JPH01124966A - Electrolyte flow type cell system - Google Patents

Electrolyte flow type cell system

Info

Publication number
JPH01124966A
JPH01124966A JP62282083A JP28208387A JPH01124966A JP H01124966 A JPH01124966 A JP H01124966A JP 62282083 A JP62282083 A JP 62282083A JP 28208387 A JP28208387 A JP 28208387A JP H01124966 A JPH01124966 A JP H01124966A
Authority
JP
Japan
Prior art keywords
differential pressure
positive
solution
negative electrode
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62282083A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kanao
金尾 義行
Norio Ao
範夫 青
Kazunari Inokuchi
井ノ口 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62282083A priority Critical patent/JPH01124966A/en
Publication of JPH01124966A publication Critical patent/JPH01124966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the breakage of electrodes and an ion exchange membrane, and to prevent deterioration in cell efficiency by preventing the differential pressure between a positive chamber and a negative chamber. CONSTITUTION:Flow controller mounted pumps 8a, 8b which supply a positive solution 5 and a negative solution 6 of an electrolyte flow type cell 1 to an electrolyte layer 1 are installed on the outlet sides of a positive solution storage tank 7a1 and a negative solution storage tank 7b1. A differential pressure gauge 10 which measures the differential pressure between the positive solution 5 and the negative solution is installed on the outlet sides of the pumps 8a, 8b, that is, on the inlet side of an electrolytic bath. Each flow rate of the positive solution 5 and the negative solution 6 is controlled based on the differential pressure measured with the differential pressure gauge 10 with a controller 11 through the pumps 8a, 8b to eliminate the differential pressure between the positive solution and the negative solution. The breakage of electrodes and an ion exchange membrane is prevented and uneven flow such as one-side flow in the cell is corrected and cell efficiency is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電解液流通型電池例えば電力貯蔵を目的とす
るレドックスフロー型電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolyte flow type battery, such as a redox flow type battery intended for power storage.

[従来の技術] 近年電力の負荷変動に対して、種々の対策が考えられて
いるが、その対策の一環として電力貯蔵システムがある
が、その一つとして新型電池によるものが注目され開発
されつつある。
[Conventional technology] Various countermeasures have been considered in recent years to deal with power load fluctuations, and one such measure is an electric power storage system, one of which is one that uses a new type of battery, which is currently attracting attention and being developed. be.

それら新型電池としては、レドックスフロー型電池、ナ
トリウム−硫黄電池、亜鉛−塩素電池、亜鉛−臭素電池
等がある。この中で、シトツクスフロー型電池はレドッ
クスイオン(例えば鉄、クロムイオン)を含む電解液を
流通型電池に送り、酸化・還元することによって充電・
放電を行う常温作動型電池である。
These new batteries include redox flow batteries, sodium-sulfur batteries, zinc-chlorine batteries, zinc-bromine batteries, and the like. Among these, the cytox flow type battery sends an electrolyte containing redox ions (e.g. iron, chromium ions) to the flow type battery, and charges it by oxidizing and reducing it.
It is a normal temperature operating type battery that discharges electricity.

第3図はレドックスフロー型電池の原理を示す模式図で
ある。ここでは、レドックスフロー型電池の1例として
、塩化鉄、塩化クロムを塩酸水溶液に溶解した電解液と
、電極としてカーボン繊維布を用いた例で説明する。
FIG. 3 is a schematic diagram showing the principle of a redox flow battery. Here, as an example of a redox flow type battery, an example will be described in which an electrolytic solution in which iron chloride and chromium chloride are dissolved in an aqueous hydrochloric acid solution and carbon fiber cloth are used as electrodes.

第3図に示すように、放電時にはタンク7に貯えられた
2価の塩化クロム水溶液がポンプ8により電解液流通型
電解槽1のカーボン繊維布の電極2(負極)を浸透しな
から3価のクロムに変化し電子を1個放出する。放出さ
れた電子は外部で電気エネルギーを放出して流通型電解
槽1のもう一つのカーボン繊維布電極3(正極)へ移動
する。
As shown in FIG. 3, during discharge, the divalent chromium chloride aqueous solution stored in the tank 7 penetrates the carbon fiber cloth electrode 2 (negative electrode) of the electrolyte flow type electrolytic cell 1 by the pump 8. It changes to chromium and releases one electron. The emitted electrons emit electrical energy outside and move to the other carbon fiber cloth electrode 3 (positive electrode) of the flow-through electrolytic cell 1.

