JPH0112811B2 - - Google Patents

Info

Publication number
JPH0112811B2
JPH0112811B2 JP17899080A JP17899080A JPH0112811B2 JP H0112811 B2 JPH0112811 B2 JP H0112811B2 JP 17899080 A JP17899080 A JP 17899080A JP 17899080 A JP17899080 A JP 17899080A JP H0112811 B2 JPH0112811 B2 JP H0112811B2
Authority
JP
Japan
Prior art keywords
steel
cutting
tool
tempering
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17899080A
Other languages
Japanese (ja)
Other versions
JPS57104621A (en
Inventor
Tooru Araki
Shigeo Yamamoto
Hirooki Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP17899080A priority Critical patent/JPS57104621A/en
Publication of JPS57104621A publication Critical patent/JPS57104621A/en
Publication of JPH0112811B2 publication Critical patent/JPH0112811B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は被削性の優れた鋼の製造法に関する。
更に詳しくは最近著しい進展を見せている切削加
工工程の自動化および高能率化に対処した被削性
のすぐれた鋼の製造法を提供することを目的とす
るもので、かつ、また、切削加工部品の素材に通
常施されている被削性を改善するための熱処理
(前熱処理)の簡略化あるいは省略が出来、さら
に、切削加工部品によつては切削後に施される後
熱処理を省略出来、このため、後熱処理に伴う寸
法変化を防止することが出来ることを目的とした
製造方法に関するものである。 現在、自動車部品から精密機械部品までの広範
囲な分野の切削加工工程において多量の快削鋼が
採用されている。この背景としては切削加工機や
切削工具のもてる能力を充分に引出すことの出来
る鋼としての位置づけがあるためである。特に切
削加工機の自動化あるいは無人化運転を行うに際
しては、被削性が優れたものであることが必要で
あり、とくに切りくずの処理性がよいことが重要
なことである。 従来、被削性を改善するために、鋼の切削加工
に先だつて、前熱処理が行われている。例えば自
動車のギヤ類、シヤフト類においては、等温焼な
まし、または焼ならし―焼もどし処理などが行わ
れている。たとえばこの等温焼なまし処理法は
880〜920℃に60分保持後、600〜700℃に70分保持
することによつて行われており、多量の熱と長時
間を必要とする問題点がある。その上切削切りく
ずはカール半径の比較的大きなリボン状となり、
切削中の加工部品や切削工具に巻いたりして作業
性が悪い等の切りくず処理性が十分でなかつた。 本発明はこれらの欠点を解消せんとするもので
あり、その目的は熱量が少くてすみ、かつ切りく
ずが細片となり切削中の加工部品や切削工具に巻
いたりしない被削性の優れた鋼の製造法を提供す
るにある。 本発明者は前記目的を達成せんと鋭意研究の結
果、鋼中に10〜75%のマルテンサイト相を均一に
混在させたものは、前記の欠点のないことを究明
し得た。 鋼中のマルテンサイト相の混在割合が75%を超
えると、残りの軟かい相だけではせん断域におけ
る変形量が吸収しきれず、一部のマルテンサイト
相も変形させられる。従つて変形のための応力水
準が高まり、これに伴う発熱量も急増し、切りく
ずは靭性を増してリボン状の連続したものとなり
切削中の加工部品や切削工具に巻きつく欠点が生
ずる。一方鋼中のマルテンサイト相の混在割合が
10%未満では、切りくずせん断域におけるマルテ
ンサイト相周辺の軟い相への歪集中が活発でなく
なり、切りくず中にミクロクラツクを生成させる
効果が著しく減少し、その処理法を改善させる作
用も低下する。 本発明の軟質の鋼中に硬いマルテンサイト相を
形成させる方法としては、各種鋼に特有な変態点
を利用することにより容易に製造し得られる。す
なわち、Ar3変態点以上の温度から、冷却途中
Ar3からAr1変態点に至る温度域で一定時間保持
した後、冷却する方法で製造し得られる。この場
合、Ar3変態点からAr1変態点に到る温度域での
保持時間を変化させることにより、フエライト相
の生成量を変化させ、その後の冷却によつて目的
とする割合のマルテンサイト相を生成させる。そ
の保持時間はその鋼の等温変態図を参照して決め
ればよい。一定時間保持後の冷却に際して冷却速
度が遅いと、マルテンサイト相以外に、パーライ
ト相、ベイナイト相のいずれか一相〜二相が生成
するので、水冷などで行うことが好ましい。 前記の方法で得られたものを、必要に応じ焼も
どし処理を行つてもよい。 このような方法によつて生成したマルテンサイ
ト相およびベイナイト相を焼もどしによつて軟化
させることは、高速度鋼工具や超硬工具を用いた
切削条件においては工具摩耗の点から有効であ
る。このため650℃以下の一定温度域で焼もどし
することが有効である。しかし、650℃より高い
温度で焼もどしを行うと、マルテンサイト相の硬
さが著しく軟化するので被削性を改善する効果を
失う。一方、耐摩耗性の大きいサーメツトや
CBN工具などを用いる切削では、焼もどし処理
によるマルテンサイト相の軟化は必要としない。 硬いマルテンサイト相を混在させた鋼を切削す
る時には、切りくずせん断域において軟かいフエ
ライト相やパーライト相あるいはベイナイト相な
どに歪が集中して、これらの相は加工硬化し、ミ
クロクラツクが生成して著しくぜい化する。この
ため、破砕し易く、処理性の良い切りくずとな
る。この際、せん断域は混在するマルテンサイト
相が障害となつて縮小されることによつて工具に
加わる切削力が減少する。 本発明によると、切りくず処理性と切削抵抗の
面から評価した被削性を改善することができる。
切りくず処理性の著しい改善は切削加工工程の自
動化あるいは無人化運転を進める際、快削鋼の代
替材ともなりうる。そして、切削抵抗の減少は減
少分だけ切削量を増すことにつながり、切削能率
を促進出来る。さらに、本発明においては切削加
工部品素材の前熱処理を簡略化するため、例え
ば、通常の例えば1000℃以上の熱間鍛造後の素材
の冷却速度を制御して冷却し、必要により、焼も
どし処理を行うだけで充分な部品の硬さを得るこ
とが出来る。このため、切削後の後熱処理が省略
出来、後熱処理によつて生ずる部品の寸法変化を
考慮しなくても良くなる場合もある。 実施例 1 外径60mmφ、内径30mmφ、長さ330mmの
SCM435鋼を、ソルトバスを用いてAr3点以上の
温度域からAr3〜Ar1の中間に温度を下げ700℃で
保持時間を変えた後水冷した。得られた鋼のマル
テンサイト量および硬さは次の通りであつた。
The present invention relates to a method for producing steel with excellent machinability.
