JPH01128412A - Electromagnetic device - Google Patents

Electromagnetic device

Info

Publication number
JPH01128412A
JPH01128412A JP28633287A JP28633287A JPH01128412A JP H01128412 A JPH01128412 A JP H01128412A JP 28633287 A JP28633287 A JP 28633287A JP 28633287 A JP28633287 A JP 28633287A JP H01128412 A JPH01128412 A JP H01128412A
Authority
JP
Japan
Prior art keywords
coil
magnetic flux
force
driving force
superconductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28633287A
Other languages
Japanese (ja)
Inventor
Nobushi Suzuki
鈴木 悦四
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28633287A priority Critical patent/JPH01128412A/en
Publication of JPH01128412A publication Critical patent/JPH01128412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PURPOSE:To obtain an electromagnetic device small-sized, generating no rotary force and having good efficiency by covering a part generating electromagnetic force blocking control of a coil with a superconductive material. CONSTITUTION:A coil 10 is a rectangular, so-called flat coil, in which the remaining three sides 10b-10d except the side 10a crossing the central part of a magnetic flux are covered with a superconductive material 13. In a linear motor or the like, when a current is made to flow to this flat coil 10 from outside at a temperature under a critical temperature through a feeder terminal, only the side 10a not covered with the superconductive material 13 has linkage with the magnetic flux inside a magnetic field so as to generate driving force (arrow) parallel with the surface of a magnetic pole. That is to say, since coupling with the magnetic flux is cut on the other three sides 10b-10d of the flat coil 10 due to a Meissner effect of the superconductive material, the driving force is not generated. In this way, the driving force can be obtained by the magnetic flux so that the device can be small-sized. Further, even in case the magnetic field due to the magnetic flux in one direction is used, there is no generation of rotary force and no lowering of efficiency.

Description

【発明の詳細な説明】 [発明の目的] (S楽土の利用分野) 本発明は、磁石とこの磁石による磁界の中に置かれたコ
イルを備え、このコイルに電流を印加することにより速
度、位置あるいは力が制御される電磁装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Field of Application of S-Rakudo) The present invention comprises a magnet and a coil placed in a magnetic field by the magnet, and by applying a current to this coil, speed and speed can be increased. It relates to electromagnetic devices whose position or force is controlled.

(従来の技術) 磁界内でコイルに電流を印加することにより発生する電
磁力を利用して、コイルを直線的に駆動づるリニアモー
タは、^速性、小型化、構造の簡素化等が得られること
から、各分野で広く使われている。
(Prior art) A linear motor that linearly drives a coil by using the electromagnetic force generated by applying a current to the coil in a magnetic field has advantages such as speed, miniaturization, and simple structure. Because of this, it is widely used in various fields.

第3図は、このような従来のリニアモータの一例を示す
もの゛C1コイル1に上下方向の力が働くようにするた
め、直立させた永久磁石2からの磁束をコーク3.4.
5によって分割し、二」イル1の反対側が周一方向の磁
束6.7と鎖交す′るように構成されている。
FIG. 3 shows an example of such a conventional linear motor. In order to apply a vertical force to the C1 coil 1, the magnetic flux from the permanent magnet 2, which is held upright, is transferred to the coke 3.4.
5, and the opposite side of the coil 1 is configured to interlink with the magnetic flux 6.7 in the circumferential direction.

このような構造のリニアモータ〜では、コイル1に同一
方向の電磁力が作用す°るので、電流を制御することに
よりコイル1の位置や速度の制御を行うことができる。
In a linear motor having such a structure, electromagnetic force acts on the coil 1 in the same direction, so the position and speed of the coil 1 can be controlled by controlling the current.

しかしながら、このリニアモーター1では、磁束を分割
する都合上構造が大きくなり、かつ複雑になるという問
題がある。
However, this linear motor 1 has a problem in that the structure becomes large and complicated due to the division of magnetic flux.

また、第4図および第5図に示すように、永久磁石8の
両極に接続されたヨーク9a、9b間に磁束11を横切
るように矩形のコイル10の一つの辺10aを位2させ
11方向の磁束11によりコイル10を駆動さぼるよう
にしたリニアモーターも知られているが、このリニアモ
ーターでは、コイル10の辺10C110dに逆向きの
駆動力が発生してコイル10に回転力が作用する上に、
コイル10の辺10bには漏れ磁束12の彩管で辺10
aと逆方向の駆動力を生じるため、辺10aによる駆動
力が減殺されて効率が低下するという問題もあった。
Further, as shown in FIGS. 4 and 5, one side 10a of the rectangular coil 10 is positioned between the yokes 9a and 9b connected to both poles of the permanent magnet 8 so as to cross the magnetic flux 11 in the 11 direction. A linear motor in which the coil 10 is driven by the magnetic flux 11 of To,
Side 10b of the coil 10 is a tube with leakage magnetic flux 12.
Since a driving force is generated in the opposite direction to a, there is also a problem that the driving force due to the side 10a is attenuated and the efficiency is reduced.