ここで別のタンク7に貯えられた3価の鉄イオンがポン
プ8により送られてきて、電子を受は取り、自身は2価
の鉄イオンになる。充電の場合は前述の逆の反応が行わ
れる。
Here, trivalent iron ions stored in another tank 7 are sent by a pump 8, receive and take electrons, and become divalent iron ions themselves. In the case of charging, the opposite reaction described above takes place.

以上はレドックスフロー型電池単独セルの場合を説明し
たものである。通常レドックスフロー型電池は、第4図
に示す如く、複数の電解槽(セル)に共通の電解液をマ
ニホールド9を介して並列に供給して電解反応を行なう
並列液供給方式を採用している。
The above is a description of the case of a single cell of a redox flow type battery. Normally, redox flow type batteries employ a parallel liquid supply method in which a common electrolyte is supplied to multiple electrolytic cells (cells) in parallel via a manifold 9 to perform an electrolytic reaction, as shown in Figure 4. .

これに対して、本出願人は、先に特願昭62−4279
1号において、電解液流通路を流れる漏洩電流による電
池損失を極力小さくした流通手段を備えた積層電池を得
るために、第5図(正極側のみ表示)、に示す如く、電
気的に直列に接続又は積層した複数個の単位セル1を小
グループに分け、この小グループ内の各単位セルには従
来通りの電解液を並列に供給し、一方各小グループ間で
は電解液を直列に供給する流通手段を備えた直列液供給
方式の電池を開発し、出願した。
On the other hand, the present applicant has previously filed Japanese Patent Application No. 62-4279.
In No. 1, in order to obtain a laminated battery equipped with a flow means that minimizes battery loss due to leakage current flowing through the electrolyte flow path, as shown in Figure 5 (only the positive electrode side is shown), electrically connected in series. A plurality of connected or stacked unit cells 1 are divided into small groups, and the conventional electrolytic solution is supplied in parallel to each unit cell in this small group, while the electrolytic solution is supplied in series between each small group. We developed a serial liquid supply type battery equipped with a distribution means and filed an application.

[発明が解決すべき問題点] レドックスフロー型電池においては、正極室と負極室に
圧力差が生ずると (1)複極板の破損 (2)イオン交換膜の破損 (3)電極(炭素繊維布)とイオン交換膜又は複極板と
の間に隙間を生じ電解液の片流れを生じ電池の内部抵抗
の増加をもたらし電池効率を悪くする。
[Problems to be solved by the invention] In a redox flow battery, when a pressure difference occurs between the positive electrode chamber and the negative electrode chamber, (1) the bipolar plate is damaged (2) the ion exchange membrane is damaged (3) the electrode (carbon fiber A gap is created between the ion exchange membrane (cloth) and the ion exchange membrane or bipolar plate, causing a one-sided flow of the electrolyte, increasing the internal resistance of the battery, and impairing battery efficiency.

等の問題が起こる場合があった。Problems such as these may occur.

特に直列液供給方式のレドックスフロー型電池では、電
解槽の圧損が各小グループの圧損の和となり大きいため
、並列液供給方式に比べ正極室と負極室の差圧が大きく
上記に述べたような問題が起こりがちであった。
In particular, in a redox flow battery with a serial liquid supply system, the pressure drop in the electrolyzer is the sum of the pressure losses of each small group and is large, so the differential pressure between the positive electrode chamber and the negative electrode chamber is large compared to the parallel liquid supply system. Problems tended to occur.