More specifically, the purpose is to provide a method for manufacturing steel with excellent machinability that addresses the automation and high efficiency of the cutting process, which has recently seen remarkable progress, and also to provide a method for producing steel with excellent machinability. It is possible to simplify or omit the heat treatment (pre-heat treatment) that is normally applied to materials to improve machinability, and also to omit the post-heat treatment that is applied after cutting for some machined parts. Therefore, the present invention relates to a manufacturing method that aims to prevent dimensional changes due to post-heat treatment. Currently, a large amount of free-cutting steel is used in cutting processes in a wide range of fields, from automobile parts to precision machine parts. The reason for this is that steel is positioned as a steel that can fully utilize the capabilities of cutting machines and cutting tools. Particularly when automating or unmanned operation of a cutting machine, it is necessary to have excellent machinability, and in particular, it is important to have good chip disposability. Conventionally, in order to improve machinability, a preheat treatment is performed prior to cutting steel. For example, gears and shafts of automobiles are subjected to isothermal annealing or normalizing-tempering treatment. For example, this isothermal annealing process
It is carried out by holding at 880-920°C for 60 minutes and then at 600-700°C for 70 minutes, which has the problem of requiring a large amount of heat and a long time. Moreover, the cutting chips form ribbons with a relatively large curl radius.
The chip disposability was not sufficient, such as wrapping around the workpiece or cutting tool during cutting, resulting in poor workability. The present invention aims to eliminate these drawbacks, and its purpose is to create a steel with excellent machinability that requires less heat and does not cause chips to form into small pieces and wrap around the workpiece or cutting tool being cut. to provide manufacturing methods. As a result of intensive research aimed at achieving the above object, the inventors of the present invention have found that steel in which 10 to 75% martensite phase is uniformly mixed does not have the above drawbacks. When the proportion of martensitic phase in steel exceeds 75%, the remaining soft phase cannot absorb the amount of deformation in the shear zone, and some martensitic phase is also deformed. Therefore, the stress level for deformation increases, the heat generation value increases rapidly, and the chips become tougher and continuous in the form of a ribbon, which causes the disadvantage that they wrap around the workpiece or cutting tool being cut. On the other hand, the mixing ratio of martensitic phase in steel is
If it is less than 10%, strain concentration in the soft phase around the martensitic phase in the chip shear region becomes less active, the effect of generating microcracks in chips is significantly reduced, and the effect of improving the processing method is also reduced. do. As a method for forming a hard martensitic phase in the soft steel of the present invention, it can be easily produced by utilizing the transformation point specific to various steels. In other words, from a temperature above the Ar 3 transformation point, during cooling
