JP2008133491A - Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same - Google Patents

Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same Download PDF

Info

Publication number
JP2008133491A
JP2008133491A JP2006318446A JP2006318446A JP2008133491A JP 2008133491 A JP2008133491 A JP 2008133491A JP 2006318446 A JP2006318446 A JP 2006318446A JP 2006318446 A JP2006318446 A JP 2006318446A JP 2008133491 A JP2008133491 A JP 2008133491A
Authority
JP
Japan
Prior art keywords
electrolysis
gold
electrode
sulfurous acid
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006318446A
Other languages
Japanese (ja)
Inventor
Toshio Nakagiri
俊男 中桐
Norimi Aoto
紀身 青砥
Kenichiro Ota
健一郎 太田
Nobuyuki Kamiya
信行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2006318446A priority Critical patent/JP2008133491A/en
Publication of JP2008133491A publication Critical patent/JP2008133491A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for use in an electrolysis of sulfurous acid, which has a high catalytic activity for a reaction of oxidizing sulfurous acid, does not form an oxide film thereon even in such an environment that the sulfurous acid and sulfuric acid coexist, and has such high durability as to continue the electrolysis reaction for a long period of time, and to provide an apparatus for producing hydrogen through the electrolysis of the sulfurous acid by using the catalyst for the electrolysis of the sulfurous acid. <P>SOLUTION: An electrode for use in the electrolysis of electrolyzing sulfurous acid to produce hydrogen and sulfuric acid, is made from gold or an alloy containing gold as a main component and another noble metal. The electrode for use in the electrolysis has an aspect in which fine particles of gold or the alloy containing gold as the main component and another noble metal are carried on the surface of an electrode made from an oxide material or carbon, or an aspect of a membrane electrode assembly in which fine particles of gold or the alloy containing gold as the main component and another noble metal are carried on the surface of a polymer electrolyte membrane. The apparatus for producing hydrogen through the electrolysis of the sulfurous acid has a structure of dividing the inside of an electrolytic tank into a reaction chamber in an anode side and a reaction chamber in a cathode side by a cation-exchange membrane, and arranging an anode and a cathode respectively in the anode side and the cathode side of the cation-exchange membrane. The anode for the electrolysis of the sulfurous acid employs the electrode made from gold or the alloy containing gold as the main component and another noble metal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、亜硫酸(二酸化硫黄の水溶液)の電解による水素製造に際して効果的に使用できる、高い触媒活性と優れた耐久性を備えた亜硫酸電解用電極、およびこの電極を用いた亜硫酸電解水素製造装置に関するものである。    The present invention relates to an electrode for sulfite electrolysis having high catalytic activity and excellent durability, which can be effectively used for the production of hydrogen by electrolysis of sulfurous acid (aqueous solution of sulfur dioxide), and an apparatus for producing sulfite electrolysis hydrogen using this electrode It is about.

硫酸の合成と分解反応を組み合わせて電気化学的および熱化学的に水から水素を製造するハイブリッド熱化学法プロセスは、従来から数多くの方法が提案されている。
その一つとして、硫酸(H2SO4)を熱分解して三酸化硫黄(SO3)と水(H2O)を生成する硫酸加熱工程と、三酸化硫黄を二酸化硫黄(SO2)と酸素(O2)に電気分解する三酸化硫黄電解工程と、二酸化硫黄の水溶液からなる亜硫酸を電気分解して水素(H2)と硫酸を生成する亜硫酸電解工程とを組み合わせたハイブリッド熱化学法プロセスによる水素製造方法が知られている。
A number of methods have been proposed for hybrid thermochemical processes in which hydrogen is produced from water electrochemically and thermochemically by combining the synthesis and decomposition reaction of sulfuric acid.
For example, sulfuric acid (H 2 SO 4 ) is thermally decomposed to produce sulfur trioxide (SO 3 ) and water (H 2 O), and sulfuric acid trioxide is converted to sulfur dioxide (SO 2 ). A hybrid thermochemical process that combines a sulfur trioxide electrolysis process that electrolyzes oxygen (O 2 ) and a sulfurous acid electrolysis process that generates hydrogen (H 2 ) and sulfuric acid by electrolyzing sulfur dioxide consisting of an aqueous solution of sulfur dioxide. A hydrogen production method is known.

