KR101150210B1 - Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method - Google Patents

Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method Download PDF

Info

Publication number
KR101150210B1
KR101150210B1 KR1020090080063A KR20090080063A KR101150210B1 KR 101150210 B1 KR101150210 B1 KR 101150210B1 KR 1020090080063 A KR1020090080063 A KR 1020090080063A KR 20090080063 A KR20090080063 A KR 20090080063A KR 101150210 B1 KR101150210 B1 KR 101150210B1
Authority
KR
South Korea
Prior art keywords
electrode
fibrous
pupil
catalyst
carrier
Prior art date
Application number
KR1020090080063A
Other languages
Korean (ko)
Other versions
KR20110022455A (en
Inventor
문상봉
이태임
정영
김은수
류택형
최윤기
Original Assignee
문상봉
(주)엘켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문상봉, (주)엘켐텍 filed Critical 문상봉
Priority to KR1020090080063A priority Critical patent/KR101150210B1/en
Publication of KR20110022455A publication Critical patent/KR20110022455A/en
Application granted granted Critical
Publication of KR101150210B1 publication Critical patent/KR101150210B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 내부가 비어있는 섬유형 담체, 및 상기 섬유형 담체 표면에 담지된 활성 촉매를 포함하는 섬유형 동공 전극, 이를 포함하는 막-전극 접합체, 수전해 장치 또는 연료전지, 및 이의 제조방법에 관한 것이다. 본 발명에 따른 동공전극은 촉매 도입 수율, 부산물 생성량, 촉매층 균일성, 전극 내구성, 전기화학적 물성, 수 전해능 면에서 매우 우수한 물성을 보인다.The present invention relates to a fibrous pupil having a hollow support, and a fibrous pupil electrode comprising an active catalyst supported on the surface of the fibrous carrier, a membrane-electrode assembly including the same, an electrolytic device or a fuel cell, and a method of manufacturing the same. It is about. The pupil electrode according to the present invention shows very excellent physical properties in terms of catalyst introduction yield, by-product generation amount, catalyst layer uniformity, electrode durability, electrochemical properties, and electrolytic ability.

섬유형 동공 전극, 전극-전해질 접합체, 수전해 장치, 연료전지 Fibrous pupil, electrode-electrolyte assembly, hydroelectrolyzer, fuel cell

Description

섬유형 동공 전극, 이를 포함하는 막-전극 접합체 및 이의 제조방법{Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method} Fiber-shaped pupil electrode, membrane-electrode assembly including the same and method for manufacturing the same {Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method}

본 발명은 내부가 비어있는 섬유형 담체, 및 상기 섬유형 담체 표면에 담지된 활성 촉매를 포함하는 섬유형 동공 전극, 이를 포함하는 막-전극 접합체, 수전해 장치 또는 연료전지, 및 이의 제조방법에 관한 것이다.The present invention relates to a fibrous pupil having a hollow support, and a fibrous pupil electrode comprising an active catalyst supported on the surface of the fibrous carrier, a membrane-electrode assembly including the same, an electrolytic device or a fuel cell, and a method of manufacturing the same. It is about.

전기화학 셀이란 에너지변환 장치로서 물과 같은 반응물을 이용하여 산소나 수소 가스를 만드는 전기분해 셀과 산소와 수소 연료를 이용하여 전기를 생산하는 연료전지로 구분한다.An electrochemical cell is an energy conversion device that is divided into an electrolysis cell that produces oxygen or hydrogen gas using a reactant such as water and a fuel cell that generates electricity using oxygen and hydrogen fuel.

일반적으로 전기화학 셀은 양극과 음극에서 전기화학 반응에 의해 생성된 반응물을 분리하는 이온 교환막, 반응물을 산화시키는 양극, 반응물을 환원 시키는 음극, 그 외 단위셀을 분리하는 분리판, 그리고 실링 목적의 가스켓으로 구성된다.In general, an electrochemical cell includes an ion exchange membrane separating an reactant produced by an electrochemical reaction at an anode and a cathode, an anode oxidizing a reactant, a cathode reducing a reactant, a separator separating other unit cells, and sealing purposes. It consists of a gasket.

전기화학 셀의 핵심 구성 요소인 전극은 모재(母材, Substrate) 위에 위치한 담체에 담지된 전극 촉매층을 가지는 구조로, 전극 촉매층은 일반적으로 산화와 환원 반응에 적합한 전기화학 촉매로 백금족, 또는 이들의 합금 또는 산화물로 구성 된다. 가장 대표적인 공업용 전극은 티타늄(Titanium) 모재(Substrate) 위에 RuO2/TiO2 또는 (RuO2, IrO2)/TiO2 등의 전극촉매/담체 를 코팅(Coating)한 DSE(Dimensionally Stable Electrode)로, 뛰어난 안정성(Stability)와 높은 전극 촉매 활성(Electrocatalytic activity)으로 인해 소금물 전기분해나 물 전기분해 공정에 적용되어 왔다. 여기서 모재란 전극반응에 참여는 하지 않으며 전극 촉매층을 고정화하는 기능을 한다.The electrode, which is a key component of the electrochemical cell, has an electrode catalyst layer supported on a carrier positioned on a substrate, and the electrode catalyst layer is generally a platinum group or a group thereof as an electrochemical catalyst suitable for oxidation and reduction reactions. Consists of alloys or oxides. The most representative industrial electrode is DSE (Dimensionally Stable Electrode) coated with an electrode catalyst / carrier such as RuO2 / TiO2 or (RuO2, IrO2) / TiO2 on a titanium substrate. Due to its high electrode catalytic activity, it has been applied to brine electrolysis or water electrolysis processes. Here, the base material does not participate in the electrode reaction and functions to fix the electrode catalyst layer.