It can be produced by holding it in a temperature range from Ar 3 to Ar 1 transformation point for a certain period of time and then cooling it. In this case, by changing the holding time in the temperature range from the Ar 3 transformation point to the Ar 1 transformation point, the amount of ferrite phase produced can be changed, and by subsequent cooling, the desired proportion of martensite phase can be achieved. to be generated. The holding time may be determined with reference to the isothermal transformation diagram of the steel. If the cooling rate is slow during cooling after holding for a certain period of time, one to two phases of a pearlite phase and a bainite phase will be generated in addition to the martensite phase, so cooling with water or the like is preferable. The material obtained by the above method may be subjected to a tempering treatment if necessary. Softening the martensitic phase and bainite phase produced by such a method by tempering is effective from the viewpoint of tool wear under cutting conditions using high-speed steel tools and carbide tools. For this reason, it is effective to temper at a constant temperature range of 650°C or less. However, when tempering is performed at a temperature higher than 650°C, the hardness of the martensitic phase is significantly softened, and the effect of improving machinability is lost. On the other hand, cermets with high wear resistance and
Cutting using CBN tools does not require softening of the martensitic phase by tempering. When cutting steel containing a hard martensitic phase, strain concentrates on the soft ferrite, pearlite, or bainite phases in the chip shear region, and these phases become work hardened and microcracks are formed. Significantly becomes brittle. Therefore, it becomes chips that are easy to crush and have good processability. At this time, the shear zone is reduced due to the mixed martensite phase acting as an obstacle, thereby reducing the cutting force applied to the tool. According to the present invention, machinability evaluated in terms of chip control and cutting resistance can be improved.
The remarkable improvement in chip control makes it possible to use it as an alternative to free-cutting steel when automating the cutting process or promoting unmanned operation. The reduction in cutting resistance leads to an increase in the amount of cutting by the amount of the reduction, which can promote cutting efficiency. Furthermore, in the present invention, in order to simplify the pre-heat treatment of the cutting part material, for example, the cooling rate of the material after normal hot forging at 1000°C or higher is controlled and cooled, and if necessary, tempering treatment is performed. By simply doing this, you can obtain sufficient hardness for the parts. Therefore, post-heat treatment after cutting can be omitted, and there may be cases where there is no need to consider dimensional changes in the component caused by post-heat treatment. Example 1 Outer diameter 60mmφ, inner diameter 30mmφ, length 330mm
The SCM435 steel was lowered from the temperature range of Ar 3 or higher to an intermediate range of Ar 3 to Ar 1 using a salt bath, held at 700°C for varying holding times, and then water-cooled. The martensite content and hardness of the obtained steel were as follows.