かようなハイブリッド熱化学法プロセスにおいて、実際に水素を生成する亜硫酸電解工程では、電解槽の陽極側に供給した亜硫酸を電気分解することにより陽極側で硫酸が、陰極側で水素がそれぞれ生成される。亜硫酸酸化反応のための陽極側電極材料としては、従来から固体高分子型燃料電池等で高い触媒性能が確認されている白金(Pt)やパラジウム(Pd)が使用され、検討がなされてきた。
しかしながら、白金やパラジウムの場合には、電解反応に伴って表面に酸化被膜が生成し、電解電流が徐々に低下していくことが確認されており、亜硫酸と硫酸が混在する陽極側環境で長期間安定に電解反応を行える高い耐久性をもった電極材料の開発が待たれていた。
In such a hybrid thermochemical process, in the sulfite electrolysis step that actually generates hydrogen, sulfuric acid supplied to the anode side of the electrolytic cell is electrolyzed to produce sulfuric acid on the anode side and hydrogen on the cathode side. The As an anode side electrode material for the sulfite oxidation reaction, platinum (Pt) and palladium (Pd), which have conventionally been confirmed to have high catalytic performance in a polymer electrolyte fuel cell or the like, have been studied.
However, in the case of platinum and palladium, it has been confirmed that an oxide film is formed on the surface along with the electrolytic reaction, and the electrolysis current gradually decreases, which is long in the anode environment where sulfurous acid and sulfuric acid are mixed. The development of a highly durable electrode material capable of performing an electrolytic reaction stably over a period has been awaited.

一方、一酸化炭素(CO)と水とを反応させる水ガスシフト反応を利用した水素製造方法も知られており、この反応に金(Au)を含有する触媒を使用することが提案されている(特許文献1)。
また、炭化水素系燃料またはアルコール系燃料の水蒸気改質により水素を主成分とする改質ガスを製造する方法も知られている。この改質ガスを燃料電池用燃料として使用する場合、改質ガス中に含まれるCOが燃料電池の触媒を被毒および劣化させるため、改質ガス中に含まれるCOを選択的に酸化除去して、CO濃度を低減させる必要があり、そのためのCO酸化触媒として金含有触媒を使用する提案もなされている(特許文献2)。このCO酸化触媒においては、金を粒径10nm以下の超微粒子とした場合に高い触媒活性が認められている。
しかしながら、これらの従来技術で提案さている金含有触媒は、亜硫酸酸化触媒としては触媒活性が乏しいと考えられていたため、亜硫酸酸化反応への適用は試みられていなかった。
On the other hand, a hydrogen production method using a water gas shift reaction in which carbon monoxide (CO) reacts with water is also known, and it is proposed to use a catalyst containing gold (Au) for this reaction ( Patent Document 1).
Also known is a method of producing a reformed gas mainly composed of hydrogen by steam reforming of a hydrocarbon fuel or an alcohol fuel. When this reformed gas is used as fuel for a fuel cell, CO contained in the reformed gas poisons and deteriorates the catalyst of the fuel cell. Therefore, the CO contained in the reformed gas is selectively oxidized and removed. Therefore, it is necessary to reduce the CO concentration, and a proposal has been made to use a gold-containing catalyst as a CO oxidation catalyst for that purpose (Patent Document 2). In this CO oxidation catalyst, high catalytic activity is recognized when gold is made into ultrafine particles having a particle diameter of 10 nm or less.
However, these gold-containing catalysts proposed in the prior art have been considered to have poor catalytic activity as a sulfite oxidation catalyst, and thus have not been attempted to be applied to a sulfite oxidation reaction.

特開2005−521548号公報JP 2005-521548 A 特開平7−48101号公報JP 7-48101 A

そこで本発明は、亜硫酸酸化反応に対して高い触媒活性を有し、亜硫酸と硫酸が混在する環境におかれても酸化被膜を生成することなく、長期間安定に電解反応を行える高い耐久性を備えた亜硫酸電解用触媒を提供すること、さらにはこの亜硫酸電解用触媒を用いた亜硫酸電解水素製造装置を提供することを目的としてなされたものである。   Therefore, the present invention has a high catalytic activity for the sulfite oxidation reaction, and has a high durability capable of performing an electrolytic reaction stably for a long time without forming an oxide film even in an environment where sulfurous acid and sulfuric acid are mixed. An object of the present invention is to provide a sulfite electrolysis catalyst provided, and to provide a sulfite electrolysis hydrogen production apparatus using the sulfite electrolysis catalyst.

