WO2016117265A1 - Redox-flow battery operation method and redox-flow battery - Google Patents

Redox-flow battery operation method and redox-flow battery Download PDF

Info

Publication number
WO2016117265A1
WO2016117265A1 PCT/JP2015/085612 JP2015085612W WO2016117265A1 WO 2016117265 A1 WO2016117265 A1 WO 2016117265A1 JP 2015085612 W JP2015085612 W JP 2015085612W WO 2016117265 A1 WO2016117265 A1 WO 2016117265A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
negative electrode
positive electrode
circulation
differential pressure
Prior art date
Application number
PCT/JP2015/085612
Other languages
French (fr)
Japanese (ja)
Inventor
克也 山西
康充 筒井
貴浩 隈元
敬二 矢野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2016117265A1 publication Critical patent/WO2016117265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for operating a redox flow battery used for instantaneous voltage drop countermeasures, power failure countermeasures, load leveling, and the like, and a redox flow battery.
  • An electrolyte circulation type battery typically a redox flow battery (RF battery).
  • An RF battery is a battery that charges and discharges using a difference in redox potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte (see, for example, Patent Document 1).
  • the RF battery ⁇ includes a battery cell 100 separated into a positive electrode portion 102 and a negative electrode portion 103 by a diaphragm 101 that allows hydrogen ions to pass therethrough.
  • a positive electrode 104 is built in the positive electrode part 102, and a positive electrode tank 106 for storing a positive electrode electrolyte is connected to the positive electrode forward pipe 108 and the positive electrode return pipe 110.
  • the positive electrode forward pipe 108 is provided with a pump (positive electrode liquid feeding device) 112, and a positive electrode circulation mechanism 100 ⁇ / b> P that circulates the positive electrode electrolyte is constituted by these members 106, 108, 110, and 112.
  • the negative electrode unit 103 includes a negative electrode 105 therein, and a negative electrode tank 107 that stores a negative electrode electrolyte is connected to the negative electrode forward tube 109 and the negative electrode return tube 111.
  • the negative electrode forward pipe 109 is provided with a pump (negative electrode liquid feeding device) 113, and these members 107, 109, 111, 113 constitute a negative electrode circulation mechanism 100 N that circulates the negative electrode electrolyte. .
  • the electrolyte stored in the tanks 106 and 107 is circulated in the cells 102 and 103 by the pumps 112 and 113 during charging and discharging. When charging / discharging is not performed, the pumps 112 and 113 are stopped and the electrolytic solution is not circulated.
  • a plurality of the battery cells 100 are usually stacked inside a structure called a cell stack 200 as shown in FIG.
  • the cell stack 200 is configured by sandwiching a laminated structure called a sub-stack 200 s from both sides with two end plates 210 and 220 and tightening with a tightening mechanism 230 (in the illustrated configuration, a plurality of sub-stacks are arranged). 200 s is used).
  • the sub-stack 200s is formed by stacking a plurality of cell units including the cell frame 120, the positive electrode 104, the diaphragm 101, the negative electrode 105, and the cell frame 120, and supplying the stacked body.
  • the cell frame 120 provided in the cell unit includes a frame 122 having a through window and a bipolar plate 121 that closes the through window, and is arranged so that the positive electrode 104 is in contact with one surface side of the bipolar plate 121.
  • the negative electrode 105 is disposed on the other surface side of the bipolar plate 121 so as to be in contact therewith.
  • one battery cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.
  • Distribution of the electrolyte solution to the battery cell 100 via the supply / discharge plates 190, 190 in the sub stack 200 s is performed by the supply manifolds 123, 124 formed in the frame body 122 and the discharge manifolds 125, 126. .
  • the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 through an inlet slit formed on one side (the front side of the paper) of the frame 122, and the outlet slit formed at the top of the frame 122 Then, the liquid is discharged to the drainage manifold 125.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 through an inlet slit (shown by a dotted line) formed on the other surface side (back side of the paper surface) of the frame body 122. Is discharged to the drainage manifold 126 through an outlet slit (shown by a dotted line) formed in the upper portion of the liquid.
  • An annular sealing member 127 such as an O-ring or a flat packing is disposed between the cell frames 120, and leakage of the electrolyte from the sub stack 200s is suppressed.
  • the input / output of electric power between the battery cell 100 provided in the sub stack 200s and the external device is performed by a current collecting structure using a current collecting plate made of a conductive material.
  • a pair of current collecting plates is provided for each sub-stack 200s, and each current collecting plate is electrically connected to the bipolar plate 121 of the cell frame 120 positioned at both ends in the stacking direction among the stacked cell frames 120. Has been.