【表】【table】

【表】 実施例 2 実施例1におけるSCM435鋼に代え、SCM420
鋼を使用し、他は同様にして行つた。得られたマ
ルテンサイト量および硬さは次の通りであつた。
[Table] Example 2 Instead of SCM435 steel in Example 1, SCM420
Steel was used, but the rest was the same. The amount of martensite and hardness obtained were as follows.

【表】 以上のように、本発明の方法によると、通常行
われている等温焼なましや球状化焼なまし、ある
いは焼なまし一焼もどしなどの前熱処理を省略あ
るいは簡略化し得られるため、熱量が少なくてす
むと共に処理時間も短縮し得られる効果を有す
る。また、例えばSCM435鋼を従来の焼入れ―焼
もどし処理した場合に匹敵する硬さを得ることが
できる。しかも、切削が容易な部品素材として得
ることが出来ることから、部品によつては切削加
工後の焼入・焼もどしなどの熱処理を行う必要が
なく、従つて、このような後熱処理による寸法変
化を考慮しなくとも良い効果を有する。 本発明の鋼は切りくずせん断角(φ)が増し、
薄い切りくずにおいてもカール半径の小さい処理
性の優れたものである。従来の知見では硬い鋼を
切削する時ほど、または高速切削域ほど切りくず
せん断角(φ)の大きい薄い連続した処理性の悪
い切りくずが生成するとされていた。しかし、本
発明の鋼であるマルテンサイト相を一定範囲で混
在させたものは、硬さを増すほど切りくず処理性
は改善され、しかも、高速切削域でもこの傾向は
変らない。 被削性試験結果を示すと第1図に示す通りであ
る。 被削材は第1表および第2表に示した試料を用
いた。 この試験の切削条件は、切削速度150m/分、
工具送り量0.25mm/回転、切込深さ1.5mm、チツ
プブレーカ幅2.5mmであり、超硬工具P10種〔0,
10,6,6,15,15,0.3〕を用いた。さらに、
切削速度80m/分、工具送り量0.15,0.25,0.30,
0.35mm/回転、チツプブレーカ幅2.0,3.0mmにお
ける各組合せで広範囲な条件における切りくず処
理性に関する試験を実施した。いづれの場合も第
1図のごとく、硬さが増すほど切りくずせん断角
(φ)も増す傾向が示された。このことは、マル
テンサイト相を混在した鋼は広範囲の切削条件下
で薄い切りくずが生成するにもかかわらず、その
処理性がすぐれていることを示している。しか
も、最近では硬さHv700程度までの焼入れした鋼
をも切削出来るCBN工具が普及しているが、高
速切削域で加工するため、連続した処理性の悪い
切りくずが生成する場合が多く、この点は本発明
の鋼を用いることで回避出来、CBN工具のもて
る能力をさらに発揮出来る。 第2図はマルテンサイト相を混在した鋼の切削
抵抗分力を示したものであり、同時にSCM420鋼
の球状化焼なまし(750℃で2時間保持後炉冷
(10℃/時間の冷却速度))、フエライト・パーラ
イト組織(第2表の比較2試料)、フエライト・
ベイナイト組織(熱間圧延状態から75mmφの形状
のものを空冷)の各被削材とも比較した。切削抵
抗は主分力(Fc)、送り分力(Fs)、背分力(Ft)
として示してあるが、これらの三分力ともマルテ
ンサイト量を混在した試料(第2表の6試料)で
は減少している。このことは切削加工機の動力や
剛性あるいは工具のたわみなどの点から見て、マ
ルテンサイト相を混在する場合は他の組織の鋼よ
りも切削量を増大することが出来、切削加工工程
の高能率化と結びつく。例えば、第2図の100
m/分の切削速度域においては工具に加わる切削
合力((Fc2+Fs2+Ft21/2)は球状化処理材で85
Kgf、フエライト・パーライト鋼で81Kgf、フエ
ライト・ベイナイト鋼で73Kgfであるが、マルテ
ンサイト相を混在した場合には63Kgfであり、フ
エライト・パーライト鋼より23%も切削合力が低
下しており、この分だけ切削量を増すことが出来
る。 第3図はマルテンサイト相を混在した鋼を切削
時の工具摩耗におよぼす影響と切りくず生成状態
を示したものである。切削条件は切削速度100
m/分、工具送り量0.25mm/回転、チツプブレー
カ幅2.5mm、超硬工具P10〔8,10,6,6,15,
15,0.3〕であり、8分間切削した後の工具逃げ
面のVB摩耗量を示した。被削材の焼もどし温度
はマルテンサイト相の低温焼もどしぜい性域とし
て知られている300℃前後で行つた。比較材とし
て、球状化処理材と焼もどしマルテンサイト一相
組織の鋼についても示した。硬さHv145および
150にあるSCM420およびSCM435鋼のVB摩耗量
は、0.04〜0.05mmである。これに対して、硬さが
Hv260から280の範囲にあるマルテンサイト相を
混在した試料のVB摩耗量は、0.03〜0.05mmであ
り、工具摩耗の点では好ましいと評価されている
球状化処理材に比較して殆んど同じ摩耗量を示し
ている。なお、通常焼入後650℃および550℃で焼
もどした硬さHv250および325の試料は連続した
リボン状の切りくずが生成し、被削材や工具に巻
き付き、工具摩耗試験は続行出来なかつた。
(こゝで示した切りくずは人為的に切断したもの
である。)なお、SCM420鋼の球状化処理材を切
削時にはしばしば工具に巻き付き易い切りくずが
生成し、そのつど摩耗試験を中断して切りくずを
排除しなければならなかつた。 第3表にマルテンサイト相を混在した鋼を高速
度鋼工具で切削した場合の工具寿命試験結果を示
した。切削条件は切削速度40m/分、工具送り量
0.2mm/回転、切削油なし、工具SKH4〔8,10,
6,6,15,15,0.4〕である。被削材はマルテ
ンサイト相を55〜57%混在した試料を用い、工具
寿命におよぼす焼もどし温度の影響として示し
た。なお、切削時間15分以上は被削材の形状から
試験出来なかつた。
[Table] As described above, according to the method of the present invention, it is possible to omit or simplify the pre-heat treatment such as normally performed isothermal annealing, spheroidizing annealing, or annealing and tempering. This has the effect of requiring less heat and shortening the processing time. In addition, it is possible to obtain hardness comparable to, for example, when SCM435 steel is subjected to conventional quenching-tempering treatment. Furthermore, since the material can be obtained as a part material that is easy to cut, there is no need for some parts to undergo heat treatment such as quenching or tempering after cutting, and therefore dimensional changes due to such post-heat treatment can be avoided. It has a good effect even if it is not taken into account. The steel of the present invention has an increased chip shear angle (φ),
Even thin chips have a small curl radius and have excellent processing properties. Conventional knowledge has held that the harder steel is cut or the higher the cutting speed, the more thin, continuous chips with a large chip shear angle (φ) and poor processability are generated. However, in the steel of the present invention, which contains a certain range of martensitic phases, the chip control improves as the hardness increases, and this tendency does not change even in the high-speed cutting range. The machinability test results are shown in Figure 1. The samples shown in Tables 1 and 2 were used as work materials. The cutting conditions for this test were: cutting speed 150m/min;
Tool feed rate 0.25 mm/rotation, depth of cut 1.5 mm, chip breaker width 2.5 mm, carbide tool P10 type [0,