(発明が解決しようとする問題点) 上記のように、磁束の方向の異なるll4i界の中にコ
イルを配置し、このコイルにffi流を印加して速度や
位置を制御するffi磁装研装置、装置が大型化し、か
つ構造も複雑となって、特に薄型にしたい場合や長手方
向の移動mを大きくしたい場合には不都合が生じるとい
う問題があった。
(Problems to be Solved by the Invention) As described above, an ffi magnetoresistive device in which a coil is placed in an ll4i field with different directions of magnetic flux, and an ffi current is applied to this coil to control its speed and position. However, there is a problem in that the device becomes large in size and has a complicated structure, which is particularly inconvenient when it is desired to make the device thin or to increase the movement m in the longitudinal direction.

また1方向の磁束による磁界の中に矩形のコイルの1辺
を配置し、このコイルに電流を印加してコイルの速度や
位置を制御する電1if1装置では、回転力が生じたり
、漏れ磁束の影響により効率が低下するという問題があ
った。
In addition, in an electric 1if1 device in which one side of a rectangular coil is placed in a magnetic field due to magnetic flux in one direction and a current is applied to this coil to control the speed and position of the coil, rotational force is generated and leakage magnetic flux is generated. There was a problem that efficiency decreased due to the influence.

本発明は、このような従来の問題を解浦づ゛べくなされ
たもので、小型化可能で、しかも回転力が発生せず、効
率の良い′、ii磁装置全装置づることを目的とする。
The present invention has been made to solve these conventional problems, and aims to provide a complete magnetic device that can be miniaturized, generates no rotational force, and is highly efficient.

[発明の構成] (問題点を解決するための手段) すなわち本発明の電磁装置は、磁石とこの磁石による磁
界の中に1dかれたコイルを備え、このコイルに電流を
印加することにより前記磁石と前記コイル間の速度や位
置が制御される電磁装置において、前記コイルの、上記
制御を阻害υるような電磁力を発生せしめる部分を超電
導材で覆うことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) That is, the electromagnetic device of the present invention includes a magnet and a coil placed in a magnetic field of this magnet, and by applying a current to this coil, the electromagnetic device of the present invention The electromagnetic device in which the speed and position between the coil and the coil are controlled is characterized in that a portion of the coil that generates an electromagnetic force that interferes with the control is covered with a superconducting material.

本発明に使用される超′tri導材は、超電導体状態を
実現できるものであればよく、八[1a2Cu30  
系(δはM索欠陥を表し通常1以下の数、7−δ 八 は、 Y  、  La、  S(Nd、、Sm、
  Eu、  06% Dy、  llo、 トr1丁
m 、 Y b J3よびLuから選ばれた少なくとも
1種の元素、Baの一部はSr等で置換可能)等の酸素
欠陥を有する欠陥ベロアスカイト型、5r−La−Cu
−0系等の層状ペロブスカイト型等の広義のペロブスカ
イト型を有する酸化物が使用可能である。また希土類元
素も、広義の定義とし、Sc、 Yおよびランタン系を
含むものとする。代表的な系としてY−Ba−Cu−0
系のほかに、Yを、Eu、 Dy、 Ho、Er、 T
m、 Yb。
The super'tri conductive material used in the present invention may be any material as long as it can realize a superconducting state.
system (δ represents M cord defect and is usually a number less than 1, 7−δ 8 is Y, La, S(Nd,, Sm,
Defect velorskite type having oxygen defects such as Eu, 06% Dy, llo, Tr1, Yb, at least one element selected from J3 and Lu, a part of Ba can be replaced with Sr, etc.) , 5r-La-Cu
An oxide having a perovskite type in a broad sense, such as a layered perovskite type such as -0 type, can be used. Rare earth elements are also broadly defined to include Sc, Y, and lanthanum-based elements. Y-Ba-Cu-0 as a representative system
In addition to the system, Y is Eu, Dy, Ho, Er, T
m, Yb.