  • the present invention has been made in view of the above circumstances, and one of its purposes is the pressure of the positive electrode electrolyte acting on the diaphragm in the cell stack from the circulation to the stop of the positive electrode electrolyte and the negative electrode electrolyte.
  • Another object of the present invention is to provide a redox flow battery operating method and a redox flow battery in which one of the pressure of the negative electrode electrolyte and the pressure of the negative electrode electrolyte can be made higher than the other.
  • a method for operating a redox flow battery according to an aspect of the present invention is to circulate a positive electrode electrolyte using a positive electrode circulation mechanism in a cell stack in which a plurality of battery cells having a positive electrode, a negative electrode, and a diaphragm are stacked, This is a method for operating a redox flow battery in which a negative electrode electrolyte is circulated using a negative electrode circulation mechanism.
  • the circulation amount of one electrolyte is larger than the circulation amount of the other electrolyte
  • the pressure of the one electrolytic solution acting on the diaphragm is set to a differential pressure state higher than the pressure of the other electrolytic solution acting on the diaphragm, and the circulation amount of the positive electrode electrolyte and the negative electrode electrolyte is decreased. Even when the circulation of the electrolytic solution is stopped, the circulating amount of the one electrolytic solution is made larger than the circulating amount of the other electrolytic solution to maintain the differential pressure state.
  • a redox flow battery includes a cell stack in which a plurality of battery cells having a positive electrode, a negative electrode, and a diaphragm are stacked, and a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack;
  • a redox flow battery comprising a negative electrode circulation mechanism for circulating a negative electrode electrolyte in the cell stack.
  • the redox flow battery includes the positive electrode circulation mechanism so that the circulation amount of one electrolyte solution is larger than the circulation amount of the other electrolyte solution from the circulation to the stop of the cathode electrolyte and the anode electrolyte.
  • a flow rate controller for controlling the negative electrode circulation mechanism is provided.
  • the pressure of the positive electrode electrolyte and the pressure of the negative electrode electrolyte acting on the diaphragm in the cell stack during the circulation and stop of the positive electrode electrolyte and the negative electrode electrolyte can be made higher than the other.
  • the operation method of the redox flow battery according to the embodiment circulates the positive electrode electrolyte using a positive electrode circulation mechanism in a cell stack in which a plurality of battery cells each having a positive electrode, a negative electrode, and a diaphragm are stacked.
  • This is a method for operating a redox flow battery in which a negative electrode electrolyte is circulated using a negative electrode circulation mechanism.
  • the circulation amount of one electrolyte is larger than the circulation amount of the other electrolyte
  • the pressure of the one electrolytic solution acting on the diaphragm is set to a differential pressure state higher than the pressure of the other electrolytic solution acting on the diaphragm, and the circulation amount of the positive electrode electrolyte and the negative electrode electrolyte is decreased. Even when the circulation of the electrolytic solution is stopped, the circulating amount of the one electrolytic solution is made larger than the circulating amount of the other electrolytic solution to maintain the differential pressure state.
  • the difference between the positive electrode solution and the negative electrode electrolyte is circulated in the cell stack and the circulation of both the electrolytes is stopped. Since the pressure state is maintained, the direction of the pressure acting on the diaphragm can be made constant. As a result, it is possible to suppress excessive stress from acting on the diaphragm, and to prevent the diaphragm from being damaged.
  • the differential pressure state in which the pressure of one electrolyte acting on the diaphragm is higher than the pressure of the other electrolyte acting on the diaphragm is such that there is no substantial hindrance to the operation of the redox flow battery.
  • the pressure difference between the two electrolytes can be set as appropriate according to the purpose. For example, before starting the operation of stopping the circulation of the electrolytic solution (during operation of the redox flow battery), the difference between the pressure of one electrolytic solution and the pressure of the other electrolytic solution can be 1000 Pa or more.
  • the decrease rate of the circulation amount of one electrolyte solution is set to the circulation amount of the other electrolyte solution.
  • an electrolytic solution tank provided in a circulation mechanism for circulating the one electrolytic solution is used as an electrolytic solution tank provided in a circulation mechanism for circulating the other electrolytic solution.
  • the cell stack may be filled with both electrolytes when both electrolytes are not circulated.
  • the differential pressure state can be maintained even when both electrolytes are not circulating. Also, if the differential pressure state is maintained when both electrolytes are not circulating, a device that circulates one electrolyte solution (for example, a liquid delivery device such as a pump) when recirculation of both electrolyte solutions is resumed. Even if the start-up is delayed from the start-up of the device that circulates the other electrolyte for some reason, it is difficult to achieve a reverse differential pressure state in which the pressure of the other electrolyte acting on the diaphragm is higher than the pressure of the one electrolyte.