10, 6, 6, 15, 15, 0.3] was used. moreover,
Cutting speed 80m/min, tool feed rate 0.15, 0.25, 0.30,
Tests were conducted on chip control under a wide range of conditions using various combinations of 0.35mm/rotation and chip breaker widths of 2.0 and 3.0mm. In each case, as shown in Figure 1, there was a tendency for the chip shear angle (φ) to increase as the hardness increased. This shows that steel containing a martensitic phase has excellent processability even though it produces thin chips under a wide range of cutting conditions. Moreover, recently, CBN tools that can cut hardened steel with a hardness of up to Hv700 have become popular, but since they are processed at high speeds, continuous chips that are difficult to process are often generated. This can be avoided by using the steel of the present invention, and the CBN tool's durability can be further demonstrated. Figure 2 shows the cutting resistance component of steel containing martensitic phase, and at the same time, SCM420 steel was spheroidized annealed (held at 750℃ for 2 hours and then furnace cooled (cooling rate of 10℃/hour). )), ferrite/pearlite structure (two comparative samples in Table 2), ferrite/pearlite structure
Comparisons were also made with each workpiece material with a bainite structure (air-cooled from a hot-rolled state with a diameter of 75 mm). Cutting resistance is principal force (Fc), feed force (Fs), back force (Ft)
However, both of these three component forces decrease in the samples containing a mixed amount of martensite (six samples in Table 2). This means that in terms of the power and rigidity of the cutting machine and the deflection of the tool, when martensitic phase is present, the amount of cutting can be increased compared to steels with other structures, which increases the cutting process. It is linked to efficiency. For example, 100 in Figure 2
In the cutting speed range of m/min, the resultant cutting force ((Fc 2 + Fs 2 + Ft 2 ) 1/2 ) applied to the tool is 85 for the spheroidized material.
Kgf is 81 Kgf for ferrite/pearlite steel and 73 Kgf for ferrite/bainitic steel, but when martensitic phase is mixed, it is 63 Kgf, which is a 23% lower cutting force than that of ferrite/pearlite steel. The amount of cutting can be increased by Figure 3 shows the influence on tool wear and chip formation during cutting of steel containing a martensitic phase. Cutting conditions are cutting speed 100
m/min, tool feed rate 0.25mm/rotation, chip breaker width 2.5mm, carbide tool P10 [8, 10, 6, 6, 15,
15, 0.3], which shows the amount of VB wear on the tool flank after cutting for 8 minutes. The tempering temperature of the workpiece material was around 300℃, which is known as the low-temperature tempering brittle range of the martensitic phase. As comparison materials, spheroidized steel and tempered martensitic single-phase steel are also shown. Hardness Hv145 and
The VB wear amount of SCM420 and SCM435 steel in 150 is 0.04-0.05mm. On the other hand, hardness
The V B wear amount of samples containing martensitic phase in the Hv range of 260 to 280 is 0.03 to 0.05 mm, which is almost less than that of the spheroidized material, which is evaluated to be preferable in terms of tool wear. It shows the same amount of wear. In addition, samples with hardness Hv250 and 325 that were tempered at 650℃ and 550℃ after normal quenching produced continuous ribbon-shaped chips that wrapped around the workpiece and tool, making it impossible to continue the tool wear test. .
(The chips shown here were cut artificially.) When cutting spheroidized SCM420 steel, chips that tend to wrap around the tool are often generated, and each time the wear test is interrupted and the cutting I had to get rid of the trash. Table 3 shows the results of a tool life test when steel containing a martensitic phase was cut using a high-speed steel tool. Cutting conditions: cutting speed 40m/min, tool feed rate
0.2mm/rotation, no cutting oil, tool SKH 4 [8, 10,
6, 6, 15, 15, 0.4]. The influence of tempering temperature on tool life was shown using a sample containing 55-57% martensitic phase as the workpiece material. Furthermore, due to the shape of the work material, it was not possible to test the cutting time for more than 15 minutes.