또한, 전극 모재 재질은 모재 위에 적용되는 전극촉매와의 결합성을 고려하여 결정하며, 주로 티타늄(titanium), 탄탈륨(tantalum), 모넬(monel), 니켈(nickel), 스테인레스 스틸(stainless steel) 등이 사용되고 있다. 전극 모재의 형상은 반응물인 전해질과 생성물인 가스의 유입과 유출이 쉽도록 2 차원 또는 3 차원의 다공성 구조를 가진다. 2 차원 형상으로는 타공형(Punched), 익스팬디드형(Expanded), 메쉬(Mesh)형, 다이아몬드형(Diamond)의 구멍 형상이 있으며, 3차원 형상으로는 상기 2차원 전극을 적층시키거나, 섬유형, 그래뉼형, 입자상 분말등을 입체화한 형상이 있다.In addition, the electrode base material is determined in consideration of the bonding with the electrode catalyst applied on the base material, mainly titanium (tanitanium), tantalum (montal), monel (nickel), stainless steel (stainless steel), etc. Is being used. The shape of the electrode base material has a two-dimensional or three-dimensional porous structure to facilitate the inflow and outflow of the reactant electrolyte and the product gas. The two-dimensional shape includes a punched, expanded, mesh, diamond shape hole, the three-dimensional shape by laminating the two-dimensional electrode, There are three-dimensional shapes of fibrous, granular, and particulate powders.

전극 촉매/담체를 모재위에 형성하는 기존의 대표적인 방법은 습식 방법(Wet Processing)이다. 이는 전극 모재에 용매, 알콕사이드, 전극촉매 전구체의 염화물로 구성된 균일상의 액상 촉매 혼합액을 모재 위에 페인팅(Painting), 브러싱(Brushing) 또는 디핑(Dipping)에 의해 모재 위에 분산한 후 이를 열분해(Thermal Decomposition)하는 방법이다.The existing representative method for forming an electrode catalyst / carrier on a base material is wet processing. This is because the homogeneous liquid catalyst mixture consisting of chloride, alkoxide, and chloride of the electrocatalyst precursor is dispersed on the base material by painting, brushing, or dipping on the base material, and then thermally decomposing it. That's how.

전기분해 산업에서 최근에는 생산성 및 운영성을 최대화를 목적으로 반응기 면적이 2m2 이상의 대형화와 10kA/m2 이상의 고 전류밀도 운전의 특성을 추구하고 있으며, 따라서, 전기분해 반응기의 핵심 부품인 전극에 요구되는 특성도 이에 따른 성능 및 내구성의 향상과 관련한 요구(예를 들면, 단위 면적당의 높은 전극촉매 로딩량 과 균일한 촉매 로딩량)가 높아지고 있다. In the electrolysis industry, in recent years, in order to maximize productivity and operability, a large area of 2 m 2 or more and a high current density operation of 10 kA / m 2 or more have been pursued. As a result, the demand for improving performance and durability (for example, high electrocatalyst loading per unit area and uniform catalyst loading) is increasing.

2m2 이상 대형 면적을 가지고, 10kA/m2 이 전류밀도 운전에 적합한 적절한 촉매 로딩량은 2,400μg/cm2 이상 요구 되지만, 기존 방법으로는 단위 면적당 전극촉매의 로딩량이 240μg/cm2 수준이기 때문에 10kA/m2 이상의 전류밀도 운전조건에서는 전극의 수명이 감소하고, 전기화학적 활성능력이 떨어지는 단점이 있다. 또한, S. Pizzini(S. Pizzini, G. Buzzanca, C. Mari, L. Rossi and S. Torchio, Mat. Res. Bull., 7, 449(1972)), G. Barrel(G. Barrel, J. Guitton, C. Montella, and F. Vergara, Surface Technology), 6, 39(1977)), K. Kameyama, K. Tsukada, K. Yahikozawa, and Y. Takasu, J. Electrochem. Soc., 140, 966(1993)등에 의하면 기존의 균일상의 액상 촉매 혼합액을 적용하는 전극 촉매 형성 방법은 전처리 과정에 의해 영향을 매우 크게 받으며, 전극의 성능이 일정하지 않음을 보고하고 있다.With a large area of more than 2m 2 , a suitable catalyst loading of 10kA / m 2 for current density operation is required to be more than 2,400μg / cm 2 , but the conventional method requires that the amount of electrode catalyst loading per unit area is 240μg / cm 2 . In the current density operating conditions of 10kA / m 2 or more, the life of the electrode is reduced, the electrochemically active capacity is disadvantageous. S. Pizzini (S. Pizzini, G. Buzzanca, C. Mari, L. Rossi and S. Torchio, Mat. Res. Bull., 7, 449 (1972)), G. Barrel (G. Barrel, J. Guitton, C. Montella, and F. Vergara, Surface Technology), 6, 39 (1977)), K. Kameyama, K. Tsukada, K. Yahikozawa, and Y. Takasu, J. Electrochem. Soc., 140, 966 (1993), etc., reported that the electrode catalyst formation method applying the conventional liquid phase liquid catalyst mixture is greatly affected by the pretreatment process, and the electrode performance is not constant.