  • a device that circulates one electrolyte solution for example, a liquid delivery device such as a pump
  • a redox flow battery includes a cell stack in which a plurality of battery cells each having a positive electrode, a negative electrode, and a diaphragm, a positive electrode circulation mechanism for circulating a positive electrolyte in the cell stack, and the cell
  • a redox flow battery comprising: a negative electrode circulation mechanism that circulates a negative electrode electrolyte in a stack.
  • the redox flow battery includes the positive electrode circulation mechanism so that the circulation amount of one electrolyte solution is larger than the circulation amount of the other electrolyte solution from the circulation to the stop of the cathode electrolyte and the anode electrolyte.
  • a flow rate controller for controlling the negative electrode circulation mechanism is provided.
  • the differential pressure state can be maintained both when the positive and negative electrolytes are circulated in the cell stack and when both the electrolytes are stopped. Therefore, the redox flow battery is a redox flow battery in which the direction of pressure acting on the diaphragm provided in the redox flow battery is constant and the diaphragm is not easily damaged.
  • the RF battery 1 includes a cell stack 2, a positive electrode circulation mechanism 3P, and a negative electrode circulation mechanism 3N, as in the conventional RF battery.
  • the configuration of the cell stack 2 is shown in a simplified manner, but actually, a configuration in which a plurality of sub-stacks 200 s are fastened with end plates 210 and 220 as described with reference to the lower diagram of FIG. 15. It has.
  • a plurality of battery cells 100 are actually stacked.
  • Each battery cell 100 includes a positive electrode 104, a negative electrode 105, and a diaphragm 101 that separates both electrodes 104 and 105.
  • the positive electrode circulation mechanism 3 ⁇ / b> P includes a positive electrode tank 106, a positive electrode pipe line including a positive electrode forward pipe 108 and a positive electrode return pipe 110, and a pump (a positive electrode liquid feeding device) 112.
  • the positive electrode forward pipe 108 is a pipe that supplies the positive electrode electrolyte from the positive electrode tank 106 to the cell stack 2
  • the positive electrode return pipe 110 is a pipe that discharges the positive electrode electrolyte from the cell stack 2 to the positive electrode tank 106.
  • the pump 112 is a member that is provided in the middle of the positive electrode outward pipe 108 and that sends out the positive electrode electrolyte to the cell stack 2. In the case of such a configuration, the circulation amount of the positive electrode electrolyte can be changed by adjusting the output of the pump 112.
  • the negative electrode circulation mechanism 3 ⁇ / b> N includes a negative electrode tank 107, a negative electrode pipe composed of a negative electrode forward pipe 109 and a negative electrode return pipe 111, and a pump (negative electrode liquid feeding device) 113.
  • the negative electrode forward pipe 109 is a pipe for supplying a negative electrode electrolyte from the negative electrode tank 107 to the cell stack 2
  • the negative electrode return pipe 111 is a pipe for discharging the negative electrode electrolyte from the cell stack 2 to the negative electrode tank 107.
  • the pump 113 is a member that is provided in the middle of the negative electrode outgoing pipe 109 and that feeds the negative electrode electrolyte solution to the cell stack 2. In the case of such a configuration, the circulation amount of the negative electrode electrolyte can be changed by adjusting the output of the pump 113.
  • the main difference between the RF battery 1 of the embodiment having the above-described configuration and the conventional one is that the positive electrode electrolyte and the negative electrode electrolyte are circulated in the cell stack 2 and the circulation of both electrolytes is stopped. And a flow rate controller 5 for maintaining a first differential pressure state (a state in which the pressure acts in the direction of the filled arrow) in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the negative electrode electrolyte. It is.
  • the flow rate controller 5 is electrically connected to both the pumps 112 and 113 so as to relatively control the output of the pump (liquid feeding device for positive electrode) 112 and the output of the pump (liquid feeding device for negative electrode) 113. Connected.
  • the amount of electrolyte sent by each pump 112, 113 (that is, the amount of electrolyte circulated) varies according to the output of the pumps 112, 113.
  • the positive electrode electrolyte that acts on the diaphragm 101 in the cell stack 2 by making the amount of the positive electrode electrolyte sent from the pump 112 larger than the amount of the negative electrode electrolyte sent from the pump 113. Creates a first differential pressure state in which the pressure of is higher than the pressure of the negative electrode electrolyte.
  • the flow controller 5 controls the pumps 112 and 113 so that the first differential pressure state can be maintained even when the circulation of both electrolytes is stopped.