Lu等の希土類で置換した系、5C−Ba−CD−0系
、5r−La−Cu−0系、さらにSrをBa、 Ca
で置換した系等が挙げられる。
Systems substituted with rare earth elements such as Lu, 5C-Ba-CD-0 systems, 5r-La-Cu-0 systems, and Sr replaced with Ba, Ca
Examples include systems substituted with .

このような酸化物超電導体は次のような方法で製造され
る。
Such an oxide superconductor is manufactured by the following method.

まず、Y 1Ba、 Cuなどのペロブスカイト型酸化
物超電導体の構成元素を十分混合する。混合の際には、
Y2O3、[u203、BaO1CuO等の酸化物を原
料として用いることができる。また、これらの酸化物の
ほかに、焼成後酸化物に転化する炭酸塩、硝酸塩、水酸
化物笠の化合物を用いてもよい。さらには、共沈法等で
骨たシュウ酸塩等を用いてもよい。ペロブスカイト型酸
化物超Ti1J体を構成する元素は、基本的に化学it
論比の組成となるように混合するが、多少vJ造条件等
との関係等でずれていても差支えない。例えば、Y−B
a−Cu−0系ではY 1molに対しBa 21ol
 SCu 3mofが標準組成であるが、実用上はY 
11olに対して、Ba 2±0.6IO1、Cu 3
±0.2mo1程度のずれは問題ない。
First, the constituent elements of the perovskite oxide superconductor, such as Y 1Ba and Cu, are sufficiently mixed. When mixing,
Oxides such as Y2O3, [u203, BaO1CuO, etc. can be used as raw materials. In addition to these oxides, carbonate, nitrate, and hydroxide compounds that are converted into oxides after firing may be used. Furthermore, bone oxalate or the like may be used by a coprecipitation method or the like. The elements constituting the perovskite-type oxide super-Ti1J body are basically chemical
The composition should be mixed in a logical ratio, but there is no problem even if the composition is slightly different due to the relationship with the VJ construction conditions, etc. For example, Y-B
In the a-Cu-0 system, 21 ol of Ba per 1 mol of Y
SCu 3mof is the standard composition, but in practice Y
11ol, Ba 2±0.6IO1, Cu 3
A deviation of approximately ±0.2 mo1 is not a problem.

前述の原料を混合した後、仮焼、粉砕し所望の形状にし
た後、850〜980℃程度で焼成する。仮焼は必ずし
も必要ではない。仮焼、焼成は十分な酸素が供給できる
ような酸素含有雰囲気中で行うことが好ましい。
After mixing the above-mentioned raw materials, they are calcined and pulverized into a desired shape, and then fired at about 850 to 980°C. Calcining is not necessarily necessary. Calcination and firing are preferably performed in an oxygen-containing atmosphere where sufficient oxygen can be supplied.

所望の形状に焼成した後、酸素中で100〜350℃程
度で加熱処理し、または焼成温度から酸素雰囲気中で徐
冷して結晶の酸素空席に酸素を導入することにより超電
導材が得られる。
After firing into a desired shape, a superconducting material is obtained by heat-treating in oxygen at about 100 to 350°C or slowly cooling from the firing temperature in an oxygen atmosphere to introduce oxygen into the oxygen vacancies in the crystal.

なお、このような酸化物超?fl導材の代りに従来から
汎用されているNb−Tiのような合金系の超電導材や
Nb3Sn、のような化合物系の超電導材も使用可能で
ある。
By the way, is this kind of oxide super? Instead of the fl conductive material, it is also possible to use alloy-based superconducting materials such as Nb-Ti or compound-based superconducting materials such as Nb3Sn, which have been widely used in the past.

本発明の′tri磁装置において、コイル上に超電導材
を配置するには、超電導材のブロックを上記コイル上に
固定したり、超電導材またはその出発原料を用いて、塗
装法またはスパッタリング法により被覆し熱処理により
被膜を固定させることにより行なわれる。
In the 'tri-magnetic device of the present invention, in order to place the superconducting material on the coil, a block of superconducting material may be fixed on the coil, or a superconducting material or its starting material may be coated with a coating method or a sputtering method. This is done by fixing the coating through heat treatment.

本発明の電磁装置は、使用時、超電導材がその臨界温度
以下の温度に保持される。予定される使用温度が超電導
材の臨界温度より低い場合には、そのまま使用すること
ができるが、使用温度が臨界温度を越える場合には、冷
却液体または冷却気体を用いた公知の冷却手段を用いて
超電導材を臨界温度以下に保持して使用される。
In use, the electromagnetic device of the present invention maintains the superconducting material at a temperature below its critical temperature. If the expected operating temperature is lower than the critical temperature of the superconducting material, it can be used as is, but if the operating temperature exceeds the critical temperature, a known cooling method using cooling liquid or cooling gas may be used. It is used by keeping the superconducting material below the critical temperature.