이외에도, 종래의 기술에서는 촉매 도입 수율, 부산물 생성량, 촉매층 균일성, 전극 내구성, 전기화학적 물성, 수 전해능의 측면에서 전체적으로 향상된 물성을 보이는 예가 적어 이를 만족하는 기술 개발이 필요한 상황이다In addition, in the conventional technology, there are few examples showing improved physical properties in terms of catalyst introduction yield, by-product generation amount, catalyst layer uniformity, electrode durability, electrochemical properties, and electrolytic ability, and thus, there is a situation in which technology development is required.

따라서, 본 발명에서는 이와 같은 종래의 문제점을 해결하기 위하여, 촉매 도입 수율, 촉매층 균일성, 전기화학적 물성, 수 전해능의 측면에서 전체적으로 향상된 물성을 보이는 전극 및 이의 제조방법 등을 제공하고자 한다.Therefore, in order to solve such a conventional problem, the present invention is to provide an electrode, and a method for producing the same, which shows overall improved physical properties in terms of catalyst introduction yield, catalyst layer uniformity, electrochemical properties, and electrolytic performance.

상기 과제를 해결하기 위하여, 본 발명은 내부가 비어있는 섬유형 담체, 및 상기 섬유형 담체 표면에 담지된 활성 촉매를 포함하는 섬유형 동공 전극을 제공한다.In order to solve the above problems, the present invention provides a fibrous pupil electrode comprising an empty fibrous carrier, and an active catalyst supported on the surface of the fibrous carrier.

일 구현예에 따르면, 상기 섬유형 동공 전극은 굵기가 1~50 μm이다.According to one embodiment, the fibrous pupil electrode has a thickness of 1 ~ 50 μm.

다른 구현예에 따르면, 상기 동공모재 위에 상기 전기화학 촉매가 100~300 nm 두께로 균일하게 분포한다.According to another embodiment, the electrochemical catalyst is uniformly distributed in the thickness of 100 ~ 300 nm on the pupil mother material.

또 다른 구현예에 따르면, 상기 동공전극의 단위 면적당 상기 전기화학 촉매의 로딩 양이 2,400 μg/cm2 이상이다.According to another embodiment, the loading amount of the electrochemical catalyst per unit area of the pupil electrode is 2,400 μg / cm 2 or more.

다른 구현예에 따르면, 상기 동공 담체는 금, 은, 크롬, 철, 티타늄, 망간, 코발트, 니켈, 몰리브덴, 텅스텐, 알루미늄, 규소, 아연, 주석, 이들의 혼합물 및 이들의 산화물 중에서 선택된다. 특히, 동공 전극을 구성하는 담체의 재질로서 티탄-니오븀 복합산화물을 사용한 것이 본 발명의 효과로 예시된 물성을 더욱 극대화함에 있어서 바람직하다.According to another embodiment, the pupil carrier is selected from gold, silver, chromium, iron, titanium, manganese, cobalt, nickel, molybdenum, tungsten, aluminum, silicon, zinc, tin, mixtures thereof and oxides thereof. In particular, the use of a titanium-niobium composite oxide as a material for the carrier constituting the pupil electrode is preferable in further maximizing the physical properties exemplified by the effects of the present invention.

또 다른 구현예에 따르면, 상기 활성 촉매는 Ta, Pb, Ru, Ir, Sn, Ba, Ag, Pt, Pb, 이들의 혼합물 및 이들의 산화물 중에서 선택된다.According to another embodiment, the active catalyst is selected from Ta, Pb, Ru, Ir, Sn, Ba, Ag, Pt, Pb, mixtures thereof and oxides thereof.

다른 측면에 따르면, 본 발명은According to another aspect, the present invention

(a) 섬유형 고분자, pH 조절제, 유화제가 용해되어 있는 고분자 용액에 담체 전구체를 첨가하여 숙성함으로써 섬유형 담체를 수득하는 단계,(a) obtaining a fibrous carrier by aging by adding a carrier precursor to a polymer solution in which a fibrous polymer, a pH adjuster, and an emulsifier are dissolved,

(b) 상기 섬유형 담체를 포함하는 용액에 활성 촉매 전구체를 첨가하여 분산시킴으로써 섬유형 전극을 수득하는 단계,(b) obtaining a fibrous electrode by adding and dispersing an active catalyst precursor in a solution containing the fibrous carrier,

(c) 상기 섬유형 전극을 열분해함으로써 섬유형 동공 전극을 수득하는 단계를 포함하는 섬유형 동공 전극 제조방법을 제공한다.일 구현예에 따르면, 상기 섬유형 고분자는 PS 섬유, 폴리아미드 섬유, 폴리에스테르 섬유 중에서 선택된다. 다른 구현예에 따르면, 상기 pH 조절제는 염산, 질산, 황산 중에서 선택된다. (c) providing a fibrous pupil electrode manufacturing method comprising pyrolyzing the fibrous electrode to obtain a fibrous pupil electrode. According to one embodiment, the fibrous polymer is PS fiber, polyamide fiber, poly It is selected from ester fiber. According to another embodiment, the pH adjusting agent is selected from hydrochloric acid, nitric acid, sulfuric acid.