  • Two typical control patterns will be described with reference to FIGS. 2 and 3 are graphs showing changes in the amount of liquid fed from the pumps 112 and 113 (that is, the amount of circulation of both electrolytes) from the state in which both electrolytes are circulated until the circulation is stopped. is there. 2 and 3, the vertical axis represents the amount of liquid fed from the pumps 112 and 113, and the horizontal axis represents time. Further, the solid line in the graph indicates the amount of the positive electrode electrolyte supplied, and the dotted line indicates the amount of the negative electrode electrolyte supplied.
  • Control pattern I As shown in the graph of FIG. 2, in the control pattern I, both electrolyte solutions are supplied at a time t0 from the state in which both electrolyte solutions are circulated with the amount of cathode electrolyte supplied larger than the amount of anode electrolyte supplied. Start to stop circulating. At this time, the rate of decrease in the amount (circulation amount) of the positive electrode electrolyte is set to be greater than the rate of decrease in the amount (circulation amount) of the negative electrode electrolyte. At time t1, the feeding of both electrolytes is stopped almost simultaneously.
  • control pattern I it is possible to stop the circulation of both electrolytic solutions while gradually reducing the difference between the feeding amounts (circulating amounts) of both electrolytic solutions.
  • the stress acting on the diaphragm 101 can be gradually reduced until the circulation of both electrolytes is stopped, damage to the diaphragm 101 can be effectively prevented.
  • Control Pattern II As shown in the graph of FIG. 3, also in the control pattern II, the circulation of both electrolytes starts to be stopped at time t0.
  • the rate of decrease in the amount (circulation amount) of the positive electrode electrolyte is substantially equal to the rate of decrease in the amount (circulation amount) of the negative electrode electrolyte.
  • the negative electrode electrolyte was supplied at time t2. After that, the feeding of the positive electrode electrolyte stops at time t3.
  • valves 114 and 116 are present in the positive line and valves 115 and 117 are present in the negative line.
  • the opening / opening / closing times of the valves 114 to 117 may be controlled by the flow control unit 5. By doing so, it becomes easy to perform the two control patterns.
  • the positive electrode tank 106 may be disposed at a higher position than the negative electrode tank 107. Then, even after the circulation of both electrolytes is stopped, the cell stack 2 is filled with both electrolytes. By doing so, even if both electrolytes are not circulating, the first differential pressure state can be maintained by the potential energy.
  • the RF battery 1 may be provided with a first differential pressure forming mechanism for facilitating the formation of the first differential pressure state.
  • the first differential pressure forming mechanism changes the configuration (mainly dimensions) of the existing members provided in the RF battery 1, and specifically provides a structural difference between the positive electrode circulation mechanism 3P and the negative electrode circulation mechanism 3N. Can be formed.
  • an embodiment of the first differential pressure forming mechanism will be described with reference to FIGS. 4 to 6, the tank, the pump, and the valve are omitted, and in FIG. 7, the cell stack is also omitted.
  • FIG. 4 shows a differential pressure forming mechanism 6 ⁇ / b> A formed by making the positive return pipe 110 longer than the negative return pipe 111.
  • the positive return pipe 110 is longer than the negative return pipe 111, so that the pressure loss of the positive return pipe 110 is larger than the pressure loss of the negative return pipe 111.
  • the pressure of the positive electrode electrolyte in the cell stack 2 becomes higher than the pressure of the negative electrode electrolyte, and the pressure of the positive electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the negative electrode electrolyte.
  • the differential pressure state can be created.
  • the differential pressure forming mechanism 6A may be formed by making the negative electrode outward tube 109 longer than the positive electrode outward tube 108. In this case, the pressure of the negative electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the positive electrode electrolyte is relatively higher than the pressure of the negative electrode electrolyte is created.
  • the differential pressure forming mechanism 6A can be formed by combining a configuration in which the lengths of the return pipes 110 and 111 are different from a configuration in which the lengths of the outgoing pipes 108 and 109 are different.
  • FIG. 5 shows a differential pressure forming mechanism 6B formed by making the positive return pipe 110 thinner than the negative return pipe 111.
  • the positive electrode return pipe 110 is made thinner than the negative electrode return pipe 111, so that the pressure loss of the positive electrode return pipe 110 is larger than the pressure loss of the negative electrode return pipe 111.
  • the pressure of the positive electrode electrolyte in the cell stack 2 becomes higher than the pressure of the negative electrode electrolyte, and the pressure of the positive electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the negative electrode electrolyte.
  • the differential pressure state can be created.
  • the inner diameter of the positive return pipe 110 is preferably 80% or less of the inner diameter of the negative return pipe 111.
  • the differential pressure forming mechanism 6B may be formed by making the negative electrode outward tube 109 thinner than the positive electrode outward tube 108. In this case, the pressure of the negative electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the positive electrode electrolyte is relatively higher than the pressure of the negative electrode electrolyte is created.
