であり、本
発明方法は、チタン化合物と金化合物の混合溶液に塩基
を加えて水酸化チタン及び水酸化金を共沈させてゲルを
生成し、該ゲルを成長させさた後、焼結して水酸化チタ
ン及び水酸化金を多孔質酸化チタン及び金属金に変換し
かつ該金属金を前記多孔質酸化チタン上に分散させるこ
とを特徴とするガス電極の製造方法である。以下本発明
を詳細に説明する。
The present invention provides a gas electrode comprising a conductive oxide carrier and gold particles as a catalyst dispersed and supported on the carrier. According to the method of the present invention, a base is added to a mixed solution of a titanium compound and a gold compound to co-precipitate titanium hydroxide and gold hydroxide to form a gel. And converting gold hydroxide to porous titanium oxide and metallic gold, and dispersing the metallic gold on the porous titanium oxide. Hereinafter, the present invention will be described in detail.

【0007】本発明の特徴は、従来の電極特にガス電極
の電極触媒金属として広く使用されてきた白金に代えて
金を電極触媒金属として使用した点にある。水素酸化反
応は、H2 →2H+ +2e- であり、電極触媒表面は還
元雰囲気になると共に水素ガスが存在する。従来のガス
電極等の触媒金属である白金は前述の通り水素酸化能は
十分であるのに対し、還元雰囲気における安定性に欠け
ていた。本発明者らは水素酸化能と還元雰囲気における
安定性の両者を兼ね備える触媒金属を各種検討した結
果、金を見出し本発明に至ったものである。金は前記両
性能を有する反面、高価でありかつ白金黒のように少量
で高表面積状態に容易に分散させる方法が確立されてい
ない。本発明者らは、種々検討した結果、担体として酸
化チタン等の導電性酸化物セラミックスを使用しかつ金
を該酸化物上に析出させることにより高表面積の金触媒
を得ることができることを見出した。
A feature of the present invention resides in that gold is used as an electrode catalyst metal instead of platinum, which has been widely used as an electrode catalyst metal of conventional electrodes, particularly gas electrodes. The hydrogen oxidation reaction is H 2 → 2H + + 2e , and the surface of the electrode catalyst becomes a reducing atmosphere and hydrogen gas is present. Conventional platinum, which is a catalytic metal for gas electrodes and the like, has sufficient hydrogen oxidizing ability as described above, but lacks stability in a reducing atmosphere. The present inventors have conducted various studies on catalyst metals having both hydrogen oxidizing ability and stability in a reducing atmosphere, and as a result, have found gold and have reached the present invention. Although gold has both of the above-mentioned properties, gold is expensive and a method of easily dispersing it in a high surface area state in a small amount like platinum black has not been established. As a result of various studies, the present inventors have found that a gold catalyst having a high surface area can be obtained by using a conductive oxide ceramic such as titanium oxide as a carrier and depositing gold on the oxide. .

【0008】酸化チタン特にルチル型酸化チタンは酸素
の欠陥構造を作ることによりいわゆるマグネリ相酸化チ
タンを形成することができ、該マグネリ相酸化チタンは
10-2Ωcm程度の導電性を示し、更に該酸化チタンに価数
の異なるタンタルやニオブをドープすると更に高導電性
を示す。前記マグネリ相をはじめとする酸化チタンは電
気化学的に酸化雰囲気でも還元雰囲気でも極めて安定で
あり最も望ましい触媒担体の1種である。本発明の触媒
担体として使用できる導電性酸化物として酸化スズがあ
るが、この酸化スズは単独では酸化チタンより導電性が
劣り、酸化チタンを使用することが望ましい。又他の担
体として炭素があるが、高温で酸化されやすく触媒調製
や反応時の加熱を酸化又は還元雰囲気で行う必要があ
り、耐久性に劣るため本発明では使用できない。
[0008] Titanium oxide, particularly rutile type titanium oxide, can form a so-called magneli phase titanium oxide by forming an oxygen defect structure.
It exhibits a conductivity of about 10 -2 Ωcm, and further shows higher conductivity when the titanium oxide is doped with tantalum or niobium having different valences. Titanium oxide including the Magneli phase is extremely stable in an oxidizing atmosphere and a reducing atmosphere electrochemically and is one of the most desirable catalyst supports. Tin oxide is a conductive oxide that can be used as the catalyst carrier of the present invention. However, tin oxide alone is inferior in conductivity to titanium oxide, and it is desirable to use titanium oxide. Although carbon is another carrier, it is easily oxidized at a high temperature, and it is necessary to perform catalyst preparation and heating during the reaction in an oxidizing or reducing atmosphere.

