JPH01264957A - Superconducting material - Google Patents

Superconducting material

Info

Publication number
JPH01264957A
JPH01264957A JP63092543A JP9254388A JPH01264957A JP H01264957 A JPH01264957 A JP H01264957A JP 63092543 A JP63092543 A JP 63092543A JP 9254388 A JP9254388 A JP 9254388A JP H01264957 A JPH01264957 A JP H01264957A
Authority
JP
Japan
Prior art keywords
superconductor
base material
magnetic ions
compd
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63092543A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP63092543A priority Critical patent/JPH01264957A/en
Publication of JPH01264957A publication Critical patent/JPH01264957A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To form a pin stopping center within the grain boundary of a superconductor in which the grain boundary exists in the form of bulk or thin film and to improve the critical current density thereof by adding a compd. contg. magnetic ions to said superconductor. CONSTITUTION:A small amt. of the compd. (e.g.: the oxide of Nd and Eu having the larger ion radius than Y among lanthanoid groups in case of the system of the base material in the undermentioned example) contg. the magnetic ions which have sufficiently low reactivity with the superconductor, i.e., the base material and do not extremely deteriorate the superconducting characteristic of the base material is added to the raw materials (e.g.: Y2O3, BaCO3, CuO) at the time of producing the base material of the oxide superconductor (e.g.: Y, Ba, Cu, O system) in which the grain boundary exists in the form of bulk or thin film. The raw materials are calcined, ground and molded and the molding is calcined again and is slowly cooled, by which the superconducting material intentionally added with the compd. contg. the magnetic ions is obtd.

Description

【発明の詳細な説明】 「発明の利用分野」 本発明は超伝導材料に関する。本発明は粒界の存在する
超伝導体において、少量の磁性イオンを含む化合物を添
加することにより、それら磁性イオンを粒界に析出させ
、粒界を制御することによって超伝導臨界電流値(以下
Jcと略す)を向上せしめんとするものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting materials. In the present invention, in a superconductor where grain boundaries exist, by adding a compound containing a small amount of magnetic ions, these magnetic ions are precipitated at the grain boundaries, and by controlling the grain boundaries, the superconducting critical current value (hereinafter referred to as The objective is to improve the

「将来の技術」 近年、高い臨界温度を持つ酸化物超伝導体(例えばYB
CO等)が発見されその実用化の一つとして線材化が研
究されている。しかしながら、磁化率の測定等から計算
されるJcは77にで107〜10’A/cm” もの
大きな値であるのに対し、実際のサンプルにおいては現
在のところ実用になるような高いJcは得られていない
。その主な原因は、超伝導体中に存在する粒界がジョセ
フソン弱結合としてはたらくためであるとされてきた。
“Future technology” In recent years, oxide superconductors with high critical temperatures (such as YB
(CO, etc.) was discovered, and research is being conducted into making wire rods as one of its practical applications. However, Jc calculated from measurements of magnetic susceptibility is as large as 77 to 10'A/cm, whereas in actual samples it is currently not possible to obtain a Jc high enough to be of practical use. The main reason for this has been said to be that grain boundaries in superconductors act as Josephson weak bonds.

しかし、本発明人はより詳細な検討を加えた結果、低い
Jcの原因を別の事柄に見出すにいたった。この粒界部
分には超伝導相の生成に伴って不純物が析出し一種の層
を形成している。この状態は弱結合というよりむしろト
ンネル接合に近いものである。したがって、超伝導体に
はいくつもの長いトンネル接合があると考えられる。こ
のようなトンネル接合は通常ジョセフソン線路とよばれ
ている。磁場を印加すると磁束がこの接合部に侵入し、
電流が流れるとローレンツ力によって磁束が動きだし、
それによって接合間に電圧、即ち抵抗が生じる。酸化物
超伝導体の粒界ではビンどめ力が弱いためJcが低いも
のと考えられる。その1艮1処としては、Jcが磁場に
よって極端にイ氏下するという事実が上げられる。
However, as a result of a more detailed study, the inventors found another cause for the low Jc. In this grain boundary region, impurities precipitate as a superconducting phase forms, forming a kind of layer. This state is more like a tunnel junction than a weak coupling. Therefore, it is thought that superconductors have many long tunnel junctions. Such tunnel junctions are commonly called Josephson lines. When a magnetic field is applied, magnetic flux enters this junction,
When a current flows, the magnetic flux begins to move due to the Lorentz force,
This creates a voltage, or resistance, across the junction. It is thought that Jc is low because the binding force is weak at the grain boundaries of the oxide superconductor. One of the reasons for this is the fact that Jc is extremely depressed by the magnetic field.