  • the differential pressure forming mechanism 6B can be formed by combining a configuration in which the return pipes 110 and 111 have different thicknesses and a configuration in which the forward pipes 108 and 109 have different thicknesses.
  • FIG. 6 shows a differential pressure forming mechanism 6 ⁇ / b> C formed by bending the positive return pipe 110 more complicatedly than the negative return pipe 111. If there are many bent portions of the tube, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 6, since the positive return pipe 110 is bent more complicatedly than the negative return pipe 111, the pressure loss of the positive return pipe 110 is larger than the pressure loss of the negative return pipe 111.
  • the pressure of the positive electrode electrolyte in the cell stack 2 becomes higher than the pressure of the negative electrode electrolyte, and the pressure of the positive electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the negative electrode electrolyte.
  • the differential pressure state can be created.
  • the tube can be bent in a complicated manner, for example, by reducing the bending radius of the bent portion of the tube.
  • the differential pressure forming mechanism 6C may be formed by bending the negative electrode outward tube 109 more complicatedly than the positive electrode outward tube 108.
  • the differential pressure forming mechanism 6C can be formed by combining a configuration in which the return pipes 110 and 111 have different bending states and a configuration in which the outgoing pipes 108 and 109 have different bending states.
  • valves 114 to 117 are used when stopping the circulation of the electrolyte solution to the cell stack 2. These valves 114 to 117 can be used to form a differential pressure forming mechanism.
  • the valve 116 of the positive return pipe 110 is throttled (the opening degree is made smaller) than the valve 117 of the negative return pipe 111, thereby reducing the pressure loss of the positive return pipe 110 to the pressure loss of the negative return pipe 111. Can be bigger.
  • each of the positive electrode conduit and the negative electrode conduit may include three or more valves, or one valve each.
  • the above-mentioned differential pressure state can also be created by lowering the pressure of the negative electrode electrolyte in the cell stack 2 by narrowing the valve 115 of the negative electrode outward tube 109 than the valve 114 of the positive electrode outward tube 108.
  • a differential pressure forming mechanism is formed by combining a configuration in which the opening degrees of the valves 116 and 117 of the return pipes 110 and 111 are different from a configuration in which the opening degrees of the valves 114 and 115 of the outgoing pipes 108 and 109 are different. You can also.
  • the RF battery 1 shown in FIG. 1 includes a positive electrode heat exchanger 4P provided in the middle of the positive electrode return pipe 110 and a negative electrode heat exchanger 4N provided in the middle of the negative electrode return pipe 111.
  • the differential pressure forming mechanism 6D (see FIG. 7) can also be formed by these heat exchangers 4P and 4N.
  • FIG. 7 is a schematic configuration diagram of the negative electrode heat exchanger 4N, and a lower configuration of FIG. 7 is a schematic configuration diagram of the positive electrode heat exchanger 4P.
  • the basic configuration of the heat exchanger is known as described in, for example, Japanese Patent Application Laid-Open No. 2013-206566.
  • the heat exchanger 4P (4N) can be configured by placing a pipe 42P (42N) in a container 41P (41N) that stores the refrigerant 40P (40N).
  • the pipe 42P (42N) is connected to the return pipe 110 (111), and therefore, the positive electrode electrolyte (the negative electrode electrolyte) flows therein.
  • the positive electrode electrolyte (negative electrode electrolyte) is cooled by the refrigerant 40P (40N) while flowing through the pipe 42P (42N).
  • the refrigerant 40P (40N) includes a gas refrigerant for air cooling and a liquid refrigerant for water cooling, and is cooled by a cooling mechanism (not shown).
  • the pipe 42P (42N) can be regarded as a part of the return pipe 110 (111).
  • the pipe 42P of the positive electrode heat exchanger 4P may be made longer than the pipe 42N of the negative electrode heat exchanger 4N as illustrated. By doing so, for the same reason as the differential pressure forming mechanism 6A in which the lengths of the return pipes 110 and 111 are changed, the pressure difference of the positive electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the negative electrode electrolyte. Can produce.
  • differential pressure state can also be created by making the pipe 42P thinner than the pipe 42N or by making the bent part of the pipe 42P more than the bent part of the pipe 42N.
  • the differential pressure state may be created by combining the pipe length, the pipe thickness, and the bent state of the pipe.
  • the differential pressure state can also be created by providing only the positive electrode heat exchanger 4P and not the negative electrode heat exchanger 4N.
  • the above-described differential pressure state can be formed.
  • the differential pressure state can also be formed by routing the positive return pipe 110 to a position higher than the negative return pipe 111.