【0009】これらの導電性酸化物担体に金粒子を担持
させて本発明の高寿命電極を製造する。本発明の電極を
製造する方法は特に限定されず担体表面積に金が微細に
分散した状態で担持できる任意の方法を採用することが
できる。しかし前述の本発明方法に従って前記電極を製
造することが好ましい。次にこの本発明方法を導電性酸
化物を酸化チタンとして説明する。
A gold electrode is supported on these conductive oxide carriers to produce a long-life electrode of the present invention. The method for producing the electrode of the present invention is not particularly limited, and any method that can support gold in a finely dispersed state on the surface area of the carrier can be adopted. However, it is preferred to manufacture the electrodes according to the method of the invention described above. Next, the method of the present invention will be described using titanium oxide as the conductive oxide.

【0010】まず塩化チタン等のチタン化合物と塩化金
等の金化合物の混合水溶液中にアンモニア等の塩基を加
えて中和共沈させると、水酸化金を含む水酸化チタンが
当初ゾルとして最終的にはゲルとして沈降する(ゾルゲ
ル法)。この沈降物を数時間放置すると粒度が10μm前
後まで成長する。この成長した沈降物を焼結するとチタ
ン成分は酸化チタンに酸化され金は金属金として析出す
る。前記ゾルゲル法で生成するチタンはTiO2.nH2O 又は
Ti(OH)4.mH2O等の式で示されるように揮発成分(水分)
を多く含み、焼結によって水分が除去され多孔質にな
る。金とチタンが焼結されるこの過程で金は多孔質とな
った酸化チタン表面に微細な粒子として析出する。従っ
て極めて大きな表面積を有する担体上に微細な金粒子が
分散したものを得ることができる。
First, a base such as ammonia is added to a mixed aqueous solution of a titanium compound such as titanium chloride and a gold compound such as gold chloride to neutralize and coprecipitate. Precipitates as a gel (sol-gel method). When this sediment is left for several hours, the particle size grows to around 10 μm. When this grown precipitate is sintered, the titanium component is oxidized to titanium oxide, and gold is deposited as metallic gold. The titanium produced by the sol-gel method is TiO 2 .nH 2 O or
Volatile components (moisture) as shown by the formula such as Ti (OH) 4 .mH 2 O
, And moisture is removed by sintering to become porous. In the process of sintering gold and titanium, gold precipitates as fine particles on the porous titanium oxide surface. Therefore, a carrier in which fine gold particles are dispersed on a carrier having an extremely large surface area can be obtained.

【0011】この本発明方法の他に、予め酸化チタン単
独又は酸化チタンに酸化ニオブ及び/又は酸化タンタル
をドープした多孔質粉末を例えば前記ゾルゲル法により
調製し、この粉末に物理蒸着法や熱分解法等の既知の方
法により金を担持させてもよい。このように調製した触
媒物質は通常の電解用電極や燃料電池の電極等として使
用することができるが、燃料電池用等のガス電極として
使用することが最も好ましい。この触媒物質を使用して
ガス電極を構成するためには、導電性炭素粉末を撥水性
を与えるためのフッ素樹脂と混練してシート状に成形
し、その表面に前記触媒物質を塗布等の適宜の方法で付
着させればよい。又前記シートの代わりにイオン交換膜
を使用し、該イオン交換膜に直接前記触媒物質を焼き付
けてもよい。
In addition to the method of the present invention, a porous powder in which titanium oxide alone or titanium oxide is doped with niobium oxide and / or tantalum oxide is prepared, for example, by the sol-gel method. Gold may be carried by a known method such as a method. The catalyst material thus prepared can be used as an ordinary electrode for electrolysis or an electrode of a fuel cell, but is most preferably used as a gas electrode for a fuel cell or the like. In order to form a gas electrode using this catalyst substance, the conductive carbon powder is kneaded with a fluororesin for imparting water repellency, formed into a sheet, and the surface thereof is coated with the catalyst substance as appropriate. May be applied by the above method. Further, an ion exchange membrane may be used instead of the sheet, and the catalyst substance may be directly baked on the ion exchange membrane.

【0012】[0012]

【実施例】次に本発明の電解用電極の製造方法を例示す
る実施例を記載するが、本発明はこれらに限定されるも
のではない。
EXAMPLES Next, examples illustrating the method for producing an electrode for electrolysis according to the present invention will be described, but the present invention is not limited thereto.