또 다른 구현예에 따르면, 상기 활성 촉매 전구체는 SnCl2, H2PtCl6, H2IrCl6, RuCl4, H2IrCl6와 RuCl4 중에서 선택된다.According to another embodiment, the active catalyst precursor is selected from SnCl 2 , H 2 PtCl 6 , H 2 IrCl 6 , RuCl 4 , H 2 IrCl 6 and RuCl 4 .

또 다른 구현예에 따르면, 상기 유화제는 세틸트리메틸암모늄을 사용한다.According to another embodiment, the emulsifier uses cetyltrimethylammonium.

다른 구현예에 따르면, 상기 담체 전구체는 Ti(SO4)2이다.According to another embodiment, the carrier precursor is Ti (SO 4 ) 2 .

또 다른 구현예에 따르면, 본 발명의 섬유형 동공 전극 제조방법의 상기 (a)단계에서 티탄 알콕사이드를 추가로 사용할 수도 있다.According to another embodiment, titanium alkoxide may be further used in the step (a) of the method of manufacturing a fibrous pupil electrode of the present invention.

본 발명의 섬유형 동공 전극 제조방법의 상기 (a)단계에서 티탄 알콕사이드를 추가로 사용할 수도 있다. 또 다른 구현예에 따르면, 상기 담체 전구체는 티타 늄알콕사이드와 니오븀알콕사이드를 혼합하여 사용할 수도 있다.Titanium alkoxide may be further used in the step (a) of the method for producing a fibrous pupil electrode of the present invention. According to another embodiment, the carrier precursor may be used by mixing titanium alkoxide and niobium alkoxide.

또 다른 측면에 따르면, 본 발명은 본 발명에 따라 제조된 섬유형 동공 전극을 제공한다.According to another aspect, the present invention provides a fibrous pupil electrode made according to the present invention.

또 다른 측면에 따르면, 본 발명은 본 발명의 섬유형 동공전극을 포함하는 막-전극 접합체, 수전해 장치, 연료전지를 제공한다.According to another aspect, the present invention provides a membrane-electrode assembly, a hydroelectrolyzer, and a fuel cell including the fibrous pupil electrode of the present invention.

본 발명에 따른 동공전극은 촉매 도입 수율, 부산물 생성량, 촉매층 균일성, 전극 내구성, 전기화학적 물성, 수 전해능 면에서 매우 우수한 물성을 보인다. 또한, 일정한 성능을 보이고 성능편차가 적어 재현성이 뛰어나다.The pupil electrode according to the present invention shows very excellent physical properties in terms of catalyst introduction yield, by-product generation amount, catalyst layer uniformity, electrode durability, electrochemical properties, and electrolytic ability. In addition, the performance is consistent and the performance deviation is small, so the reproducibility is excellent.

제조예Manufacturing example : : PSPS 섬유 제조 Textile manufacturing

중량평균 분자량이 190,000인 폴리스티렌을 디메틸포름아미드(DMF)에 용해시켜 폴리스티렌/디메틸포름아미드의 혼합 용액을 제조하였다. 폴리스티렌/디메틸포름아미트의 혼합 용액을 통상의 방법에 의해 전기방사 장치로 방사를 시킴으로써 직경이 폴리스티렌 섬유(PS fiber)를 제조하였다. 방사 조건 등을 조절하여 폴리스티렌 섬유의 직경은 1~50 ㎛의 범위로 조절하였다.Polystyrene having a weight average molecular weight of 190,000 was dissolved in dimethylformamide (DMF) to prepare a mixed solution of polystyrene / dimethylformamide. Polystyrene fibers (PS fibers) having a diameter were prepared by spinning a mixed solution of polystyrene / dimethylformamide into an electrospinning apparatus by a conventional method. By adjusting spinning conditions and the like, the diameter of the polystyrene fiber was adjusted in the range of 1 to 50 μm.

비교 compare 제조예Manufacturing example : 구형 Spherical PSPS 입자 제조 Particle manufacturing

증류수 160ml에 0.2g의 포타슘 퍼설페이트를 첨가하고 80℃로 유지하면서 300rpm으로 교반하였다. 이 용액에 54ml의 스티렌과 2ml의 메타크릴산을 넣고 질소 분위기에서 24시간 동안 반응시켜 직경 10~50 ㎛ 범위의 구형 PS 입자를 제조하였 다.0.2 g of potassium persulfate was added to 160 ml of distilled water, and the mixture was stirred at 300 rpm while maintaining at 80 ° C. 54 ml of styrene and 2 ml of methacrylic acid were added to the solution and reacted for 24 hours in a nitrogen atmosphere to prepare spherical PS particles having a diameter of 10 to 50 µm.

실시예Example 1: 섬유형  1: fiber type SnOSnO 22 전극 제조 Electrode manufacturing

PSPS 섬유에  On fiber 모재Base material 고정 fixing

TiO2의 전구체로는 Ti(SO4)2 용액을 사용하여 상기 제조예에서 제조된 섬유형 고분자의 용액 1.0ml에 32ml의 증류수, 0.8 ml 염산, 1.98 ml의 세틸트리메틸암모늄 클로라이드(cetyltrimethylammonium chloride)를 가하고 나서 초음파로 30분 분산시킨 후에 Ti(SO4)2 용액의 0.18ml을 상기 용액에 적하시킨다. 상기 용액은 70℃에서 12시간 숙성시킨 후 상온으로 냉각시키고 원심분리한 후에 고체 시료를 얻었다.As a precursor of TiO 2 , 32 ml of distilled water, 0.8 ml hydrochloric acid and 1.98 ml of cetyltrimethylammonium chloride were added to 1.0 ml of the solution of the fibrous polymer prepared in Preparation Example using Ti (SO 4 ) 2 solution. After addition and dispersion by ultrasonic for 30 minutes, 0.18 ml of Ti (SO 4 ) 2 solution is added dropwise to the solution. The solution was aged for 12 hours at 70 ℃, cooled to room temperature and centrifuged to obtain a solid sample.

활성 촉매 Active catalyst SnOSnO 22 고정 fixing

상기에서 제조된 섬유형인 TiO2에 Sn을 함량이 20, 40, 60wt%까지 담지하여 동공의 섬유형 전극을 제조하였다. 여기서 사용된 Sn의 전구체는 SnCl2로 사용하였다. 지지체에 촉매가 균일하게 분포하도록 상기에서 제조된 섬유형인 TiO2에 32ml의 증류수, 0.8ml 염산, 그리고 1.98ml 주석염화물(SnCl2)를 첨가하고 나서 초음파로 30분 분산시킨다. 상기 용액은 70℃에서 12시간 건조 후 원심분리를 하여 고체 시료를 얻었다. 그리고 고체 시료를 200~300℃(1℃/min)에서 4시간 열분해하여, 섬유형 전극을 제조한다.In the above-described fibrous TiO 2 , the content of Sn was carried up to 20, 40, and 60 wt% to prepare a fibrous electrode of the pupil. The precursor of Sn used here was used as SnCl 2 . 32 ml of distilled water, 0.8 ml hydrochloric acid, and 1.98 ml tin chloride (SnCl 2 ) were added to the fibrous TiO 2 prepared above to uniformly distribute the catalyst on the support, followed by dispersion for 30 minutes with ultrasonic waves. The solution was dried at 70 ° C. for 12 hours and then centrifuged to obtain a solid sample. And a solid sample is thermally decomposed at 200-300 degreeC (1 degree-C / min) for 4 hours, and a fibrous electrode is manufactured.

수전해 또는 연료전지용 전극 제조Electrode or Fuel Cell Electrode Manufacturing

또한, 출발물질로 상기 섬유형 동공 전극, 이리듐 클로라이드, 주석염화물, 티타늄 이소프로폭사이드를 무게 비율 0.3:0.2:0.2:0.3로 하였고, 동공 전극의 양은 촉매를 대략 240μg/cm2(0.24 mg/cm2) 기준으로 하였다. 먼저 알코올에 티타늄 이소프로폭사이드를 몰 비율로 50~100배 희석한 후 알코올에 섬유형 동공 전극, 이리듐 클로라이드, 주석염화물을 첨가한다. 여기에 초순수와 염산을 가하여 가수분해 반응과 중축합 반응을 시켜 촉매 슬러리를 제조하였다. 가로 3cm, 세로 3 cm 티타늄 모재에 촉매 슬러리를 분산한 후 열풍기를 이용하여 100℃ 온도에서 건조한 후, 450-600℃에서 10분간 소성하였다. 이와 같이 10회 반복을 하여 촉매 2,400μg/cm2 (2.4 mg/cm2)가 담지된 전극을 얻었다. 그리고 나서 2시간 동안 450-600℃에서 소성하여 수전해 또는 연료전지용 전극을 제조하였다.In addition, the fibrous pupil electrode, iridium chloride, tin chloride, and titanium isopropoxide were used as starting materials in a weight ratio of 0.3: 0.2: 0.2: 0.3, and the amount of the pupil electrode was approximately 240 μg / cm 2 (0.24 mg / cm). cm 2 ). First, dilute titanium isopropoxide in alcohol at a molar ratio of 50 to 100 times, and then add a fibrous pupil electrode, iridium chloride, and tin chloride to the alcohol. Ultrapure water and hydrochloric acid were added thereto to perform a hydrolysis reaction and a polycondensation reaction to prepare a catalyst slurry. The catalyst slurry was dispersed in a 3 cm wide and 3 cm long titanium matrix, dried at 100 ° C. using a hot air blower, and calcined at 450-600 ° C. for 10 minutes. This was repeated 10 times to obtain an electrode on which a catalyst 2,400 μg / cm 2 (2.4 mg / cm 2 ) was supported. Then, the mixture was calcined at 450-600 ° C. for 2 hours to prepare an electrode for a hydroelectrolyte or a fuel cell.

실시예Example 2-5: 섬유형 전극 제조 2-5: Fibrous Electrode Fabrication

실시예 2-5는 실시예 1에 준해서 실험을 진행하되, 촉매 전구체로서 Ti(SO4)2 대신 H2PtCl6, H2IrCl6, RuCl4 및 동일 무게비의 H2IrCl6와 RuCl4를 각각 사용하여 섬유형 Pt 전극, 섬유형 IrO2 전극, RuCl4 전극, 섬유형 IrO2-RuO2 전극을 각각 제조하였다.Example 2-5 was conducted according to Example 1, but instead of Ti (SO 4 ) 2 as a catalyst precursor, H 2 PtCl 6 , H 2 IrCl 6 , RuCl 4 and H 2 IrCl 6 and RuCl 4 in the same weight ratio Using respectively, a fibrous Pt electrode, a fibrous IrO 2 electrode, a RuCl 4 electrode, and a fibrous IrO 2 -RuO 2 electrode were prepared.