  • Each of the differential pressure forming mechanisms described above can be used alone or in combination. For example, when a configuration in which the lengths of the positive and negative electrode conduits are different from a configuration in which the thickness of the positive and negative electrode conduits are different, a desired differential pressure state is easily formed.
  • the first differential pressure state is preferably a differential pressure state in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the negative electrode electrolyte. This is because even if the pressure of the positive electrode electrolyte immediately after being discharged from the cell stack is higher than the pressure of the negative electrode electrolyte, the pressure of the positive electrode electrolyte acting on the diaphragm locally on the surface of the diaphragm is This is because the pressure may be smaller than the pressure.
  • differential pressure forming mechanism it is possible to create a differential pressure state in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the negative electrode electrolyte.
  • the flow path of the positive electrode electrolyte and the flow path of the negative electrode electrolyte in the cell stack 2 are the same in configuration, and a difference in configuration is provided between the positive electrode circulation mechanism 3P and the negative electrode circulation mechanism 3N.
  • a desired differential pressure state is formed. Therefore, a desired differential pressure state can be easily formed without disassembling the cell stack 2 by using the first differential pressure forming mechanism described above.
  • the electrolyte such as the type of the electrolyte
  • Embodiment 2 the RF battery 1 shown in FIG. 1 acts on the diaphragm 101 both when the positive and negative electrolytes are circulated in the cell stack 2 and when the circulation of both electrolytes is stopped.
  • a second differential pressure state in which the pressure of the negative electrode electrolyte is higher than the pressure of the positive electrode electrolyte (a state in which pressure acts on the diaphragm 101 in the direction of the white arrow in the battery cell 100 of FIG. 1) is maintained.
  • An example will be described.
  • the flow rate control unit 5 controls the flow rate of the negative electrode electrolyte from the pump 113 of the negative electrode circulation mechanism 3N, and the flow rate of the positive electrode electrolyte from the pump 112 of the positive electrode circulation mechanism 3P. It is produced by making it bigger.
  • the flow rate control unit 5 controls the pumps 112 and 113 so that the second differential pressure state can be maintained even when the circulation of both electrolytes is stopped. Two typical control patterns will be described with reference to FIGS. The views of FIGS. 8 and 9 are the same as those of FIGS.
  • both electrolyte solutions are supplied at a time t0 from the state in which both electrolyte solutions are circulated with the negative electrode electrolyte solution supplied larger than the positive electrode electrolyte supply amount. Start to stop circulating. At this time, the rate of decrease in the amount (circulation amount) of the negative electrode electrolyte is set to be greater than the rate of decrease in the amount (circulation amount) of the positive electrode electrolyte. At time t1, the feeding of both electrolytes is stopped almost simultaneously.
  • the circulation of both electrolytes can be stopped while gradually reducing the difference in the amount (circulation amount) of both electrolytes.
  • the stress acting on the diaphragm 101 see FIG. 1
  • damage to the diaphragm 101 can be effectively prevented.
  • valves 114 and 116 are present in the positive line and valves 115 and 117 are present in the negative line.
  • the opening / opening / closing times of the valves 114 to 117 may be controlled by the flow control unit 5. By doing so, it becomes easy to perform the two control patterns.
  • the second differential pressure state in which the pressure of the negative electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the positive electrode electrolyte is maintained. It is preferable to do. If the differential pressure state is maintained when both electrolytes are not circulated, when the circulation of both electrolytes is resumed, the start of the pump 113 that circulates the anode electrolyte causes the cathode electrolyte to circulate for some reason. This is because even if it is delayed from the start of the pump 112, it is difficult to achieve a reverse differential pressure state in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the negative electrode electrolyte.
  • the negative electrode tank 107 may be disposed at a higher position than the positive electrode tank 106. Then, even after the circulation of both electrolytes is stopped, the cell stack 2 is filled with both electrolytes. By doing so, even if both electrolytes are not circulating, the second differential pressure state can be maintained by the potential energy.
  • the RF battery 1 may be provided with a second differential pressure forming mechanism for facilitating the formation of the second differential pressure state.
  • the second differential pressure forming mechanism changes the configuration (mainly dimensions) of the existing members provided in the RF battery 1, and specifically provides a structural difference between the positive electrode circulation mechanism 3P and the negative electrode circulation mechanism 3N. Can be formed.
  • an embodiment of the second differential pressure forming mechanism will be described with reference to FIGS. 10 to 12, the tank, pump, and valve are omitted, and in FIG. 13, the cell stack is also omitted.
  • FIG. 10 shows a differential pressure forming mechanism 6E formed by making the return pipe 111 for the negative electrode longer than the return pipe 110 for the positive electrode.
  • the negative electrode return pipe 111 is longer than the positive electrode return pipe 110, so that the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110.