「発明の構成」 粒界のビンどめ力を強くできればこれらの問題Gよ解決
する。磁束をビンどめする場所、即ち、ビンどめ中心と
しては、合金系超伝導体では粒界、転移等が用いられて
いたが、この酸化物超伝導体では粒界内でのビンどめな
ので中心を作ることが難しい。ところで、磁性イオンを
含む超伝導体(よJCが大きくできるという考えがある
。その根拠番ま磁性イオンがビンとめ中心としてはたら
くと考えられるというものである。本発明人はそのこと
を′もとに粒界に磁性イオンを析出させればそれがビン
どめ中心となってJcを向上させることができると考え
た。ただし、粒界にばらまく磁性イオンは母材と反応し
ないか、反応しても超伝導特性を劣化させないものでな
ければならない。なぜなら長期の信頼性にとぼしいから
である。このため本発明人はさらに検討を重ねた末、母
材としてYBCOを用いるのならば、ランタノイド族の
うちイツトリウム(Y)よりイオン半径の大きなネオジ
ウム(Nd)やユーロピウム(Eu)の酸化物が適して
いることを見出した。以下に実施例を示しさらに詳細に
本発明を説明する。
``Structure of the invention'' These problems G can be solved if the binding force of grain boundaries can be strengthened. In alloy superconductors, grain boundaries, dislocations, etc. were used as places to bind the magnetic flux, that is, as centers of the bind, but in this oxide superconductor, the places where the magnetic flux is bound are confined within the grain boundaries. Therefore, it is difficult to create a center. By the way, there is an idea that superconductors containing magnetic ions (JC) can be made larger.The basis for this is that the magnetic ions are thought to act as the center of the bottle. We thought that if magnetic ions were precipitated at the grain boundaries, they would act as binding centers and improve Jc. However, the magnetic ions scattered at the grain boundaries either did not react with the base material or did not react with the base material. However, if YBCO is to be used as the base material, the inventors of the present invention have determined that if YBCO is to be used as the base material, the lanthanide group should be used. Among these, it has been found that oxides of neodymium (Nd) and europium (Eu), which have larger ionic radii than yttrium (Y), are suitable.The present invention will be explained in more detail by showing examples below.

「実施例」 母材としてYBCOを用いた。比較のために磁性イオン
を添加したものと添加しないものを作成した。試料1〜
4の組成比(モル比)は以下の通りである。
"Example" YBCO was used as the base material. For comparison, we created samples with and without magnetic ions added. Sample 1~
The composition ratio (molar ratio) of No. 4 is as follows.

試料は固相反応法によって作成した。即ち、原料粉を十
分に混合したあと空気中で 900度で12時間仮焼成
し、この焼成物を粉砕したあと、1000kg/cm”
の圧力でペレットに成形し、再び、空気中900度で3
時間焼結した後、100度/時の冷却速度で徐冷した。
The sample was prepared by solid phase reaction method. That is, after thoroughly mixing the raw material powders, they were calcined in the air at 900 degrees for 12 hours, and the calcined product was pulverized to produce a powder of 1000 kg/cm.
Formed into pellets at a pressure of
After sintering for an hour, it was slowly cooled at a cooling rate of 100 degrees/hour.

それぞれのペレットは10mmX1mmX1mm程度の
直方体に成形して銀ペーストで電橋をつけた。試料1〜
4の超伝導特性は表1のようになった。試料1と他の試
料2、試料3を比較するとわかるように明らかにJcの
向上(特に磁場印加中の)が見られる。試料4の特性が
悪いのは添加量が多すぎたためでX線回折法によって、
いわゆるグリーン相Y28aCuO3が見られている。
Each pellet was formed into a rectangular parallelepiped of approximately 10 mm x 1 mm x 1 mm, and electrical bridges were attached with silver paste. Sample 1~
The superconducting properties of No. 4 were as shown in Table 1. As can be seen from comparing Sample 1 with other Samples 2 and 3, an improvement in Jc (particularly during application of a magnetic field) is clearly seen. The poor characteristics of sample 4 were due to the addition amount being too large, and X-ray diffraction revealed that
A so-called green phase Y28aCuO3 is observed.