すなわち本発明による亜硫酸電解用電極は、亜硫酸を電気分解して水素と硫酸を生成する亜硫酸電解用の電極であって、金または金を主成分とする他の貴金属との合金からなることを特徴とするものである。
上記した亜硫酸電解用電極の実施形態としては、金または金を主成分とする他の貴金属との合金の微粒子を酸化物材料または炭素製電極の表面に担持させてなるもの、さらには、金または金を主成分とする他の貴金属との合金の微粒子を高分子電解質膜の表面に担持させた膜電極接合体からなるものが挙げられる。
That is, the electrode for sulfite electrolysis according to the present invention is an electrode for sulfite electrolysis that generates hydrogen and sulfuric acid by electrolyzing sulfite, and is composed of gold or an alloy with other noble metals mainly composed of gold. It is what.
As an embodiment of the above-described electrode for sulfite electrolysis, gold or an alloy with other noble metal mainly composed of gold is supported on the surface of an oxide material or a carbon electrode, and further, gold or Examples thereof include those composed of a membrane electrode assembly in which fine particles of an alloy with other noble metal mainly containing gold are supported on the surface of a polymer electrolyte membrane.

また、本発明による亜硫酸電解水素製造装置は、電解槽内部を陽イオン交換膜により陽極側反応室と陰極側反応室とに区切り、前記陽イオン交換膜の陽極側および陰極側にそれぞれ陽極および陰極を配設した構造を有し、陽極側反応室に供給した亜硫酸を電気分解することにより陽極側反応室で硫酸が、陰極側反応室で水素がそれぞれ生成されるようにした亜硫酸電解水素製造装置において、前記陽極として前記した金または金を主成分とする他の貴金属との合金からなる亜硫酸電解用電極を使用したことを特徴とするものである。   The apparatus for producing hydrogen sulfite electrolysis according to the present invention divides the inside of an electrolytic cell into an anode side reaction chamber and a cathode side reaction chamber by a cation exchange membrane, and an anode and a cathode on the anode side and cathode side of the cation exchange membrane, respectively. An apparatus for producing sulfite electrolysis hydrogen, in which sulfuric acid is generated in the anode reaction chamber and hydrogen is generated in the cathode reaction chamber by electrolyzing the sulfurous acid supplied to the anode reaction chamber The electrode for sulfite electrolysis made of gold or an alloy with other noble metal containing gold as a main component is used as the anode.

本発明によれば、硫酸の合成と分解反応を組み合わせて電気化学的および熱化学的に水から水素を製造するハイブリッド熱化学法プロセスにおいて、亜硫酸を電解して水素と硫酸を生成する亜硫酸電解酸化反応に効果的に使用できる陽極側電極材料を提供することができる。この電極材料を使用することによって、想定される0〜約1.0V(対参照水素電極)の運転電圧範囲において、電極表面に酸化被膜が生じることがなく、その結果、高電解性能かつ高耐久性の亜硫酸電解水素製造装置を構築することが可能となる。   According to the present invention, in a hybrid thermochemical process of electrochemically and thermochemically producing hydrogen from water by combining sulfuric acid synthesis and decomposition reaction, sulfurous acid electrooxidation in which sulfurous acid is electrolyzed to produce hydrogen and sulfuric acid. An anode electrode material that can be effectively used for the reaction can be provided. By using this electrode material, no oxide film is formed on the electrode surface in the assumed operating voltage range of 0 to about 1.0 V (vs. reference hydrogen electrode), resulting in high electrolysis performance and high durability. It is possible to construct a sulfite electrolysis hydrogen production apparatus.

また、従来の白金やパラジウム電極の場合よりも、同一電圧で高い電流密度が得られるため、亜硫酸電解水素製造装置で消費される電気エネルギーの低減が可能となり、装置の電解効率を向上させることができる。
さらに、亜硫酸電解水素製造装置における消費電気エネルギーが低減される結果、ハイブリッド熱化学法プロセス全体における消費電気エネルギーが低減でき、プロセス全体の水素製造効率を向上させることができる。
In addition, since a higher current density can be obtained at the same voltage than in the case of conventional platinum or palladium electrodes, it is possible to reduce the electrical energy consumed by the sulfite electrolysis hydrogen production apparatus, and to improve the electrolysis efficiency of the apparatus. it can.
Furthermore, as a result of the reduction of the electric energy consumed in the sulfite electrolysis hydrogen production apparatus, the electric energy consumed in the entire hybrid thermochemical process can be reduced, and the hydrogen production efficiency of the whole process can be improved.

図4は、水素製造方法として採用されるハイブリッド熱化学法プロセスを構成する反応および反応式を示しており、亜硫酸電解反応において本発明の亜硫酸電解用電極を使用することができる。
硫酸加熱工程:
2SO4熱分解反応 H2SO4→SO3+H2O …[1](400℃)
三酸化硫黄電解工程:
SO3電解反応 SO3→SO2+1/2O2 …[2](>500℃)
亜硫酸電解工程:
亜硫酸電解反応 SO2+2H2O→H2SO4+H2…[3](<100℃)
FIG. 4 shows reactions and reaction formulas constituting a hybrid thermochemical process employed as a hydrogen production method, and the sulfite electrolysis electrode of the present invention can be used in the sulfite electrolysis reaction.
Sulfuric acid heating process:
H 2 SO 4 thermal decomposition reaction H 2 SO 4 → SO 3 + H 2 O [1] (400 ° C.)
Sulfur trioxide electrolysis process:
SO 3 electrolytic reaction SO 3 → SO 2 + 1 / 2O 2 ... [2] (> 500 ° C.)
Sulfurous acid electrolysis process:
Sulfurous acid electrolysis SO 2 + 2H 2 O → H 2 SO 4 + H 2 ... [3] (<100 ° C.)

図1は、ハイブリッド熱化学法プロセスの装置構成の一例を示している。硫酸加熱装置においては、亜硫酸電解水素製造装置から供給されるH2SO4を約400℃に加熱することで、硫酸熱分解反応[1]にしたがってSO3とH2Oの混合ガスが得られる。
三酸化硫黄電解装置においては、硫酸加熱装置から供給されるSO3とH2Oの混合ガスを約500℃以上で電気分解することで、SO3電解反応[2]にしたがってSO3はSO2とO2に分解され、O2は電解装置から排出される。
亜硫酸電解水素製造装置においては、三酸化硫黄電解装置から供給されるSO2とH2Oの混合ガスと、別途供給される原料としての液体H2Oとを混合して亜硫酸とし、亜硫酸電解反応[3]にしたがって亜硫酸を分解することによりH2SO4とH2が生成される。
FIG. 1 shows an example of an apparatus configuration of a hybrid thermochemical process. In the sulfuric acid heating device, the mixed gas of SO 3 and H 2 O is obtained according to the sulfuric acid pyrolysis reaction [1] by heating H 2 SO 4 supplied from the sulfurous acid electrolysis hydrogen production device to about 400 ° C. .
In the sulfur trioxide electrolysis apparatus, SO 3 is SO 2 in accordance with the SO 3 electrolysis reaction [2] by electrolyzing the mixed gas of SO 3 and H 2 O supplied from the sulfuric acid heating apparatus at about 500 ° C. or higher. And O 2 , and O 2 is discharged from the electrolyzer.
In the sulfurous acid electrolysis hydrogen production apparatus, a mixed gas of SO 2 and H 2 O supplied from the sulfur trioxide electrolysis apparatus and liquid H 2 O as a separately supplied raw material are mixed to form sulfurous acid, and the sulfurous acid electrolysis reaction H 2 SO 4 and H 2 are produced by decomposing sulfurous acid according to [3].

亜硫酸電解水素製造装置は、図1に示すように、電解槽1内部を「ナフィオン(Nafion)」(デュポン社の商品名)等の陽イオン交換膜2により陽極側反応室と陰極側反応室に区切り、陽イオン交換膜2の陽極側および陰極側にそれぞれ陽極3と陰極4を配設した構造を有しており、電極間に電源装置(図示せず)から電圧を印加する。陽極側反応室では下記反応[4]の電解酸化反応によりH2SO4が生成される。この反応で生成した水素イオン(H+ )は陽イオン交換膜2を通して陰極側へ移行し、、陰極表面で下記反応[5]によりH2ガスとなる。H2SO4は硫酸加熱装置へ循環供給され、H2は製品として陰極側反応室から排出される。
2の陰極側反応室からの排出は、N2のごときパージガス、あるいは陰極側反応室で生成するH2SO4と同程度の濃度の液体硫酸を、パージ流体として陰極側反応室に流すことにより行うことができる。
2SO3+H2O→H2SO4+2H++2e- [4]
2H++2e-→H2 [5]
As shown in FIG. 1, the sulfite electrolysis hydrogen production apparatus has an inside of an electrolytic cell 1 formed into an anode side reaction chamber and a cathode side reaction chamber by a cation exchange membrane 2 such as “Nafion” (trade name of DuPont). The anode 3 and the cathode 4 are disposed on the anode side and the cathode side of the cation exchange membrane 2, respectively, and a voltage is applied between the electrodes from a power supply device (not shown). In the anode side reaction chamber, H 2 SO 4 is generated by the electrolytic oxidation reaction of the following reaction [4]. Hydrogen ions (H + ) generated by this reaction move to the cathode side through the cation exchange membrane 2, and become H 2 gas by the following reaction [5] on the cathode surface. H 2 SO 4 is circulated and supplied to the sulfuric acid heating device, and H 2 is discharged as a product from the cathode side reaction chamber.
To discharge H 2 from the cathode side reaction chamber, purge gas such as N 2 or liquid sulfuric acid having the same concentration as H 2 SO 4 produced in the cathode side reaction chamber is allowed to flow as a purge fluid into the cathode side reaction chamber. Can be performed.
H 2 SO 3 + H 2 O → H 2 SO 4 + 2H + + 2e [4]
2H + + 2e → H 2 [5]