【実施例1】四塩化チタンと五塩化タンタルをモル比で
10:1に混合した10%塩酸水溶液に、その10モル%に相
当する塩化金を加えた。これを攪拌しながらアンモニア
水を滴下し中和した。過剰のアンモニア水により十分沈
澱を生成した後、4時間放置した。この沈澱をガラスフ
ィルター上に取り脱イオン水で洗浄した後、空気中500
℃で1時間焼成した。これを粉砕し組成を調べたとこ
ろ、表面に微細な金の析出物を有するルチル型酸化物
(Ti-Ta) O2-x であることが判った。電気抵抗は10-2Ω
cm程度であった。
Example 1 Titanium tetrachloride and tantalum pentachloride in molar ratio
To a 10% aqueous hydrochloric acid solution mixed 10: 1, gold chloride equivalent to 10 mol% thereof was added. While stirring, ammonia water was added dropwise to neutralize. After sufficient precipitation was formed with excess ammonia water, the mixture was allowed to stand for 4 hours. The precipitate is collected on a glass filter, washed with deionized water, and then dried in air.
Calcination was carried out at ℃ for 1 hour. This was crushed and its composition was examined. As a result, it was found to be a rutile-type oxide (Ti-Ta) O 2-x having a fine gold precipitate on the surface. Electrical resistance is 10 -2 Ω
cm.

【0013】商品名ナフィオン117 上に予めグラファイ
ト粉末をフッ素樹脂と共に焼き付けて層を形成した陽イ
オン交換膜の前記層の表面にフッ素樹脂をバインダーと
して前記ルチル型酸化物から成る焼成体を焼き付けた。
グラファイト製の集電体を使用しかつ電解液として15%
硫酸水溶液を使用し、前記焼成体を焼き付けた陽イオン
交換膜を接液側において陽極として該イオン交換膜の焼
成体を焼き付けた側に湿潤水素を流しながら電解を行っ
た。温度60℃、電流密度100 A/dm2 における過電圧に相
当する電位は150 mVであった。又150 日電解を継続した
後の電位は160 mVであり、殆ど変化が見られなかった。
A calcined body made of the rutile oxide using a fluororesin as a binder was baked on the surface of the layer of a cation exchange membrane in which graphite powder was previously baked together with a fluororesin on Nafion 117 (trade name).
Use a current collector made of graphite and 15% as electrolyte
Electrolysis was performed using an aqueous sulfuric acid solution while flowing wet hydrogen on the side of the baked body of the ion-exchange membrane where the baked body was baked, using the cation-exchange membrane on which the fired body was baked as the anode on the liquid contact side. The potential corresponding to the overvoltage at a temperature of 60 ° C. and a current density of 100 A / dm 2 was 150 mV. After 150 days of electrolysis, the potential was 160 mV, and almost no change was observed.

【0014】[0014]

【比較例1】塩化金を加えなかったこと以外は実施例1
と同一条件で陽極を調製し、同一条件で電解を行った
が、10A/dm2 程度の電流しか流すことができず、又その
電位は300 mVを示した。
Comparative Example 1 Example 1 except that gold chloride was not added.
An anode was prepared under the same conditions as above, and electrolysis was performed under the same conditions. However, only a current of about 10 A / dm 2 could be passed, and the potential was 300 mV.

【0015】[0015]

【比較例2】塩化金の代わりに塩化白金酸を使用したこ
と以外は実施例1と同一条件で陽極を調製し、同一条件
で電解を行ったところ電位は200 mVであった。又150 日
電解を継続した後の電位は260 mVであり、60mVの上昇が
観察された。
Comparative Example 2 An anode was prepared under the same conditions as in Example 1 except that chloroplatinic acid was used instead of gold chloride, and electrolysis was performed under the same conditions. As a result, the potential was 200 mV. After the electrolysis was continued for 150 days, the potential was 260 mV, and a rise of 60 mV was observed.

【0016】[0016]

【発明の効果】本発明は、導電性酸化物担体及び該担体
上に分散して担持された触媒である金粒子を含んで成る
ことを特徴とするガス電極である。金は白金と比較して
還元雰囲気下における耐久性に優れ、水素ガス電極等の
還元雰囲気で長期間使用しても電極活性が殆ど低下する
ことがない。電極活性自体も従来の白金ガス電極とほぼ
同等であり、製造コスト自体も白金ガス電極と同等又は
それ以下に抑えることができる。
According to the present invention, there is provided a gas electrode comprising a conductive oxide carrier and gold particles serving as a catalyst dispersed and supported on the carrier. Gold has excellent durability in a reducing atmosphere as compared with platinum, and its electrode activity hardly decreases even when it is used for a long time in a reducing atmosphere such as a hydrogen gas electrode. The electrode activity itself is almost the same as that of a conventional platinum gas electrode, and the production cost itself can be suppressed to be equal to or less than that of a platinum gas electrode.