本発明は電解液貯蔵タンクと電解槽とからなる電解液流
通型電池において、正極室と負極室に圧力差が生じない
ようにし、前記の如き問題を未然に防止する電解液流通
型電池システムを提供することを目的とするものである
The present invention provides an electrolyte flow type battery system which prevents the above-mentioned problems by preventing pressure differences from occurring between the positive electrode chamber and the negative electrode chamber in an electrolyte flow type battery consisting of an electrolyte storage tank and an electrolytic cell. The purpose is to provide

[問題点を解決するための手段] 本発明は、電解液貯蔵タンクと電解槽とからなる電解液
流通型電池において、前記電解槽入口における正極液と
負極液の差圧を検出する差圧計と該差圧をもとに正極液
と負極液の流量比を設定するコントローラと該正極液と
負極液の流量を制御するポンプとからなることを特徴と
する電解液流通型電池システムである。
[Means for Solving the Problems] The present invention provides an electrolyte flow type battery consisting of an electrolyte storage tank and an electrolytic cell, which includes a differential pressure gauge that detects the differential pressure between the positive electrode liquid and the negative electrode liquid at the inlet of the electrolytic cell. This electrolyte flow type battery system is characterized by comprising a controller that sets the flow rate ratio of the positive electrode liquid and the negative electrode liquid based on the differential pressure, and a pump that controls the flow rates of the positive electrode liquid and the negative electrode liquid.

[作用] 本発明は、第1図に示すように、 (1)正極液と負極液の差圧を検出する差圧計(2)差
圧をもとに正極液と負極液の流量比を設定するコントロ
ーラ (3)正極液と負極液の流量を制御するポンプからなっ
ているので電解液の片流れを発生せず正極液と負極液の
両液流量を制御するものである。
[Function] As shown in Fig. 1, the present invention has the following features: (1) A differential pressure gauge that detects the differential pressure between the positive electrode liquid and the negative electrode liquid. (2) The flow rate ratio of the positive electrode liquid and the negative electrode liquid is set based on the differential pressure. Controller (3) consists of a pump that controls the flow rates of the positive and negative electrode liquids, so it controls the flow rates of both the positive and negative electrode liquids without causing a one-sided flow of the electrolyte.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例] 第1図は本発明の一実施例を示す電解液流通型電池シス
テムの概念を示す模式説明図である。
[Example] FIG. 1 is a schematic explanatory diagram showing the concept of an electrolyte flow type battery system showing an example of the present invention.

第1図において、1:電解液流通型電池、5:正極液、
6:負極液、7a  、7a  :正極液夕ンク、7b
  、7b  :負極液タンク、8a、8b二流量調整
器付きポンプ、10:差圧計、11:コントローラであ
る。
In FIG. 1, 1: Electrolyte flow type battery, 5: Positive electrode liquid,
6: Negative electrode liquid, 7a, 7a: Positive electrode liquid tank, 7b
, 7b: negative electrode liquid tank, 8a, 8b pump with two flow rate regulators, 10: differential pressure gauge, 11: controller.

第1図に示すように、電解液流通型電池1の正極液5並
びに負極液6を電解槽1に送出すポンプとして流量調整
器付きポンプ8a、8bを正極液貯蔵タンク7a 及び
負極液貯蔵タンク7b1の出口側に設け、次に正極液5
と負極液6との差圧を計測する差圧計10をポンプ8a
、8bの出口即ち電解槽入口側に設け、この差圧計10
による差圧をもとに、正極液5並びに負極液6の流量比
を設定するコントローラー1とこの設定流量比によって
正極液5.負極液6各々の流量を流量調整付きポンプ8
a及び8bによって制御するものである。
As shown in FIG. 1, pumps 8a and 8b with flow rate regulators are used as pumps for sending the positive electrode solution 5 and negative electrode solution 6 of the electrolyte flow type battery 1 to the electrolytic cell 1. 7b1 on the outlet side, and then the catholyte 5
A differential pressure gauge 10 that measures the differential pressure between the
, 8b, that is, on the electrolytic cell inlet side, and this differential pressure gauge 10
The controller 1 sets the flow rate ratio of the positive electrode liquid 5 and the negative electrode liquid 6 based on the differential pressure between the positive electrode liquid 5 and the negative electrode liquid 6. Pump 8 with flow rate adjustment for each flow rate of negative electrode liquid 6
a and 8b.

次に本発明装置を用いた実施例について述べる。Next, an example using the device of the present invention will be described.