亜硫酸電解水素製造装置の陽極側反応室では、供給される亜硫酸と生成される硫酸が存在するため、亜硫酸と硫酸が混在する環境となる。また、ハイブリッド熱化学法プロセスにおいては、前段の三酸化硫黄電解装置で電解されなかった未分解SO3も亜硫酸電解水素製造装置の陽極側反応室に供給され、このSO3は水に溶解してH2SO4となるため、亜硫酸と硫酸の混在環境となる。なお、亜硫酸電解水素製造装置の陽極側反応室に、製鉄所の高炉排ガスまたは火山ガス等に含まれるSO2ガスを直接供給することもできるが、この場合もSO2ガスの一部がH2Oに溶解して亜硫酸となり陽極での電解酸化反応により硫酸が生成されることになる。 In the anode-side reaction chamber of the sulfurous acid electrolysis hydrogen production apparatus, since sulfurous acid to be supplied and sulfuric acid to be generated exist, an environment in which sulfurous acid and sulfuric acid are mixed is provided. In the hybrid thermochemical process, undecomposed SO 3 that has not been electrolyzed by the sulfur trioxide electrolyzer in the previous stage is also supplied to the anode side reaction chamber of the sulfite electrolysis hydrogen production apparatus, and this SO 3 is dissolved in water. Since it becomes H 2 SO 4, it becomes a mixed environment of sulfurous acid and sulfuric acid. The SO 2 gas contained in the blast furnace exhaust gas or volcanic gas of the ironworks can be directly supplied to the anode side reaction chamber of the sulfite electrolysis hydrogen production apparatus. In this case, too, part of the SO 2 gas is H 2. It dissolves in O to become sulfurous acid, and sulfuric acid is generated by electrolytic oxidation reaction at the anode.

本発明においては、亜硫酸電解水素製造装置における陽極として、金(Au)または金を主成分とする他の貴金属との合金からなる電極材料を使用することによって、亜硫酸と硫酸が混在する陽極側環境においても、電解反応に伴って陽極表面に酸化被膜を生成することなく、長期間安定に電解反応を行える高い耐久性をもたらすことが可能となる。
本発明においては、金または金を主成分とする他の貴金属との合金は、微粒子とすることは必須ではなく、一般的な板状、メッシュ状等の電極形状で使用することができる。ただし、表面積が大きくとれるという観点から粒径数μm以下の微粒子として使用することが好ましい。この場合には、微粒子相互の合体による粗大化を防ぐために、他の貴金属類(Pt、Pd、Ru、Rh、Ir等)との合金化、酸化物材料(WO3、Ti2、Co34、Al23、ZrO2等)または炭素製のガス拡散電極の表面への担持等の方法が採用できる。また、微粒子を高分子電解質膜の表面に担持させた膜電極接合体とすることもできる。金と他の貴金属とを合金化する場合、金が合金中の主成分となるが、金の含有率は、陽極表面での酸化被膜の生成を効果的に抑制するために有効な含有率とすればよい。
In the present invention, an anode-side environment in which sulfurous acid and sulfuric acid are mixed by using an electrode material made of gold (Au) or an alloy with another noble metal containing gold as a main component as an anode in the sulfite electrolysis hydrogen production apparatus. In this case, it is possible to provide high durability capable of performing the electrolytic reaction stably for a long period of time without forming an oxide film on the anode surface with the electrolytic reaction.
In the present invention, gold or an alloy with other noble metal containing gold as a main component is not necessarily formed into fine particles, and can be used in a general electrode shape such as a plate shape or a mesh shape. However, it is preferably used as fine particles having a particle size of several μm or less from the viewpoint that the surface area can be increased. In this case, in order to prevent coarsening due to coalescence of fine particles, alloying with other noble metals (Pt, Pd, Ru, Rh, Ir, etc.), oxide materials (WO 3 , Ti 2 , Co 3 O) 4 , Al 2 O 3 , ZrO 2, etc.) or a method such as loading on the surface of a gas diffusion electrode made of carbon. Moreover, it can also be set as the membrane electrode assembly which carry | supported the microparticles | fine-particles on the surface of a polymer electrolyte membrane. When gold is alloyed with other noble metals, gold is the main component in the alloy, but the content of gold is an effective content to effectively suppress the formation of an oxide film on the anode surface. do it.