【0017】又導電性酸化物担体としては酸化スズ等の
他の酸化物を使用することもできるが、酸化チタンを使
用すると担体自体の耐久性が向上し、より安定な電極を
提供することができる。更に酸化チタンにタンタル、ニ
オブ及びシリコン等をドープさせると導電性が向上する
とともに耐久性も向上する。
Although other oxides such as tin oxide can be used as the conductive oxide carrier, the use of titanium oxide improves the durability of the carrier itself and provides a more stable electrode. it can. Further, when titanium oxide is doped with tantalum, niobium, silicon or the like, the conductivity is improved and the durability is also improved.

【0018】又本発明方法は、チタン化合物と金化合物
の混合溶液に塩基を加えて水酸化チタン及び水酸化金を
共沈させてゲルを生成し、該ゲルを成長させさた後、焼
結して水酸化チタン及び水酸化金を多孔質酸化チタン及
び金属金に変換しかつ該金属金を前記多孔質酸化チタン
上に分散させることを特徴とするガス電極の製造方法で
あり、本発明方法によると、水酸化チタンの焼結により
水分が除去されて多孔質酸化チタンが形成され、かつ微
細な金属金が該多孔質酸化チタン上に分散するため、高
活性で長寿命の電極を提供することができる。
In the method of the present invention, a base is added to a mixed solution of a titanium compound and a gold compound, and titanium hydroxide and gold hydroxide are coprecipitated to form a gel. Converting titanium hydroxide and gold hydroxide to porous titanium oxide and metallic gold, and dispersing the metallic gold on the porous titanium oxide. According to the method, water is removed by sintering of titanium hydroxide to form porous titanium oxide, and fine metal gold is dispersed on the porous titanium oxide, thereby providing a highly active and long-life electrode. be able to.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−129684(JP,A) 特開 平1−301877(JP,A) 特開 昭46−3409(JP,A) 特開 昭51−95985(JP,A) 特開 昭50−33180(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 C04B 41/88 H01M 4/86 H01M 4/88 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-52-129684 (JP, A) JP-A-1-301877 (JP, A) JP-A-46-3409 (JP, A) JP-A-51- 95985 (JP, A) JP-A-50-33180 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08 C04B 41/88 H01M 4/86 H01M 4/88

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性酸化物担体及び該担体上に分散し
て担持された触媒である金粒子を含んで成ることを特徴
とするガス電極。
1. A gas electrode comprising a conductive oxide carrier and gold particles serving as a catalyst dispersed and supported on the carrier.
【請求項2】 導電性酸化物担体の主成分が酸化チタン
粉末である請求項1に記載のガス電極。
2. The gas electrode according to claim 1, wherein a main component of the conductive oxide carrier is a titanium oxide powder.
【請求項3】 導電性酸化物担体が、タンタル、ニオブ
及びシリコンから成る群から選択される少なくとも1種
類の金属をドープした酸化チタンである請求項1に記載
のガス電極。
3. The gas electrode according to claim 1, wherein the conductive oxide carrier is titanium oxide doped with at least one metal selected from the group consisting of tantalum, niobium and silicon.
【請求項4】 チタン化合物と金化合物の混合溶液に塩
基を加えて水酸化チタン及び水酸化金を共沈させてゲル
を生成し、該ゲルを成長させさた後、焼結して水酸化チ
タン及び水酸化金を多孔質酸化チタン及び金属金に変換
しかつ該金属金を前記多孔質酸化チタン上に分散させる
ことを特徴とするガス電極の製造方法。
4. A base is added to a mixed solution of a titanium compound and a gold compound to co-precipitate titanium hydroxide and gold hydroxide to form a gel. A method for producing a gas electrode, comprising converting titanium and gold hydroxide to porous titanium oxide and metallic gold, and dispersing the metallic gold on the porous titanium oxide.
JP35907792A 1992-12-25 1992-12-25 Gas electrode and its manufacturing method Expired - Fee Related JP3236686B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35907792A JP3236686B2 (en) 1992-12-25 1992-12-25 Gas electrode and its manufacturing method
CA002111882A CA2111882A1 (en) 1992-12-25 1993-12-20 Gas electrode, catalyst for gas electrode, and process for production thereof
FI935774A FI935774A (en) 1992-12-25 1993-12-21 Gas electrode, catalyst for gas electrode and method for their preparation
EP93830517A EP0606051A1 (en) 1992-12-25 1993-12-22 Gas electrode, catalyst for gas electrode, and process for production thereof
NO934754A NO934754L (en) 1992-12-25 1993-12-22 Gas electrode and gas electrode catalyst and process for their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35907792A JP3236686B2 (en) 1992-12-25 1992-12-25 Gas electrode and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH06192873A JPH06192873A (en) 1994-07-12
JP3236686B2 true JP3236686B2 (en) 2001-12-10