実施例1 正極に4規定塩酸酸性の11oll/R塩化第一鉄水溶
液を、負極に4規定塩酸酸性の1a+oj?/j?塩化
第ニクロム水溶液を電池活物質とし、正極、負極を厚み
1.5mmのカーボンクロス(5cm X 4 cm 
)、隔膜を陽イオン交換膜とする単電池電解槽を用いて
充・放電実験を行った。
Example 1 A 11oll/R ferrous chloride aqueous solution acidified with 4N hydrochloric acid was used as the positive electrode, and 1a+oj? acidified with 4N hydrochloric acid was used as the negative electrode. /j? Nichrome chloride aqueous solution was used as the battery active material, and the positive and negative electrodes were made of carbon cloth (5 cm x 4 cm) with a thickness of 1.5 mm.
), charging and discharging experiments were conducted using a single-cell electrolytic cell with a cation exchange membrane as the diaphragm.

正極、負極の電解液流量を4.2  rtrll /l
1hins平均電流密度を4hA/ am”とし、正極
液、負極液夫々の排出口に電解槽内圧力を調整できる圧
力調節コックを設けた。また正極液、負極液の供給口に
U字管マノメータを設置して電解槽内の差圧を測定した
The electrolyte flow rate of the positive and negative electrodes was 4.2 rtrll/l.
The average current density for 1 h is 4 hA/am", and a pressure adjustment cock that can adjust the pressure inside the electrolytic cell is installed at the outlet of each of the positive and negative electrode liquids. U-shaped tube manometers are also installed at the supply ports of the positive and negative electrode liquids. was installed to measure the differential pressure inside the electrolytic cell.

第2図に正極液、負極液間差圧ΔP (wHg)と電圧
効率との関係を示す。第2図に示す如く、その結果、正
・負極液間の差圧を零或は正極液側を170 +mmH
gmmHg程度調高した時には80%以上の電圧効率が
得られたが、正極液側の圧力をさらに高くすると徐々に
電圧効率は低下し、差圧が200m+sHg以上になる
と50%以下に急激に低下した。
FIG. 2 shows the relationship between the differential pressure ΔP (wHg) between the positive and negative electrode liquids and the voltage efficiency. As shown in Figure 2, as a result, the differential pressure between the positive and negative electrode liquids is zero, or the positive electrode liquid side is reduced to 170 + mmH.
When the voltage was adjusted to about gmmHg, a voltage efficiency of over 80% was obtained, but as the pressure on the catholyte side was further increased, the voltage efficiency gradually decreased, and when the differential pressure exceeded 200m+sHg, it rapidly decreased to below 50%. .

負極液側の圧力を高めにすると差圧が100 +amH
g以下でも電圧効率は低下し、150+amHg以上で
50%以下となった。
If the pressure on the negative electrode liquid side is increased, the differential pressure will be 100 + amH.
The voltage efficiency decreased even below 150+amHg, and became 50% or less above 150+amHg.

従ってFe2+73+   3+72+系のレドックス
・フCr ロー型電池においては、正極液側の圧力を第2図より1
O=100 mm11gの範囲で運転することが望まし
いことが判る。
Therefore, in the Fe2+73+ 3+72+ system redox Cr low-type battery, the pressure on the catholyte side is set to 1 from Figure 2.
It can be seen that it is desirable to operate within the range of O=100 mm11 g.

実施例2 正極、負極夫々を厚み1.5mmのカーボンクロス(3
0c+n X 33cm ) 、隔膜を陽イオン交換膜
、複極板を厚みllll11のポリエチレン結着カーボ
ン板とするセル数10の電解槽を用いて、実施例1と同
一溶液を用いた耐圧試験を行った。正極、負極夫々につ
いて、電解槽供給口と排出口の圧力差を測定することに
よって正、負極液間の差圧を求めた。
Example 2 The positive electrode and the negative electrode were each covered with 1.5 mm thick carbon cloth (3
A pressure test was conducted using the same solution as in Example 1, using an electrolytic cell with 10 cells in which the diaphragm was a cation exchange membrane and the bipolar plate was a polyethylene bonded carbon plate with a thickness of 11 mm. . For each of the positive and negative electrodes, the pressure difference between the positive and negative electrode liquids was determined by measuring the pressure difference between the supply port and the discharge port of the electrolytic cell.

正極、負極夫々の流量を変化させたところ、正。When the flow rates of the positive and negative electrodes were changed, the result was positive.