亜硫酸電解水素製造装置の運転温度は常温〜100℃程度までの範囲で行うことができ、金または金を主成分とする他の貴金属との合金からなる電極は、可逆水素電極電位に対して概ね0〜1.0Vの範囲で使用される。
陰極材料としては、従来と同様に白金、パラジウム、ルテニウム、ロジウム、イリジウム等の貴金属材料や炭素系材料が使用できる。
The operating temperature of the sulfite electrolysis hydrogen production apparatus can be performed in a range from room temperature to about 100 ° C., and an electrode made of gold or an alloy with other noble metal containing gold as a main component is approximately the reversible hydrogen electrode potential. Used in the range of 0 to 1.0V.
As the cathode material, noble metal materials such as platinum, palladium, ruthenium, rhodium, iridium and carbon-based materials can be used as in the conventional case.

実験例Experimental example

図2に示す装置により、Pt、PdおよびAu電極を用いて、亜硫酸と硫酸を含む水溶液中でサイクリック−ボルタメトリー法によって取得した電流−電圧曲線を図3に示す。図2の装置は、作用極と対極と参照極とを備えたフラスコと、各電極間に電圧を印加する電源とからなり、温度制御は熱電対により行えるようになっている。
フラスコ中には4.5質量%亜硫酸と0.1M硫酸を含む水溶液を入れ、対極としてPt−黒、参照極として参照水素電極を使用し、作用極として表面積0.1cm2のPt、PdまたはAu電極を使用した。走査速度100mV/秒、温度20℃、0.3〜1.5V(対参照水素電極)としたときの電流−電圧曲線は図3のようになる。
FIG. 3 shows a current-voltage curve obtained by the cyclic voltammetry method in an aqueous solution containing sulfurous acid and sulfuric acid using the Pt, Pd and Au electrodes by the apparatus shown in FIG. The apparatus shown in FIG. 2 includes a flask having a working electrode, a counter electrode, and a reference electrode, and a power source that applies a voltage between the electrodes. Temperature control can be performed by a thermocouple.
An aqueous solution containing 4.5 mass% sulfurous acid and 0.1 M sulfuric acid is placed in the flask, Pt-black is used as the counter electrode, a reference hydrogen electrode is used as the reference electrode, and Pt, Pd or a surface area of 0.1 cm 2 is used as the working electrode. An Au electrode was used. FIG. 3 shows a current-voltage curve when the scanning speed is 100 mV / second, the temperature is 20 ° C., and the voltage is 0.3 to 1.5 V (vs. reference hydrogen electrode).

図3からわかるように、PtおよびPd電極では高電圧側に走査した場合には、表面酸化によると考えられる電流密度の低下がみられる。一方、Au電極の場合には、0〜約1.5V(対参照水素電極)までの電圧範囲で電流密度の低下はほとんど見られない。また、同一電圧で比較した場合には、Au電極を使用した場合が最も電流密度が大きい。これらの実験結果から、Au電極は、亜硫酸と硫酸の混合溶液中で高い耐久性をもつと同時に、同一電解電圧で高い電流密度(水素発生量)が得られることから、低電圧損失で高い電気エネルギー利用効率が得られることが確認できた。   As can be seen from FIG. 3, when the Pt and Pd electrodes are scanned to the high voltage side, a decrease in current density, which is considered to be due to surface oxidation, is observed. On the other hand, in the case of the Au electrode, almost no decrease in current density is observed in the voltage range from 0 to about 1.5 V (vs. reference hydrogen electrode). Further, when compared at the same voltage, the current density is highest when the Au electrode is used. From these experimental results, the Au electrode has high durability in a mixed solution of sulfurous acid and sulfuric acid, and at the same time, a high current density (hydrogen generation amount) can be obtained at the same electrolytic voltage. It was confirmed that energy use efficiency was obtained.