Family

ID=18462625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35907792A Expired - Fee Related JP3236686B2 (en) 1992-12-25 1992-12-25 Gas electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3236686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312921A4 (en) * 2015-06-16 2018-05-16 Panasonic Corporation Cell, fuel cell stack, fuel cell system and membrane-electrode joined body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489200A1 (en) * 2003-06-19 2004-12-22 Akzo Nobel N.V. Electrode
JP2006322056A (en) * 2005-05-20 2006-11-30 Furuya Kinzoku:Kk Electrode for electrolysis and manufacturing method therefor
JP2008133491A (en) * 2006-11-27 2008-06-12 Japan Atomic Energy Agency Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same
JP5168913B2 (en) * 2007-01-22 2013-03-27 日産自動車株式会社 Catalyst electrode for fuel cell and production method thereof
JP5378669B2 (en) * 2007-09-27 2013-12-25 Jx日鉱日石エネルギー株式会社 Membrane electrode assembly, fuel cell and fuel cell system
JP5144244B2 (en) * 2007-12-20 2013-02-13 昭和電工株式会社 Electrocatalyst and use thereof, and method for producing electrode catalyst
JP5559858B2 (en) * 2012-11-22 2014-07-23 昭和電工株式会社 Electrocatalyst and use thereof, and method for producing electrode catalyst
EP2966715A4 (en) * 2013-03-06 2016-10-26 Mitsui Mining & Smelting Co Tantalum-containing tin oxide for fuel cell electrode material
JP6372695B2 (en) * 2014-10-10 2018-08-15 パナソニックIpマネジメント株式会社 Conductive particles, carrier material using the same, fuel cell device and water electrolysis device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312921A4 (en) * 2015-06-16 2018-05-16 Panasonic Corporation Cell, fuel cell stack, fuel cell system and membrane-electrode joined body

Also Published As

Publication number Publication date
JPH06192873A (en) 1994-07-12

Similar Documents

Publication Publication Date Title
JP5199575B2 (en) Noble metal oxide catalysts for water electrolysis
Audichon et al. Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile
KR102045351B1 (en) Electrocatalyst for fuel cells and method for producing said electrocatalyst
SE449539B (en) BRENSLECELLKATOD
JPH0763627B2 (en) Improved catalytic material
JPS5919731B2 (en) Precious metal-base metal alloy catalyst
JPS5846829B2 (en) How to manufacture fuel cell electrodes
FI3764443T3 (en) Catalyst for oxygen evolution reaction in the electrolysis of water
Singh et al. Electrocatalytic activity of high specific surface area perovskite-type LaNiO3 via sol-gel route for electrolytic oxygen evolution in alkaline solution
JP3236686B2 (en) Gas electrode and its manufacturing method
WO2015083383A1 (en) Electrode catalyst for water electrolysis, and water electrolysis device using the same
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
JP4804350B2 (en) Electrode and method for producing the electrode
JPS59190381A (en) Catalyst for coating anode and manufacture
JP3142410B2 (en) Gas electrode catalyst and method for producing the same
KR100797173B1 (en) Metal oxide electrode catalyst
EP0606051A1 (en) Gas electrode, catalyst for gas electrode, and process for production thereof
EP0034447A2 (en) Electrocatalyst
US5441670A (en) Process for producing an electrically conductive mixed oxide of titanium and tantalum or niobium
JP3037344B2 (en) Electrode for direct methanol fuel cell and method for producing the same
KR101150210B1 (en) Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method
JP7444511B1 (en) Iridium oxide and its manufacturing method, membrane electrode assembly for proton exchange membrane type water electrolyzer using the same, and proton exchange membrane type water electrolyzer
EP0097508A1 (en) Improved phosphoric acid fuel cell electrode
JPH01132057A (en) Electrode catalyst layer of fuel cell
JPH0541217A (en) Cermet electrode and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees