JPH01128569A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPH01128569A
JPH01128569A JP28650387A JP28650387A JPH01128569A JP H01128569 A JPH01128569 A JP H01128569A JP 28650387 A JP28650387 A JP 28650387A JP 28650387 A JP28650387 A JP 28650387A JP H01128569 A JPH01128569 A JP H01128569A
Authority
JP
Japan
Prior art keywords
type
gate
drain
layer
channel forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28650387A
Other languages
Japanese (ja)
Inventor
Yoshito Ogawa
義人 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28650387A priority Critical patent/JPH01128569A/en
Publication of JPH01128569A publication Critical patent/JPH01128569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the amount of gain reduction efficiently with the decrease in power gain being suppressed, by forming at least a channel forming region on the surface of a one-conductivity type semiconductor layer, also forming gates on said channel forming region through a gate insulating film, and providing a one-conductivity type high concentration embedded layer at a specified position beneath said channel forming region. CONSTITUTION:A P<+>-type region is formed selectively on a semiconductor substrate 1 comprising P-type Si. Thereafter epitaxial growing is performed. A P<+>-type embedded layer 1a and a p-type epitaxial layer 2 are formed. Then, an N<+>-type source 3, a drain 5, impurities 4, a gate oxide film 6, a source electrode 9, a drain electrode 10, and first and second gates 7 and 8 are formed on the surface of the epitaxial layer 2. Therefore the leakage of electric lines of force, i.e., the leakage of a signal, from the channel forming region of a FET on the side of the first gate into the drain 5 due to the P<+> type embedded layer is not shielded when gain reduction is applied. The characteristic of gain reduction with the second gate is not impaired as in a conventional device. The excellent characteristics are obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果トランジスタ(以降FETと称す)に
関し、特にゲインリダクション特性を改善したデュアル
ゲート構造のMOSFETに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor (hereinafter referred to as FET), and particularly to a dual gate MOSFET with improved gain reduction characteristics.

〔従来の技術〕[Conventional technology]

従来、この種のデュアルゲー)MOS F ETは、第
3図に示す様に、ゲインリダクション特性を改善する為
に、p型高濃度の半導体基板1″にp型低濃度のエピタ
キシャル層2″を設け、その表面にn型高濃度のソース
3″、ドレイン5″及びその間の不純物層4″を設け、
エピタキシャルN2″のチャネル形成領域の部分の上に
ゲート絶縁膜6″を介して第1及び第2ゲート7″及び
8″を設け、更にソース3″及びドレイン5″とそれぞ
れ接続したソース及びドレイン電極9及び10″を設け
ている。
Conventionally, in this type of dual-gate MOSFET, a p-type lightly doped epitaxial layer 2'' is formed on a p-type heavily doped semiconductor substrate 1'' in order to improve the gain reduction characteristics, as shown in Fig. 3. an n-type high concentration source 3'', a drain 5'' and an impurity layer 4'' therebetween,
First and second gates 7'' and 8'' are provided on the channel forming region of the epitaxial layer N2'' through a gate insulating film 6'', and source and drain electrodes are connected to the source 3'' and drain 5'', respectively. 9 and 10'' are provided.

ここでp型高濃度の半導体基板1″はソース3″に電気
的に接続されており、信号が第1ゲート1″下部からド
レイン5″へ漏れにくくなる様シールドの役目をはたし
ている。又、エピタキシャル層2″はその濃度を任意に
選択できしきい電圧VTを所定の値となる様に選択され
る。
Here, the p-type high concentration semiconductor substrate 1'' is electrically connected to the source 3'' and serves as a shield to prevent signals from leaking from the lower part of the first gate 1'' to the drain 5''. Further, the concentration of the epitaxial layer 2'' can be arbitrarily selected and is selected so that the threshold voltage VT becomes a predetermined value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のMOSFETでは、半導体基板1″とド
レイン5″との間の対向面積が大きいのでその間の容量
が無視出来ないほど大きくなり、周波数の高い領域の応
用、例えば、UHF帯TV用チューナ部等に使用する場
合に電力利得の低下など高周波特性が損われるという欠
点があった。
In the above-mentioned conventional MOSFET, since the opposing area between the semiconductor substrate 1'' and the drain 5'' is large, the capacitance therebetween is so large that it cannot be ignored. When used for applications such as the following, there was a drawback that high frequency characteristics such as a decrease in power gain were impaired.

〔問題点を解決するため゛の手段〕[Means for solving problems]

本発明の電界効果トランジスタは、−導電型の半導体層
表面のチャネル形成領域と該チャネル形成領域上にゲー
ト絶縁膜を介して形成したゲートとを少くとも備え、前
記チャネル形成領域の下の所定の位置に一導電型高濃度
の埋込層を設けてなる。
The field effect transistor of the present invention includes at least a channel formation region on the surface of a -conductivity type semiconductor layer and a gate formed on the channel formation region with a gate insulating film interposed therebetween, and a predetermined region below the channel formation region. A high concentration buried layer of one conductivity type is provided at the position.

〔実施例〕〔Example〕

次に、本発明の実施例について図面参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the invention.

この実施例は、VHF帯TVチューナ用に設計されなA
fIゲートのNチャネルデュアルゲートMO8FETで
あり、れを形成するには、先ず、比抵抗10Ω印のp型
Siからなる半導体基板1に選択的にP+型領域を形成
した後にエピタキシャル成長を行ないP+型の埋込層1
a及びp型のエピタキシャル層2を形成する。ここで、
選択的にP+型埋込M 1 aを形成するには、ボロン
のイオン注入を、エネルギー30KeV、 ドーズ量2
X 1013C11−2の条件で、行なってから100
0”C+ N2 M囲気中で10分のアニールをし、さ
らに不活性雰囲気中で1100℃48時間の押し込みを
行う。
This embodiment is not designed for use with VHF band TV tuners.
This is an fI gate N-channel dual-gate MO8FET, and in order to form it, first, a P+ type region is selectively formed on a semiconductor substrate 1 made of p-type Si with a specific resistance of 10Ω, and then epitaxial growth is performed to form a P+ type region. Embedded layer 1
A and p type epitaxial layers 2 are formed. here,
To selectively form the P+ type buried M 1 a, boron ions are implanted at an energy of 30 KeV and a dose of 2.
X 1013C11-2 conditions, 100
Annealed for 10 minutes in a 0''C+N2M atmosphere, and then pressed for 48 hours at 1100°C in an inert atmosphere.

又、エピタキシャル層2は、比抵抗4Ω印、厚さ2.5
μmのp型紙濃度層である。
Also, the epitaxial layer 2 has a resistivity of 4Ω and a thickness of 2.5Ω.
This is a p-type paper density layer of μm.

この様にして得られた半導体基板1上のエピタキシャル
層2表面に、n+型のソース3.ドレイン5.不純物4
.ゲート酸化膜6.ソース電極9、ドレイン電極10並
びに第1及び第2ゲート7及び8を形成する。
On the surface of the epitaxial layer 2 on the semiconductor substrate 1 obtained in this way, an n+ type source 3. Drain 5. Impurity 4
.. Gate oxide film6. A source electrode 9, a drain electrode 10, and first and second gates 7 and 8 are formed.

ここで、電極及びゲートはすべてAρであり、スパッタ
法を用いて被着し、埋込層1aは、電気的にソース3に
接続する。
Here, the electrodes and gates are all Aρ and are deposited using a sputtering method, and the buried layer 1a is electrically connected to the source 3.

従って、第2ゲートにマイナス電位をかけ第2ゲート側
のFETをカットオフさせるという、いわゆるゲインリ
ダクションをかけたときにP+型の埋込層1aがあると
第1ゲート側のFETのチャネル形成領域からドレイン
5への電気力線の漏れすなわち信号の漏れが遮へいされ
、第2ゲートによるゲインリダクション特性が従来のよ
うに損われず、良好な特性を示す。
Therefore, when applying a so-called gain reduction in which a negative potential is applied to the second gate to cut off the FET on the second gate side, if there is a P+ type buried layer 1a, the channel formation area of the FET on the first gate side is Leakage of electric lines of force from the drain 5 to the drain 5, that is, signal leakage, is blocked, and the gain reduction characteristics by the second gate are not impaired as in the conventional case, and exhibit good characteristics.