負極液間の差圧が500 m+sHg以下の範囲では構
成材料の破損等の損傷は認められなかった。
No damage such as breakage of the constituent materials was observed in the range where the differential pressure between the negative electrode liquid was 500 m+sHg or less.

この電解槽を5段直列に溶液が供給されるように接続し
、流量を約3d+a’ /sinとして圧力のの測定お
よび充放電実験を行った。その結果、正極。
These electrolytic cells were connected in five stages so that the solution was supplied in series, and pressure measurements and charging/discharging experiments were conducted at a flow rate of approximately 3d+a'/sin. As a result, the positive electrode.

負極平均の電解槽内圧力は、1つの電解槽に単独で溶液
を流通した時の約5倍に相当する950 mm1gとな
り、正、負極液間の差圧は流量制御を施さない時、25
0 m+511gとなった。これを実施例1に示した範
囲内になる様に流量を制御したところ、電圧効率が向上
し良好な結果が得られた。また、電解槽構成材料の破損
等も認められなかった。
The average pressure inside the electrolytic cell at the negative electrode is 950 mm/g, which is approximately five times as much as when the solution is passed through one electrolytic cell alone, and the differential pressure between the positive and negative electrode liquids is 25 mm/g when no flow rate control is applied.
It became 0 m + 511 g. When the flow rate was controlled to be within the range shown in Example 1, the voltage efficiency was improved and good results were obtained. Furthermore, no damage to the electrolytic cell constituent materials was observed.

[発明の効果] 本発明の電解液流通型電池システムによれば、正極液、
負極液各々の流量を流量調整付きポンプによって制御し
正極液と負極液との差圧を無くしたので、電池の複極板
、イオン交換膜等の破損が無くなり、更に電池内の片流
れ等の偏流が矯正されたので反応性に良い影響をもたら
した。
[Effect of the invention] According to the electrolyte flow type battery system of the present invention, the positive electrode liquid,
The flow rate of each negative electrode liquid is controlled by a pump with flow rate adjustment to eliminate the differential pressure between the positive and negative electrode liquids, which eliminates damage to the battery's bipolar plates, ion exchange membranes, etc., and also prevents uneven flow such as one-sided flow within the battery. was corrected, which had a positive effect on reactivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電解液流通型電池シス
テムの概念を示す模式説明図、第2図は実施例1図にお
ける正・負極間差圧と電圧効率との関係図、第3図はレ
ドックスフロー型電池の原理を示す模式図、第4図は従
来の並列液供給方式の電解液流通方法の模式説明図、第
5図は直列液供給方式の電解液流通方法を示す模式説明
図である。 図において、1:電解液流通型電解槽、2:正極、3:
負極、4:、イオン交換膜、5:正極液。 6:負極液、7:タンク、7a、7a2:正極■ 液タンク、7b7b、:負極液タンク、8:1’   
 2 ポンプ、8a、8b:流量調整付きポンプ、9:マニホ
ールド、10:差圧計、11:コントローラである。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a schematic explanatory diagram showing the concept of an electrolyte flow type battery system showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the differential pressure between the positive and negative electrodes and voltage efficiency in Fig. Figure 3 is a schematic diagram showing the principle of a redox flow battery, Figure 4 is a schematic explanatory diagram of the electrolyte distribution method using the conventional parallel liquid supply system, and Figure 5 is a schematic diagram showing the electrolyte distribution method using the serial liquid supply system. It is an explanatory diagram. In the figure, 1: Electrolyte flow type electrolytic cell, 2: Positive electrode, 3:
Negative electrode, 4: ion exchange membrane, 5: positive electrode liquid. 6: Negative electrode liquid, 7: Tank, 7a, 7a2: Positive electrode liquid tank, 7b7b, : Negative electrode liquid tank, 8: 1'
2 pumps, 8a, 8b: pump with flow rate adjustment, 9: manifold, 10: differential pressure gauge, 11: controller. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 電解液貯蔵タンクと電解槽とからなる電解液流通型電池
において、前記電解槽入口における正極液と負極液の差
圧を検出する差圧計と該差圧をもとに正極液と負極液の
流量比を設定するコントローラと該正極液と負極液の流
量を制御するポンプとからなることを特徴とする電解液
流通型電池システム。
In an electrolyte flow type battery consisting of an electrolyte storage tank and an electrolytic cell, there is a differential pressure gauge that detects the differential pressure between the positive electrode liquid and the negative electrode liquid at the inlet of the electrolytic cell, and a flow rate of the positive electrode liquid and the negative electrode liquid is determined based on the differential pressure. An electrolyte flow type battery system comprising a controller that sets the ratio and a pump that controls the flow rates of the positive and negative electrode fluids.
JP62282083A 1987-11-10 1987-11-10 Electrolyte flow type cell system Pending JPH01124966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62282083A JPH01124966A (en) 1987-11-10 1987-11-10 Electrolyte flow type cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62282083A JPH01124966A (en) 1987-11-10 1987-11-10 Electrolyte flow type cell system