실시예Example 6: 티탄  6: titanium 알콕사이드를Alkoxide 사용하여 섬유형 전극 제조 Using fibrous electrode manufacturing

실시예 1에 준하여 실험을 진행하되, 다만 PS 섬유에 담체를 고정하는 단계 에서 티탄메톡사이드를 추가로 사용하여 섬유형 전극을 제조하였다.The experiment was carried out according to Example 1, but using a titanium methoxide in the step of fixing the carrier to the PS fibers to prepare a fibrous electrode.

비교예Comparative example 1: 동공의 구형 전극 제조 1: Manufacture of spherical electrode of pupil

실시예 1과 같이 실험을 진행하되, PS 섬유를 사용하는 대신에 상기 비교 제조예에서 제조한 구형 PS 입자를 사용하여 섬유형 전극이 아닌 동공형 전극을 제조하였다.The experiment was conducted in the same manner as in Example 1, but instead of using PS fibers, spherical PS particles prepared in Comparative Preparation Example were used to prepare a pupil instead of a fibrous electrode.

비교예Comparative example 2-3 2-3

상기 실시예 1과 같이 실험을 진행하되, 전구체로서 Ti(SO4)2 대신에 티탄메톡사이드 및 티탄에톡사이드를 각각 사용하여 섬유형 전극을 제조하였다.The experiment was conducted in the same manner as in Example 1, but instead of Ti (SO 4 ) 2 , titanium methoxide and titanium ethoxide were used as precursors to prepare a fibrous electrode.

비교예Comparative example 4 4

실시예 1과 같이 실험을 진행하되, 유화제(계면활성제)로서 세틸트리메틸암모늄 클로라이드 대신에 암모늄라우릴설페이트를 사용하여 섬유형 전극을 제조하였다.The experiment was conducted as in Example 1, but a fibrous electrode was prepared using ammonium lauryl sulfate instead of cetyltrimethylammonium chloride as an emulsifier (surfactant).

실험예Experimental Example 1~5 1-5

실시예 1에서 제조한 동공 전극 표면에 약 2,500 ㎍/㎠ 정도의 촉매가 도입되고, 약간의 부산물이 생성되는 것으로 확인되었다. 촉매는 150-180 nm 정도의 두께로 비교적 균일하게 도입되었음을 확인하였다.It was confirmed that about 2,500 µg / cm 2 of catalyst was introduced to the pupil electrode surface prepared in Example 1, and some by-products were produced. It was confirmed that the catalyst was introduced relatively uniformly with a thickness of about 150-180 nm.

전극의 성능을 알아보기 위하여 전기화학적 평가를 수행하였는데, 전압 대 전류밀도가 1.7 V에서 10 mA/㎠ 정도로 높아 전기화학적 물성이 우수하다는 것을 알 수 있었다.An electrochemical evaluation was performed to investigate the performance of the electrode. It was found that the voltage-to-current density was about 10 mA / cm 2 at 1.7 V, indicating excellent electrochemical properties.

제조된 전극을 정극으로 백금 전극을 부극, 양극과 음극사이에의 막은 Nafion 117을 사용하여 50 ℃ 온도, 정극과 부극사이의 간격이 제로갭(Zero Gap) 조건하에서 물을 전기분해하였다. 전류밀도 대 전해전압을 측정한 결과, 10 mA/㎠의 전류밀도에서 1.5 V 정도의 전해전압을 보이는 등 전류밀도 대 전압곡선의 기울기가 상대적으로 낮아, 우수한 수전해능을 보임을 확인하였다.The electrode was used as a positive electrode, and the platinum electrode was used as the negative electrode, and the membrane between the positive electrode and the negative electrode was Nafion 117, and water was electrolyzed under 50 ° C. temperature and the gap between the positive electrode and the negative electrode under zero gap conditions. As a result of measuring the current density versus the electrolytic voltage, it was confirmed that the slope of the current density versus the voltage curve was relatively low, such as showing an electrolytic voltage of about 1.5 V at a current density of 10 mA / cm 2, and thus showed excellent electrolytic ability.

실시예 2~5에서 제조한 동공 전극에 대해서도 이와 유사한 수준의 평가 결과를 얻을 수 있었다.Similar evaluation results were obtained for the pupil electrodes prepared in Examples 2 to 5.

실험예Experimental Example 6 6

실시예 6에서 제조한 섬유형 동공전극에 대해서 위 실험예 1과 같은 물성 평가를 한 결과, 촉매가 도입된 수율 2,700 ㎍/㎠, 촉매층 두께 160-180 nm, 1.7 V에서 15 mA/㎠의 전류밀도, 전류밀도 10 mA/㎠에서 1.3 V 정도의 전해전압을 보여 전체적으로 물성이 향상된 결과를 얻을 수 있었다.As a result of evaluating the physical properties of the fibrous pupil electrode prepared in Example 6 as in Experimental Example 1, a current of 15 mA / cm 2 at a yield of 2,700 ㎍ / ㎠, catalyst layer thickness of 160-180 nm, and 1.7 V was introduced. The electrolytic voltage of about 1.3 V was obtained at the density and current density of 10 mA / cm 2, resulting in improved physical properties.