さらにN“型のドレイン5下部のP“型埋込層1の対向
する面積は少なく、はとんどがp型紙濃度のエピタキシ
ャル層2であるため、従来例に比較しトレイン・ソース
間容ficossが非常に低減される。
Furthermore, the opposing area of the P"-type buried layer 1 under the N"-type drain 5 is small, and most of it is an epitaxial layer 2 with a p-type paper concentration, so that the train-source interspace ficoss is smaller than that of the conventional example. is greatly reduced.

第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.

この実施例は、UHF帯TVチューナ用に設計されたモ
リブデンゲートのNチャネルデュアルゲー)−MOSF
ETであり、これを形成するには、先ず、p型の半導体
基板1にだ択的にP+型の領域を形成し、しかる後にエ
ピタキシャル成長を行なってP“型の埋込a1a’及び
p型のエピタキシャル層2′を形成する。
This example is a molybdenum gate N-channel dual gate MOSFET designed for a UHF band TV tuner.
ET, and in order to form this, first, a P+ type region is selectively formed in a p-type semiconductor substrate 1, and then epitaxial growth is performed to form a P"-type buried a1a' and a p-type buried region a1a'. An epitaxial layer 2' is formed.

次に、n1型のソース3′及びドレイン5′をエピタキ
シャル層2′の表面に形成し、更にゲート酸化膜6′を
介してモリブデンの第1及び第2ゲート7′及び8′を
形成した後これをマスクとしてイオン注入法によりN型
低濃度の不純物層3a’ 、4’及び5a’を形成する
Next, an n1 type source 3' and drain 5' are formed on the surface of the epitaxial layer 2', and first and second molybdenum gates 7' and 8' are formed via a gate oxide film 6'. Using this as a mask, N-type low concentration impurity layers 3a', 4' and 5a' are formed by ion implantation.

従って、この不純物層3a’ 、4’ jhび5a’の
下方にはP+型の埋込Jla’が存在するが、N+型型
部濃度ソース3′及びドレイン5′の下方にはない。
Therefore, a P+ type buried Jla' exists below the impurity layers 3a', 4' and 5a', but not below the N+ type doped source 3' and drain 5'.

即ち、N4型高濃度のソース3′及びドレイン5′とp
“型の埋込層1a’との距離を離すとともに対向面積も
低減できるので、容量を小さくするばかりではなくトレ
イン・ソース間の耐圧をも向上することができる。
That is, the N4 type high concentration source 3' and drain 5' and p
"Since the distance between the mold and the buried layer 1a' can be increased and the opposing area can be reduced, it is possible to not only reduce the capacitance but also improve the breakdown voltage between the train and the source.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はチャ禾ル形成領域の下方に
高濃度の埋込層を設けることにより第1ゲートの下部か
ら信号がドレイン側へ漏れるのを防止ししかも出力容量
C3ssも低減することができるので、VHF’PUH
F帯のTVチューナ等の高周波帯域の回路に使用した場
合に電力利得の低下を抑止しつつゲインリダクション量
を効率的に増加することが可能な高周波用のFETを提
供できるという効果がある。
As explained above, the present invention prevents signals from leaking from the lower part of the first gate to the drain side by providing a high concentration buried layer below the channel formation region, and also reduces the output capacitance C3ss. VHF'PUH
When used in a high frequency band circuit such as an F-band TV tuner, it is possible to provide a high frequency FET that can efficiently increase the amount of gain reduction while suppressing a decrease in power gain.

2の実施例の断面図、第3図は従来のFETの一例の断
面図である。
Embodiment 2 is a sectional view, and FIG. 3 is a sectional view of an example of a conventional FET.