水素製造方法としてハイブリッド熱化学法プロセスを用いる場合には、電気分解はSO3電解反応[2]と亜硫酸電解反応[3]の2カ所で行われるが、SO3の電気分解は高温で約500℃以上の高温で行われるため、電圧損失は熱として回収可能であるが、亜硫酸の電気分解は100℃以下の低温で行われるため、電圧損失分のエネルギーを回収することができず、プロセス全体のエネルギー利用効率に与える影響が大きい。このため、亜硫酸電解水素製造装置で低電圧損失の電極材料を用いることにより水素製造効率の向上を図ることが可能となる。 When a hybrid thermochemical process is used as the hydrogen production method, electrolysis is performed at two locations, SO 3 electrolysis [2] and sulfite electrolysis [3], but SO 3 electrolysis is performed at a high temperature of about 500. Since it is performed at a high temperature of ℃ or higher, the voltage loss can be recovered as heat, but since the electrolysis of sulfurous acid is performed at a low temperature of 100 ℃ or less, the energy of the voltage loss cannot be recovered, and the entire process The impact on the energy use efficiency of For this reason, it becomes possible to aim at the improvement of hydrogen production efficiency by using a low voltage loss electrode material with a sulfurous acid electrolysis hydrogen production device.

ハイブリッド熱化学法プロセスの装置構成の一例、およびそれに組み込まれた亜硫酸電解水素製造装置の実施例を示す説明図である。It is explanatory drawing which shows an example of the apparatus structure of a hybrid thermochemical method process, and the Example of the sulfurous acid electrolysis hydrogen manufacturing apparatus incorporated in it. Pt、PdおよびAu電極を用いてサイクリック−ボルタメトリー法により電流−電圧曲線を求めるための実験に使用した実験装置を示す説明図である。It is explanatory drawing which shows the experimental apparatus used for the experiment for calculating | requiring a current-voltage curve by a cyclic voltammetry method using Pt, Pd, and Au electrode. 図2の実験装置を用いて求めたPt、PdおよびAu電極についての電流−電圧曲線を示すグラフである。It is a graph which shows the current-voltage curve about Pt, Pd, and Au electrode calculated | required using the experimental apparatus of FIG. ハイブリッド熱化学法プロセスにおける亜硫酸電解水素製造方法を構成する反応および反応式の説明図である。It is explanatory drawing of reaction and reaction formula which comprise the sulfurous acid electrolysis hydrogen manufacturing method in a hybrid thermochemical process.

符号の説明Explanation of symbols

1:電解槽
2:陽イオン交換膜
3:陽極
4:陰極
1: Electrolytic cell 2: Cation exchange membrane 3: Anode 4: Cathode

Claims (4)

亜硫酸を電気分解して水素と硫酸を生成する亜硫酸電解用の電極であって、金または金を主成分とする他の貴金属との合金からなることを特徴とする亜硫酸電解用電極。 An electrode for sulfite electrolysis that generates hydrogen and sulfuric acid by electrolyzing sulfite, and is made of gold or an alloy with other noble metals mainly composed of gold. 金または金を主成分とする他の貴金属との合金の微粒子を、酸化物材料または炭素製電極の表面に担持させてなることを特徴とする請求項1記載の亜硫酸電解用電極。 2. The electrode for sulfite electrolysis according to claim 1, wherein fine particles of gold or an alloy with other noble metal containing gold as a main component are supported on the surface of an oxide material or a carbon electrode. 金または金を主成分とする他の貴金属との合金の微粒子を、高分子電解質膜の表面に担持させた膜電極接合体からなることを特徴とする請求項1記載の亜硫酸電解用電極。 2. The electrode for sulfite electrolysis according to claim 1, comprising a membrane electrode assembly in which fine particles of gold or an alloy with other noble metal containing gold as a main component are supported on the surface of the polymer electrolyte membrane. 電解槽内部を陽イオン交換膜により陽極側反応室と陰極側反応室とに区切り、前記陽イオン交換膜の陽極側および陰極側にそれぞれ陽極および陰極を配設した構造を有し、陽極側反応室に供給した亜硫酸を電気分解することにより陽極側反応室で硫酸が、陰極側反応室で水素がそれぞれ生成されるようにした亜硫酸電解水素製造装置において、前記陽極として請求項1〜3のいずれか1項に記載の金または金を主成分とする他の貴金属との合金からなる亜硫酸電解用電極を使用したことを特徴とする亜硫酸電解水素製造装置。 The inside of the electrolytic cell is divided into an anode side reaction chamber and a cathode side reaction chamber by a cation exchange membrane, and an anode and a cathode are arranged on the anode side and the cathode side of the cation exchange membrane, respectively. 4. The sulfite electrolysis hydrogen production apparatus in which sulfuric acid supplied to the chamber is electrolyzed to generate sulfuric acid in the anode-side reaction chamber and hydrogen in the cathode-side reaction chamber, respectively. A sulfurous acid electrolysis hydrogen production apparatus characterized by using an electrode for sulfurous acid electrolysis made of gold or an alloy with another noble metal containing gold as a main component.
JP2006318446A 2006-11-27 2006-11-27 Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same Pending JP2008133491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006318446A JP2008133491A (en) 2006-11-27 2006-11-27 Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006318446A JP2008133491A (en) 2006-11-27 2006-11-27 Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same