(作用) 本発明の電磁装置では、コイルの、速度や位置の制御を
阻害するような電磁力を発生せしめる部分が超電導材で
覆われ、かつこの部分は臨界温度以下の温度で超電導状
態となって、マイスナー効果により磁束がコイル部分に
侵入するのを防止するので、この部分では磁束による駆
動力が生じなくなり、一方向のみに直線的な駆動力が得
られる。
(Function) In the electromagnetic device of the present invention, the part of the coil that generates electromagnetic force that inhibits speed and position control is covered with a superconducting material, and this part becomes superconducting at a temperature below the critical temperature. Since the Meissner effect prevents the magnetic flux from entering the coil portion, no driving force is generated by the magnetic flux in this portion, and a linear driving force is obtained in only one direction.

(実施例) 第1図は、第4図に示した構成のリニアモーターに本発
明を適用した実施例のコイル部分を承りもので、コイル
部分を除いて従来のリニアモーターと同一構成であるの
で、第4図と重複する説明は省略する。
(Example) Figure 1 shows the coil part of an example in which the present invention is applied to the linear motor having the configuration shown in Figure 4, and the configuration is the same as that of a conventional linear motor except for the coil part. , redundant explanation with FIG. 4 will be omitted.

この実施例のコイル10は、矩形のいわゆる平面コイル
−であって、磁束の中心部を横切る辺10aを除く残り
の3辺10b、10c、10dc、im電導材13で覆
われている。
The coil 10 of this embodiment is a rectangular so-called planar coil, and except for the side 10a that crosses the center of the magnetic flux, the remaining three sides 10b, 10c, and 10dc are covered with a conductive material 13.

この実施例のリニアモーターでは、臨界温度以下の温度
で給電端子を介して、外部よりこの平面コイル10に電
流を流すと、超電導材13の覆いのない1辺10aのみ
が磁界内の磁束と鎖交し、磁極の面と平行な駆動力(矢
印で示す。)を発生する。
In the linear motor of this embodiment, when a current is applied from the outside to this planar coil 10 via the power supply terminal at a temperature below the critical temperature, only one uncovered side 10a of the superconducting material 13 is connected to the magnetic flux in the magnetic field. generate a driving force (indicated by an arrow) that is parallel to the plane of the magnetic pole.

すなわち平面コイル10の他の3辺10b、10c、1
0dでは超電導材のマイスナー効果により磁束とのカッ
プリングが断たれるので辺10aにのみ駆動力が生じる
That is, the other three sides 10b, 10c, 1 of the planar coil 10
At 0d, the coupling with the magnetic flux is cut off due to the Meissner effect of the superconducting material, so a driving force is generated only on the side 10a.

第2図は本発明の他の実施例を示すもので、この実施例
ではコイル10全体がヨーク9a、9b間に配置されて
いる。この実施例でもコイル10の3辺10b、10c
、10dが超電導材13で覆われているので、矢印方向
への駆動力は辺10aで生ずる。この場合、コイルの速
度に応じて、超電導材のマイスナー効果により反力が生
じ、速度フィードバックが自動的に行われ、制御性が高
められる効果も期待できる。
FIG. 2 shows another embodiment of the invention, in which the entire coil 10 is disposed between yokes 9a and 9b. In this embodiment as well, the three sides 10b and 10c of the coil 10
, 10d are covered with the superconducting material 13, the driving force in the direction of the arrow is generated at the side 10a. In this case, a reaction force is generated due to the Meissner effect of the superconducting material depending on the speed of the coil, and speed feedback is automatically performed, which can be expected to improve controllability.

なお、以上の実施例は、ヨーク側が固定でコイル側が駆
動される電!t!装置の例であるが、これとは逆に二」
イル側を固定にしてヨーク側を駆動するように構成した
り、永久磁石に代えて電磁石を用いてもよいことは勿論
である。またコイルにより力を制御する用途にも有効で
ある。
In addition, in the above embodiment, the yoke side is fixed and the coil side is driven. T! This is an example of a device, but on the contrary,
It goes without saying that the yoke side may be driven while the yoke side is fixed, or that an electromagnet may be used in place of the permanent magnet. It is also effective in applications where force is controlled by a coil.