Publications (1)

Publication Number Publication Date
JPH01124966A true JPH01124966A (en) 1989-05-17

Family

ID=17647903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62282083A Pending JPH01124966A (en) 1987-11-10 1987-11-10 Electrolyte flow type cell system

Country Status (1)

Country Link
JP (1) JPH01124966A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611840B2 (en) 2004-08-03 2009-11-03 Agency For Science, Technology And Research Method and device for the treatment of biological samples
WO2016117264A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery
WO2016117262A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117265A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117263A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
CN117393810A (en) * 2023-12-12 2024-01-12 江苏美淼储能科技有限公司 Method for recovering capacity of vanadium battery on line and inhibiting diffusion of vanadium ion across membrane on line

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611840B2 (en) 2004-08-03 2009-11-03 Agency For Science, Technology And Research Method and device for the treatment of biological samples
WO2016117264A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery
WO2016117262A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117265A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117263A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
JPWO2016117264A1 (en) * 2015-01-23 2017-11-02 住友電気工業株式会社 Redox flow battery
CN117393810A (en) * 2023-12-12 2024-01-12 江苏美淼储能科技有限公司 Method for recovering capacity of vanadium battery on line and inhibiting diffusion of vanadium ion across membrane on line
CN117393810B (en) * 2023-12-12 2024-03-08 江苏美淼储能科技有限公司 Method for recovering capacity of vanadium battery on line and inhibiting diffusion of vanadium ion across membrane on line

Similar Documents

Publication Publication Date Title
EP3346537B1 (en) Bipolar plate, cell frame and cell stack, and redox flow battery
US7682728B2 (en) Electrochemical battery incorporating internal manifolds
CN108428902A (en) A kind of iron-chrome liquor galvanic battery
JPWO2016208482A1 (en) Bipolar plate, cell frame and cell stack, and redox flow battery
TW201633591A (en) Redox-flow battery
CN108417858A (en) A kind of flow-field plate and iron-chrome liquor galvanic battery
JPWO2018116467A1 (en) Cell frame, cell stack, and redox flow battery
AU2021411601A9 (en) A redox flow battery with a balancing cell
JPH01320776A (en) Redox flow type battery
JPH01124966A (en) Electrolyte flow type cell system
WO2016117265A1 (en) Redox-flow battery operation method and redox-flow battery
JPS63119166A (en) Fuel battery
KR20170015798A (en) Heat exchanger for redox flow battery
JPH01146265A (en) Rebalancing device of electrolyte flow type cell
WO2016117263A1 (en) Redox-flow battery operation method and redox-flow battery
JP3494689B2 (en) Electrolyte flow battery
CN108470930A (en) A kind of iron-chromium liquid stream battery stack
JPS63164172A (en) Shunt current erasing device for redox flow battery
JP2020119831A (en) Rebalancing system of redox flow secondary battery
TW202036971A (en) Battery cell, cell stack and redox flow battery
KR20200055274A (en) Bipolar plate and unit cell for redox flow cell battery and redox flow battery comprising the same
JPH01115068A (en) Operation of redox-flow cell
JPH01102858A (en) Side reaction suppressing method for redox flow type battery
JPH02183968A (en) Cell stack for electrolyte circulation type secondary battery and cell stack fitting member
JPH02250269A (en) Electrolyte circulation type secondary battery