1.1”・・・半導体基板、la、la’・・・埋込層
、2.2’ 、2〜・・・エピタキシャル層、3゜3’
、3”・・・ソース、3a’ 、4.4’ 、4″。
1.1"...Semiconductor substrate, la, la'...Buried layer, 2.2', 2~...Epitaxial layer, 3°3'
, 3"...source, 3a', 4.4', 4".

5a’・・・不純物層、5.5’、5”・・・ドレイン
、6.6’、6”・・・ゲート酸化膜、7.7’、7″
・・・第1ゲート、8.8’ 、8″・・・第2ゲート
、9.9’、9”・・・ソース電極、10.10’。
5a'... Impurity layer, 5.5', 5"... Drain, 6.6', 6"... Gate oxide film, 7.7', 7"
...First gate, 8.8', 8"...Second gate, 9.9', 9"...Source electrode, 10.10'.

10″・・・ドレイン電極。10″...Drain electrode.

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体層表面のチャネル形成領域と該チャ
ネル形成領域上にゲート絶縁膜を介して形成したゲート
とを少くとも備え、前記チャネル形成領域の下の所定の
位置に一導電型高濃度の埋込層を設けたことを特徴とす
る電界効果トランジスタ。
It comprises at least a channel formation region on the surface of a semiconductor layer of one conductivity type and a gate formed on the channel formation region via a gate insulating film, and a high concentration semiconductor layer of one conductivity type is provided at a predetermined position below the channel formation region. A field effect transistor characterized by providing a buried layer.
JP28650387A 1987-11-13 1987-11-13 Field effect transistor Pending JPH01128569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28650387A JPH01128569A (en) 1987-11-13 1987-11-13 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28650387A JPH01128569A (en) 1987-11-13 1987-11-13 Field effect transistor

Publications (1)

Publication Number Publication Date
JPH01128569A true JPH01128569A (en) 1989-05-22

Family

ID=17705250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28650387A Pending JPH01128569A (en) 1987-11-13 1987-11-13 Field effect transistor

Country Status (1)

Country Link
JP (1) JPH01128569A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114074A (en) * 1975-03-31 1976-10-07 Sony Corp Insulation gate type field effect transistor
JPS55102269A (en) * 1979-01-29 1980-08-05 Agency Of Ind Science & Technol Method of fabricating semiconductor device
JPS5660060A (en) * 1979-10-22 1981-05-23 Hitachi Ltd Mos semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114074A (en) * 1975-03-31 1976-10-07 Sony Corp Insulation gate type field effect transistor
JPS55102269A (en) * 1979-01-29 1980-08-05 Agency Of Ind Science & Technol Method of fabricating semiconductor device
JPS5660060A (en) * 1979-10-22 1981-05-23 Hitachi Ltd Mos semiconductor device

Similar Documents

Publication Publication Date Title
US4969023A (en) SOS transistor structure
JP2771172B2 (en) Vertical field-effect transistor
JPH0656888B2 (en) Semiconductor device
JP3319215B2 (en) Insulated gate semiconductor device and method of manufacturing the same
KR20070038128A (en) Complementary metal-oxide semiconductor field effect transistor structure
US4797721A (en) Radiation hardened semiconductor device and method of making the same
JPH07106573A (en) High-voltage device and its preparation
US4783688A (en) Schottky barrier field effect transistors
US4486766A (en) Schottky barrier field effect transistors
CA2073966C (en) Mosfet structure having reduced gate capacitance and method of forming same
US3983572A (en) Semiconductor devices
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
US4698899A (en) Field effect transistor
CA2053458A1 (en) Method of fabricating a field-effect transistor
JPH01128569A (en) Field effect transistor
US4965645A (en) Saturable charge FET
JPH0529628A (en) Insulating-gate type bipolar transistor
JP3351691B2 (en) Semiconductor device
WO1990006595A1 (en) Ultrathin submicron mosfet with intrinsic channel
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
GB2066571A (en) Junction field effect transistor
JPS6115369A (en) Semiconductor device and manufacture thereof
JP2594942B2 (en) Method for manufacturing semiconductor device
JPS58157169A (en) Semiconductor device
US4864372A (en) Field effect transistor