[発明の効果] 以上説明したように、本発明によれば、1方尚の磁束に
より駆動力が得られるので小形化、および構造簡素化が
可能であって長手方向の移動珊を太き(することができ
、また1方向の磁束による磁界を用いる場合にも回転力
を生じたり、効率が低下することがない。
[Effects of the Invention] As explained above, according to the present invention, since the driving force is obtained by the magnetic flux in one direction, it is possible to downsize and simplify the structure. Furthermore, even when a magnetic field due to magnetic flux in one direction is used, no rotational force is generated or the efficiency is decreased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明、の−・実施例のコイル部分を示す平面
図、第2図は他の実施例を概略的に示1図、第3図は従
来の分割磁界を用いるリニアモーターの一例を示す斜視
図、第4図は従来の一方向tll&Wを用いるリニアモ
ーターの一例を示す斜視図、第5図はその側面図である
。 1.10・・・・・・・・・コイル 2.8.11・・・永久磁石 3.4.5.9a、9b−Fl−り 6.7.11・・・・・・磁束
Fig. 1 is a plan view showing a coil portion of an embodiment of the present invention, Fig. 2 schematically shows another embodiment Fig. 1, and Fig. 3 are an example of a conventional linear motor using a divided magnetic field. 4 is a perspective view showing an example of a conventional linear motor using one-way tll&w, and FIG. 5 is a side view thereof. 1.10... Coil 2.8.11... Permanent magnet 3.4.5.9a, 9b-Fl-ri 6.7.11... Magnetic flux

Claims (1)

【特許請求の範囲】[Claims] (1)磁石とこの磁石による磁界の中に置かれたコイル
を備え、このコイルに電流を印加することにより前記磁
石と前記コイル間の速度、位置あるいは力が制御される
電磁装置において、前記コイルの、上記制御を阻害する
ような電磁力を発生せしめる部分を超電導材で覆うこと
を特徴とする電磁装置。
(1) An electromagnetic device that includes a magnet and a coil placed in a magnetic field by the magnet, and in which the speed, position, or force between the magnet and the coil is controlled by applying a current to the coil. An electromagnetic device characterized in that a portion that generates an electromagnetic force that inhibits the above control is covered with a superconducting material.
JP28633287A 1987-11-12 1987-11-12 Electromagnetic device Pending JPH01128412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28633287A JPH01128412A (en) 1987-11-12 1987-11-12 Electromagnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28633287A JPH01128412A (en) 1987-11-12 1987-11-12 Electromagnetic device

Publications (1)

Publication Number Publication Date
JPH01128412A true JPH01128412A (en) 1989-05-22

Family

ID=17703014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28633287A Pending JPH01128412A (en) 1987-11-12 1987-11-12 Electromagnetic device

Country Status (1)

Country Link
JP (1) JPH01128412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505582B1 (en) * 1997-12-31 2005-09-26 삼성전자주식회사 Head actuator of hard disk drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100505582B1 (en) * 1997-12-31 2005-09-26 삼성전자주식회사 Head actuator of hard disk drive

Similar Documents

Publication Publication Date Title
JP2002527345A (en) Superconducting structure containing mixed rare earth barium-copper composition
US5543768A (en) Composite of high-temperature superconductive bulk form with coil magnet
EP0292436B1 (en) High current conductors and high field magnets using anisotropic superconductors
JPH01128412A (en) Electromagnetic device
US5016600A (en) Methods of generating and controlling a magnetic field without using an external power supply specification
JPH04170318A (en) Lamellar copper oxide
JP2603688B2 (en) Superconducting material reforming method
JPS63270317A (en) Oxide superconductor
JPH01712A (en) permanent magnet
JP3049739B2 (en) Superconducting composition
JP2523632B2 (en) Superconducting coil and manufacturing method thereof
JPS63222067A (en) High-temperature superconducting substance and production thereof
JPS63318722A (en) Magnetic circuit
JPH0191651A (en) Magnetic driving device
JP2585621B2 (en) How to make superconducting material
JP2644245B2 (en) Oxide superconducting wire
JP2597578B2 (en) Superconductor manufacturing method
JPH01264957A (en) Superconducting material
JP2748161B2 (en) In-Ba-Y and / or Ca-Cu-O based superconducting material
JP2748942B2 (en) Oxide superconductor
JPH04292418A (en) Oxide superconductor and its production
JP2838312B2 (en) Oxide superconducting material
CN108285329A (en) A kind of single-phase multiferroic ceramics of perocskite type and preparation method thereof
JPH01262603A (en) Magnet
JPH0426016A (en) Oxide superconductor