Publications (1)

Publication Number Publication Date
JP2008133491A true JP2008133491A (en) 2008-06-12

Family

ID=39558534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006318446A Pending JP2008133491A (en) 2006-11-27 2006-11-27 Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same

Country Status (1)

Country Link
JP (1) JP2008133491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142257A1 (en) 2008-05-21 2009-11-26 東レ株式会社 Composition and method for determination of esophageal cancer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127779A (en) * 1980-02-11 1981-10-06 Kernforschungsanlage Juelich Electrolytic production of hydrogen
JPH06192873A (en) * 1992-12-25 1994-07-12 Permelec Electrode Ltd Gas electrode and its preparation
JPH0987882A (en) * 1995-09-26 1997-03-31 Agency Of Ind Science & Technol Production of gold-ion exchange membrane joined body
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP2006175384A (en) * 2004-12-24 2006-07-06 Mikasa Vets:Kk Radical oxygen water generating device and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127779A (en) * 1980-02-11 1981-10-06 Kernforschungsanlage Juelich Electrolytic production of hydrogen
JPH06192873A (en) * 1992-12-25 1994-07-12 Permelec Electrode Ltd Gas electrode and its preparation
JPH0987882A (en) * 1995-09-26 1997-03-31 Agency Of Ind Science & Technol Production of gold-ion exchange membrane joined body
JP2001192874A (en) * 1999-12-28 2001-07-17 Permelec Electrode Ltd Method for preparing persulfuric acid-dissolving water
JP2006175384A (en) * 2004-12-24 2006-07-06 Mikasa Vets:Kk Radical oxygen water generating device and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142257A1 (en) 2008-05-21 2009-11-26 東レ株式会社 Composition and method for determination of esophageal cancer

Similar Documents

Publication Publication Date Title
Lee et al. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes
Bergamaski et al. Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts
Lamy et al. Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC)
Jiang et al. Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study
Fang et al. Hydrophobic, ultrastable Cuδ+ for robust CO2 electroreduction to C2 products at ampere-current levels
JP2009515036A (en) Carbon fiber electrocatalyst for oxidizing ammonia and ethanol in alkaline media and its application to hydrogen production, fuel cells and purification processes
JP2014532119A (en) Method for generating hydrogen and oxygen by electrolysis of water vapor
Wieckowski et al. Contrast and Synergy between Electrocatalysis and Heterogeneous Catalysis.
Souza et al. Niobium increasing the electrocatalytic activity of palladium for alkaline direct ethanol fuel cell
KR20110094966A (en) Process for preparing hydrogen, and fuel cell using same
Oshchepkov et al. Direct borohydride fuel cells: A selected review of their reaction mechanisms, electrocatalysts, and influence of operating parameters on their performance
Gao et al. Reduction of CO2 to chemicals and Fuels: Thermocatalysis versus electrocatalysis
KR102154198B1 (en) Method of preparing metal alloy catalysts, method of reducing carbon dioxide using metal alloy catalysts, and reduction system of carbon dioxide
Prabhu et al. Influencing electrocatalytic processes through topographically disordered atomic sites
Fernández-Caso et al. Continuous carbon dioxide electroreduction to formate coupled with the single-pass glycerol oxidation to high value-added products
Tuleushova et al. Glycerol electro‐reforming in alkaline electrolysis cells for the simultaneous production of value‐added chemicals and pure hydrogen–Mini‐review
Shubair et al. Electrolysis of glycerol to value‐added chemicals in alkaline media
Pérez et al. Rhodium-based cathodes with ultra-low metal loading to increase the sustainability in the hydrogen evolution reaction
Wei et al. Boosting CO2 electroreduction to formate via in-situ formation of ultrathin Bi nanosheets decorated with monodispersed Pd nanoparticles
Lima et al. CO2 reduction on Cu/C used as a cathode in a polymeric electrolyte reactor-Fuel cell type
US11885029B2 (en) Systems and methods for forming nitrogen-based compounds
Wei et al. Alloying Pd with Cu boosts hydrogen production via room-temperature electrochemical water-gas shift reaction
JP2008133491A (en) Electrode for use in electrolysis of sulfurous acid and apparatus for producing hydrogen through electrolysis of sulfurous acid by using the same
JP2005246380A (en) Platinum based catalyst and methanol fuel cell using it
JP6932759B2 (en) How to make a large area catalyst electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118