  • the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the positive electrode electrolyte.
  • the differential pressure state can be created.
  • the differential pressure forming mechanism 6E may be formed by making the positive electrode outward tube 108 longer than the negative electrode outward tube 109. In this case, the pressure of the positive electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the negative electrode electrolyte is relatively higher than the pressure of the positive electrode electrolyte is created.
  • the differential pressure forming mechanism 6A can be formed by combining a configuration in which the lengths of the return pipes 110 and 111 are different from a configuration in which the lengths of the outgoing pipes 108 and 109 are different.
  • FIG. 11 shows a differential pressure forming mechanism 6 ⁇ / b> F formed by making the negative electrode return pipe 111 thinner than the positive electrode return pipe 110.
  • the negative electrode return pipe 111 is made thinner than the positive electrode return pipe 110, so that the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110.
  • the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the positive electrode electrolyte.
  • the differential pressure state can be created.
  • the inner diameter of the negative electrode return pipe 111 is preferably 80% or less of the inner diameter of the positive electrode return pipe 110.
  • the differential pressure forming mechanism 6F may be formed by making the positive electrode outward tube 108 thinner than the negative electrode outward tube 109. In this case, the pressure of the positive electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the negative electrode electrolyte is relatively higher than the pressure of the positive electrode electrolyte is created.
  • the differential pressure forming mechanism 6F can be formed by combining a configuration in which the return pipes 110 and 111 have different thicknesses and a configuration in which the forward pipes 108 and 109 have different thicknesses.
  • FIG. 12 shows a differential pressure forming mechanism 6G formed by bending the negative electrode return pipe 111 more complicatedly than the positive electrode return pipe 110. If there are many bent portions of the tube, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 12, the negative electrode return pipe 111 is bent more complicatedly than the positive electrode return pipe 110, so that the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110.
  • the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the positive electrode electrolyte.
  • the differential pressure state can be created.
  • the tube can be bent in a complicated manner, for example, by reducing the bending radius of the bent portion of the tube.
  • the differential pressure forming mechanism 6G may be formed by bending the positive electrode outward tube 108 more complicatedly than the negative electrode outward tube 109.
  • the differential pressure forming mechanism 6G can be formed by combining a configuration in which the return pipes 110 and 111 have different bending states and a configuration in which the outgoing pipes 108 and 109 have different bending states.
  • valves 114 to 117 are used when stopping the circulation of the electrolyte solution to the cell stack 2. These valves 114 to 117 can be used to form a differential pressure forming mechanism.
  • the valve 117 of the negative return pipe 111 is throttled (the opening degree is made smaller) than the valve 116 of the positive return pipe 110, thereby reducing the pressure loss of the negative return pipe 111 to the pressure loss of the positive return pipe 110. Can be bigger.
  • each of the positive electrode conduit and the negative electrode conduit may include three or more valves, or one valve each.
  • the pressure difference of the positive electrode electrolyte in the cell stack 2 can be reduced by creating the valve 114 of the positive electrode outward pipe 108 smaller than the valve 115 of the negative electrode outgoing pipe 109.
  • a differential pressure forming mechanism is formed by combining a configuration in which the opening degrees of the valves 116 and 117 of the return pipes 110 and 111 are different from a configuration in which the opening degrees of the valves 114 and 115 of the outgoing pipes 108 and 109 are different. You can also.
  • the RF battery 1 shown in FIG. 1 includes a positive electrode heat exchanger 4P provided in the middle of the positive electrode return pipe 110 and a negative electrode heat exchanger 4N provided in the middle of the negative electrode return pipe 111.
  • the differential pressure forming mechanism 6H (see FIG. 13) can also be formed by these heat exchangers 4P and 4N.
  • FIG. 13 is a schematic configuration diagram of the negative electrode heat exchanger 4N, and a lower configuration of FIG. 13 is a schematic configuration diagram of the positive electrode heat exchanger 4P.
  • the basic configuration of the heat exchanger is known as described in, for example, Japanese Patent Application Laid-Open No. 2013-206566.
  • the heat exchanger 4P (4N) can be configured by placing a pipe 42P (42N) in a container 41P (41N) that stores the refrigerant 40P (40N).
  • the pipe 42P (42N) is connected to the return pipe 110 (111), and therefore, the positive electrode electrolyte (the negative electrode electrolyte) flows therein.
  • the positive electrode electrolyte (negative electrode electrolyte) is cooled by the refrigerant 40P (40N) while flowing through the pipe 42P (42N).
  • the refrigerant 40P (40N) includes a gas refrigerant for air cooling and a liquid refrigerant for water cooling, and is cooled by a cooling mechanism (not shown).