비교실험예Comparative Experimental Example 1 One

비교예 1에서 제조한 섬유형 동공전극에 대해서 위 실험예 1과 같은 물성 평가를 한 결과, 촉매가 도입된 수율 2,400 ㎍/㎠, 촉매층 두께 140-200 nm, 1.7 V에서 7 mA/㎠의 전류밀도, 전류밀도 10 mA/㎠에서 2 V 정도의 전해전압을 보이는 것으로 확인되었다.As a result of evaluating the physical properties of the fibrous pupil electrode prepared in Comparative Example 1 as in Experimental Example 1, a current of 7 mA / cm 2 at a yield of 2,400 ㎍ / ㎠, catalyst layer thickness 140-200 nm, and 1.7 V was introduced. It was confirmed that an electrolytic voltage of about 2 V was observed at the density and the current density of 10 mA / cm 2.

비교실험예Comparative Experimental Example 2-3 2-3

비교예 2에서 제조한 섬유형 동공전극에 대해서 위 실험예 1과 같은 물성 평 가를 한 결과, 촉매가 도입된 수율 1,900 ㎍/㎠, 촉매층 두께 80-150 nm, 1.7 V에서 5 mA/㎠의 전류밀도, 전류밀도 10 mA/㎠에서 2.4 V 정도의 전해전압을 보이는 것으로 확인되었다. 비교예 3에서 제조한 전극의 경우에도 이와 유사한 결과를 확인하였다.As a result of evaluating the physical properties of the fibrous pupil electrode prepared in Comparative Example 2 as in Experimental Example 1, a current of 5 mA / cm 2 at a yield of 1,900 µg / cm 2, catalyst layer thickness of 80-150 nm and 1.7 V was introduced. It was confirmed that the electrolyte voltage of about 2.4 V was observed at the density and current density of 10 mA / cm 2. Similar results were confirmed for the electrode prepared in Comparative Example 3.

비교실험예Comparative Experimental Example 4 4

비교예 4서 제조한 섬유형 동공전극에 대해서 위 실험예 1과 같은 물성 평가를 한 결과, 촉매가 도입된 수율 1,800 ㎍/㎠, 촉매층 두께 60-250 nm, 1.7 V에서 3 mA/㎠의 전류밀도, 전류밀도 10 mA/㎠에서 2.5 V 정도의 전해전압을 보이는 것으로 확인되었다.As a result of evaluating the physical properties of the fibrous pupil electrode prepared in Comparative Example 4 as in Experimental Example 1, a current of 3 mA / cm 2 at a yield of 1,800 µg / cm 2, catalyst layer thickness of 60-250 nm, and 1.7 V was introduced. It was confirmed that an electrolytic voltage of about 2.5 V was observed at a density and a current density of 10 mA / cm 2.

도 1은 폴리스틸렌 섬유를 모재로 사용하여 제조된 섬유형 동공전극의 모식도이고, 도 2는 섬유형 동공전극의 표면에 활성촉매를 코팅한 모식도이다.1 is a schematic diagram of a fibrous pupil electrode prepared using polystyrene fibers as a base material, and FIG. 2 is a schematic diagram of an active catalyst coated on the surface of the fibrous pupil electrode.

도 3과 도 4는 각각 섬유형 동공전극과 촉매가 코팅된 섬유형 동공전극의 실제 사진이다.3 and 4 are actual pictures of a fibrous pupil electrode and a fibrous pupil electrode coated with a catalyst, respectively.

Claims (13)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete (a) 섬유형 고분자, pH 조절제, 유화제가 용해되어 있는 고분자 용액에 담체의 전구체인 Ti(SO4)2를 첨가하여 숙성함으로써 섬유형 담체를 수득하는 단계,(a) obtaining a fibrous carrier by aging by adding Ti (SO 4 ) 2 , a precursor of the carrier, to a polymer solution in which a fibrous polymer, a pH adjuster, and an emulsifier are dissolved, (b) 상기 섬유형 담체를 포함하는 용액에 활성 촉매 전구체를 첨가하여 분산시킴으로써 섬유형 전극을 수득하는 단계,(b) obtaining a fibrous electrode by adding and dispersing an active catalyst precursor in a solution containing the fibrous carrier, (c) 상기 섬유형 전극을 열분해함으로써 섬유형 동공 전극을 수득하는 단계를 포함하는 섬유형 동공 전극 제조방법.(C) a method of producing a fibrous pupil electrode comprising the step of obtaining a fibrous pupil electrode by thermal decomposition of the fibrous electrode. 제6항에 있어서, 상기 섬유형 고분자는 PS 섬유, 폴리아미드 섬유, 폴리에스테르 섬유 중에서 선택되고; 상기 pH 조절제는 염산, 질산, 황산 중에서 선택되며; 상기 활성 촉매 전구체는 SnCl2, H2PtCl6, H2IrCl6, RuCl4, H2IrCl6와 RuCl4 중에서 선택되고; 상기 유화제는 세틸트리메틸암모늄을 사용하는 것에 특징이 있는 섬유형 동공 전극 제조방법.The method of claim 6, wherein the fibrous polymer is selected from PS fibers, polyamide fibers, polyester fibers; The pH adjusting agent is selected from hydrochloric acid, nitric acid, sulfuric acid; The active catalyst precursor is selected from SnCl 2, H 2 PtCl 6, H 2 IrCl 6, RuCl 4, H 2 IrCl 6 and RuCl 4; The emulsifier is a fibrous pupil electrode manufacturing method characterized by using cetyltrimethylammonium. 삭제delete 제6항에 있어서, 상기 (a)단계에서 티탄 알콕사이드를 추가로 사용하는 것에 특징이 있는 섬유형 동공 전극 제조방법.7. The method of claim 6, wherein the titanium alkoxide is further used in the step (a). 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090080063A 2009-08-27 2009-08-27 Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method KR101150210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090080063A KR101150210B1 (en) 2009-08-27 2009-08-27 Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090080063A KR101150210B1 (en) 2009-08-27 2009-08-27 Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method