【表】 この結果から、高速度鋼工具の寿命におよぼす
焼もどし温度の影響は高温ほど望ましいことが分
る。さらに、比較材として通常の焼入後650℃で
焼もどした硬さHv250の試料を同一条件で切削し
た場合の工具寿命時間は7分40秒であり、同程度
の硬さである第3表の焼もどし温度500℃の試料
の工具寿命時間と比較すると軟かい相と硬いマル
テンサイト相を混在させた試料がすぐれている。 超硬および高速度鋼の工具摩耗試験からは、同
じ硬さの切削加工部品を得るための工程について
考慮することが出来た。すなわち、従来の工程で
は、○イ熱間鍛造→○ロ前熱処理→○ハ切削→○ニ焼入

焼もどし→○ホ研削……が通常である。しかし、本
発明の方法では、○イ熱間鍛造→○ロ冷却速度の制御
→○ハ焼もどし→○ニ切削→○ホ研削……。の工程とな
し得る場合もある。従来の「素材の熱処理」が
「冷却速度の制御」に置き替えられ、切削後の
「焼入・焼もどし」工程が省略出来るため、切削
部品の焼入・焼もどしによる寸法変化がなく、研
削しろを縮小させ、あるいは部品によつては「研
削」工程の省略も行える等の優れた効果を有す
る。
[Table] From these results, it can be seen that the higher the tempering temperature is, the more desirable it is for the influence of tempering temperature on the life of high-speed steel tools. Furthermore, as a comparative material, when cutting a sample with hardness Hv250 that was tempered at 650℃ after normal quenching under the same conditions, the tool life time was 7 minutes and 40 seconds, which is the same hardness as shown in Table 3. Compared to the tool life of the sample with a tempering temperature of 500℃, the sample with a mixture of soft and hard martensitic phases is superior. Tool wear tests on carbide and high-speed steel allowed us to consider the process to obtain machined parts of the same hardness. In other words, in the conventional process, ○A hot forging → ○B preheat treatment → ○C cutting → ○D quenching
Tempering → ○Grinding... is the usual process. However, in the method of the present invention, ○A hot forging → ○B cooling rate control → ○C tempering → ○D cutting → ○H grinding... In some cases, it can be done as a process. The conventional "heat treatment of the material" is replaced with "controlling the cooling rate" and the "quenching/tempering" process after cutting can be omitted, so there is no dimensional change due to quenching/tempering of the cut parts, and grinding It has excellent effects such as reducing the margin or even omitting the "grinding" process for some parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は異なるマルテンサイト量を混在させた
鋼の切削切りくず形状、第2図はマルテンサイト
相を混在させた鋼と他の相を混在させた鋼の切削
時の切削抵抗分力、第3図は異なるマルテンサイ
ト量を混在させた鋼を切削した時の工具摩耗量と
切りくず形状をそれぞれ示す。
Figure 1 shows the cutting chip shapes of steel mixed with different amounts of martensite, and Figure 2 shows the cutting resistance components during cutting of steel mixed with martensite phase and steel mixed with other phases. Figure 3 shows the amount of tool wear and chip shape when cutting steel with different amounts of martensite mixed together.