ただし、Jcは1μV / m mで定義した。However, Jc was defined as 1 μV/mm.

本実施例においてはYBCO系の超伝導体について記載
されておりますが、BaLACuO系Bi系においても
同様のことが期待できる。また添加する化合物としては
、Ce、Pr、Nd、Pm、Sm、Eu。
Although this example describes a YBCO-based superconductor, the same effect can be expected for a BaLACuO-based Bi-based superconductor. Compounds to be added include Ce, Pr, Nd, Pm, Sm, and Eu.

等の酸化物を用いることが可能である。It is possible to use oxides such as

[効果] 本発明構成をとることにより、酸化物超伝導体の粒界内
にビンどめ中心を形成し、JC(1)W界電流密度)の
大きい、超伝導体を容易に実現することができた。
[Effect] By adopting the configuration of the present invention, a binding center is formed within the grain boundaries of an oxide superconductor, and a superconductor with a large JC (1) W field current density) can be easily realized. was completed.

Claims (1)

【特許請求の範囲】 1、バルク(塊)状あるいは薄膜状で粒界の存在する超
伝導体において意図的に磁性イオンを含む化合物が添加
されたことを特徴とする超伝導材料。 2、特許請求の範囲第1項において前記磁性イオンを含
む化合物は母材である超伝導体との反応性が十分低く、
母材の超伝導特性を著しくは劣化させないものであるこ
とを特徴とする超伝導材料。
[Scope of Claims] 1. A superconducting material in which a compound containing magnetic ions is intentionally added to a superconductor in the form of a bulk or thin film in which grain boundaries exist. 2. In claim 1, the compound containing magnetic ions has sufficiently low reactivity with the superconductor that is the base material,
A superconducting material characterized by not significantly deteriorating the superconducting properties of a base material.
JP63092543A 1988-04-13 1988-04-13 Superconducting material Pending JPH01264957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092543A JPH01264957A (en) 1988-04-13 1988-04-13 Superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092543A JPH01264957A (en) 1988-04-13 1988-04-13 Superconducting material

Publications (1)

Publication Number Publication Date
JPH01264957A true JPH01264957A (en) 1989-10-23

Family

ID=14057297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092543A Pending JPH01264957A (en) 1988-04-13 1988-04-13 Superconducting material

Country Status (1)

Country Link
JP (1) JPH01264957A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236712A (en) * 1987-03-24 1988-10-03 Kazuo Fueki Superconductive material
JPS63277552A (en) * 1987-05-08 1988-11-15 Furukawa Electric Co Ltd:The Ceramic superconductor
JPH0193458A (en) * 1987-09-30 1989-04-12 Furukawa Electric Co Ltd:The Oxide superconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236712A (en) * 1987-03-24 1988-10-03 Kazuo Fueki Superconductive material
JPS63277552A (en) * 1987-05-08 1988-11-15 Furukawa Electric Co Ltd:The Ceramic superconductor
JPH0193458A (en) * 1987-09-30 1989-04-12 Furukawa Electric Co Ltd:The Oxide superconductor

Similar Documents

Publication Publication Date Title
JPH01242421A (en) Apparatus and system approaching novel superconductor material
US8688181B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JPH0643268B2 (en) Oxide high temperature superconductor
JPH01264957A (en) Superconducting material
US8060169B1 (en) Superconductive compounds having high transition temperature, and methods for their use and preparation
JP3219563B2 (en) Metal oxide and method for producing the same
JP2854338B2 (en) Copper oxide superconductor
EP0431170A1 (en) Oxide superconductor
JP3163122B2 (en) Manufacturing method of oxide superconductor
JPH0238311A (en) Oxide superconductor and production thereof
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH01208319A (en) Oxide superconducting material
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
JPH01126258A (en) Production of oxide high-temperature superconductive material
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2696691B2 (en) Oxide superconducting material
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
JPH04154623A (en) Bi-or bi-pb-based oxide superconducting material
JPS63303851A (en) Sintered body of superconducting ceramic
JPH04144956A (en) Oxide superconducting substance
JPH0818834B2 (en) Composite oxide superconducting material and method for producing the same
JPH02153822A (en) Oxide superconductor composition
JPH02107518A (en) Oxide superconducting material
JPH01212227A (en) Oxide superconducting material
JPH05105442A (en) Manufacture of oxide superconducting material having orientation property