Publications (2)

Publication Number Publication Date
KR20110022455A KR20110022455A (en) 2011-03-07
KR101150210B1 true KR101150210B1 (en) 2012-06-12

Family

ID=43930867

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090080063A KR101150210B1 (en) 2009-08-27 2009-08-27 Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method

Country Status (1)

Country Link
KR (1) KR101150210B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972580B1 (en) * 2017-08-23 2019-04-29 (주)엘켐텍 Electrode catalyst layer of web structure, membrane electrode assembly for electrochemical cell using the same, and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174755A (en) 2003-12-11 2005-06-30 Nissan Motor Co Ltd Electrode catalyst, catalyst carrying electrode using the same catalyst, and mea
KR20050111614A (en) * 2003-03-24 2005-11-25 엘테크 시스템스 코포레이션 Electrocatalytic coating with platinium group metals and electrode made therefrom
JP2006252884A (en) * 2005-03-09 2006-09-21 Daihatsu Motor Co Ltd Fuel cell
KR20080045459A (en) * 2006-11-20 2008-05-23 삼성에스디아이 주식회사 Catalyst for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050111614A (en) * 2003-03-24 2005-11-25 엘테크 시스템스 코포레이션 Electrocatalytic coating with platinium group metals and electrode made therefrom
JP2005174755A (en) 2003-12-11 2005-06-30 Nissan Motor Co Ltd Electrode catalyst, catalyst carrying electrode using the same catalyst, and mea
JP2006252884A (en) * 2005-03-09 2006-09-21 Daihatsu Motor Co Ltd Fuel cell
KR20080045459A (en) * 2006-11-20 2008-05-23 삼성에스디아이 주식회사 Catalyst for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system comprising same

Also Published As

Publication number Publication date
KR20110022455A (en) 2011-03-07

Similar Documents

Publication Publication Date Title
Xu et al. Antimony doped tin oxides and their composites with tin pyrophosphates as catalyst supports for oxygen evolution reaction in proton exchange membrane water electrolysis
US8946116B2 (en) Nanometer powder catalyst and its preparation method
US20120100442A1 (en) Oxygen-consuming electrode and process for producing it
KR20140108212A (en) Precious metal oxide catalyst for water electrolysis
Yoshinaga et al. Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution
JP4223958B2 (en) Process for producing an improved rhodium electrocatalyst
TW201213615A (en) Oxygen-consuming electrodes and processes for the production thereof
EP2854207B1 (en) Method for producing catalyst for fuel cells, and fuel cell which comprises catalyst for fuel cells produced by said production method
Fouzai et al. Electrospray deposition of catalyst layers with ultralow Pt loading for cost-effective H2 production by SO2 electrolysis
KR100975433B1 (en) The Micro-Size Hollow Sphere Electrode
Kim et al. Synthesis and electrochemical properties of nano-composite IrO2/TiO2 anode catalyst for SPE electrolysis cell
JP3236686B2 (en) Gas electrode and its manufacturing method
JP4868394B2 (en) Gas diffusion electrode and manufacturing method thereof, and fuel cell and salt electrolysis cell using the gas diffusion electrode
KR101150210B1 (en) Fibershaped hollow electrode, membrane-electrode assembly comprising the same, and its preparation method
US9118082B2 (en) Oxygen-consuming electrode and process for the production thereof
Yang et al. A porous TiC supported nanostructured complex metal oxide ceramic electrode for oxygen evolution reaction
Fuentes et al. Bimetallic electrocatalysts supported on TiO2 for PEM water electrolyzer
US9163318B2 (en) Oxygen-consuming electrode and process for production thereof
JP5484120B2 (en) Gas diffusion electrode, gas diffusion electrode manufacturing method, fuel cell and salt electrolysis cell
KR20240035414A (en) oxygen generation reaction catalyst
JP5123565B2 (en) Gas diffusion electrode and manufacturing method thereof, and fuel cell and salt electrolysis cell using the gas diffusion electrode
Yasutake et al. Ru-core Ir-shell electrocatalysts deposited on a surface-modified Ti-based porous transport layer for polymer electrolyte membrane water electrolysis
KR101150215B1 (en) Multi-layered holow electrode and its preparation method
RU2392698C1 (en) Method of manufacturing of membrane-electrode unit with bifunctional electrocatalytic layers
KR101150213B1 (en) The micro-size hollow sphere electrode

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150521

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160405

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180621

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 8