Claims (1)

【特許請求の範囲】 1 炭素を0.1〜0.6重量%含んだ鋼のAr3変態点
以上の温度から、Ar3変態点からAr1変態点に到
る温度域で一定時間保持した後、冷却して鋼中に
10〜75%のマルテンサイト相を均一に混在生成さ
せることを特徴とする被削性の優れた鋼の製造
法。 2 炭素を0.1〜0.6重量%含んだ鋼のAr3変態点
以上の温度から、Ar3変態点からAr1変態点に到
る温度域で一定時間保持した後、冷却して鋼中に
10〜75%のマルテンサイト相を均一に混在生成さ
せた後、焼もどしを行うことを特徴とする被削性
の優れた鋼の製造法。
[Claims] 1. A steel containing 0.1 to 0.6% by weight of carbon, which is maintained at a temperature above the Ar 3 transformation point and from the Ar 3 transformation point to the Ar 1 transformation point for a certain period of time, and then cooled. in steel
A method for producing steel with excellent machinability, which is characterized by the uniform generation of 10 to 75% martensitic phase. 2 After holding for a certain period of time in the temperature range from the Ar 3 transformation point of steel containing 0.1 to 0.6% by weight of carbon to the Ar 1 transformation point, it is cooled and incorporated into the steel.
A method for manufacturing steel with excellent machinability, which is characterized by uniformly generating a martensite phase of 10 to 75% and then tempering.
JP17899080A 1980-12-19 1980-12-19 Steel with superior machinability and its manufacture Granted JPS57104621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17899080A JPS57104621A (en) 1980-12-19 1980-12-19 Steel with superior machinability and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17899080A JPS57104621A (en) 1980-12-19 1980-12-19 Steel with superior machinability and its manufacture

Publications (2)

Publication Number Publication Date
JPS57104621A JPS57104621A (en) 1982-06-29
JPH0112811B2 true JPH0112811B2 (en) 1989-03-02

Family

ID=16058180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17899080A Granted JPS57104621A (en) 1980-12-19 1980-12-19 Steel with superior machinability and its manufacture

Country Status (1)

Country Link
JP (1) JPS57104621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10363513B2 (en) 2009-08-03 2019-07-30 Donaldson Company, Inc. Method and apparatus for forming fluted filtration media having tapered flutes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10363513B2 (en) 2009-08-03 2019-07-30 Donaldson Company, Inc. Method and apparatus for forming fluted filtration media having tapered flutes

Also Published As

Publication number Publication date
JPS57104621A (en) 1982-06-29

Similar Documents

Publication Publication Date Title
CN101906587B (en) Low carbon martensitic stainless steel and method for production thereof
EP0668365B1 (en) Graphitic steel compositions
JPH0156124B2 (en)
KR100213574B1 (en) Steel for plastic molding die
US20080095657A1 (en) Optimization Of Steel Metallurgy To Improve Broach Tool Life
JPS62199718A (en) Direct softening method for rolling material of steel for machine structural use
JP2567630B2 (en) High-fatigue strength free-cutting steel and manufacturing method thereof
JPH0112811B2 (en)
Osuzu et al. Application of microalloyed steels to achieve high toughness in hot forged components without further heat treatments
JPH01176055A (en) Non-heat treated steel for hot forging having excellent machinability
JPS6128742B2 (en)
JPH09316601A (en) Cold tool steel suitable for surface treatment, die and tool for the same
JPH01176031A (en) Manufacture of non-heattreated steel for hot forging
JPS62196327A (en) Manufacture of high-carbon wire bar for cold forging
JPS62127425A (en) Manufacture of induction-hardened gear
JPH05320748A (en) Production of high strength shaft parts excellent in form rollability and machinability
JPH02179841A (en) Non-heattreated steel for induction hardening and its manufacture
JPH0797656A (en) Cold forging steel
JPH03264648A (en) Free cutting steel having good accuracy of surface finished by machining and production thereof
JPS627243B2 (en)
JP2000265241A (en) Non-heat treated steel for induction contour hardening gear
JPH10317095A (en) Non-heat treated steel for induction contour hardening
JPS62194483A (en) Preparation of clock parts
JPS6386815A (en) Production of steel having excellent cold workability
JPH0128809B2 (en)