  • the pipe 42P (42N) can be regarded as a part of the return pipe 110 (111).
  • the pipe 42N of the negative electrode heat exchanger 4N may be made longer than the pipe 42P of the positive electrode heat exchanger 4P as illustrated. By doing so, for the same reason as the differential pressure forming mechanism 6A in which the lengths of the return pipes 110 and 111 are changed, the pressure difference of the negative electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the positive electrode electrolyte. Can produce.
  • the above-mentioned differential pressure state can also be created by making the pipe 42N thinner than the pipe 42P, or by making the bent part of the pipe 42N more than the bent part of the pipe 42P.
  • the differential pressure state may be created by combining the pipe length, the pipe thickness, and the bent state of the pipe.
  • the above differential pressure state can also be created by providing only the negative electrode heat exchanger 4N and not the positive electrode heat exchanger 4P.
  • the above-described differential pressure state can be formed by disposing the negative electrode tank 107 of FIG. 1 higher than the positive electrode tank 106. Further, the differential pressure state can also be formed by routing the negative electrode return pipe 111 to a position higher than the positive electrode return pipe 110.
  • Each of the differential pressure forming mechanisms described above can be used alone or in combination. For example, when a configuration in which the lengths of the positive and negative electrode conduits are different from a configuration in which the thickness of the positive and negative electrode conduits are different, a desired differential pressure state is easily formed.
  • the second differential pressure state is preferably a differential pressure state in which the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the positive electrode electrolyte. Even if the pressure of the negative electrode electrolyte immediately after being discharged from the cell stack is higher than the pressure of the positive electrode electrolyte, the pressure of the negative electrode electrolyte acting on the diaphragm locally on the surface of the diaphragm is This is because the pressure may be smaller than the pressure.
  • differential pressure forming mechanism it is possible to create a differential pressure state in which the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the positive electrode electrolyte.
  • the electrolyte such as the type of the electrolyte
  • the redox flow battery and the operation method of the redox flow battery according to the present invention include stabilization of fluctuations in power generation output, power storage when surplus generated power, load leveling for new energy power generation such as solar power generation and wind power generation.
  • load leveling for new energy power generation such as solar power generation and wind power generation.
  • it can also be used for instantaneous voltage drop countermeasures, power outage countermeasures, and load leveling.

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

According to the present invention, when a positive-electrode electrolyte solution and a negative-electrode electrolyte solution are circulated in a cell stack, the circulated amount of one of the electrolyte solutions is made to be larger than the circulated amount of the other electrolyte solution such that there is a pressure differential wherein the pressure that acts from the one electrolyte solution on separator membranes of battery cells that are provided to the cell stack is greater than the pressure that acts on the separator membranes from the other electrolyte solution. In addition, the circulated amount of the one electrolyte solution is made to be larger than the circulated amount of the other electrolyte solution and the pressure differential is maintained even when the circulated amounts of the positive-electrode electrolyte solution and the negative-electrode electrolyte solution are reduced and the circulation of both electrolyte solutions is stopped.

Description

レドックスフロー電池の運転方法、およびレドックスフロー電池Redox flow battery operation method and redox flow battery
 本発明は、瞬時電圧低下対策・停電対策や負荷平準化などに用いられるレドックスフロー電池の運転方法、およびレドックスフロー電池に関するものである。 The present invention relates to a method for operating a redox flow battery used for instantaneous voltage drop countermeasures, power failure countermeasures, load leveling, and the like, and a redox flow battery.
 太陽光発電や風力発電といった新エネルギーを蓄電する大容量の蓄電池の一つに電解液循環型電池、代表的にはレドックスフロー電池(RF電池)がある。RF電池は、正極用電解液に含まれるイオンと負極用電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う電池である(例えば、特許文献1参照)。図14のRF電池αの動作原理図に示すように、RF電池αは、水素イオンを透過させる隔膜101で正極部102と負極部103とに分離された電池セル100を備える。正極部102には正極電極104が内蔵され、かつ正極用電解液を貯留する正極用タンク106が正極用往路管108と正極用復路管110を介して接続されている。正極用往路管108にはポンプ(正極用送液装置)112が設けられており、これら部材106,108,110,112によって正極用電解液を循環させる正極用循環機構100Pが構成されている。同様に、負極部103には負極電極105が内蔵され、かつ負極用電解液を貯留する負極用タンク107が負極用往路管109と負極用復路管111を介して接続されている。負極用往路管109にはポンプ(負極用送液装置)113が設けられており、これらの部材107,109,111,113によって負極用電解液を循環させる負極用循環機構100Nが構成されている。各タンク106,107に貯留される電解液は、充放電の際にポンプ112,113によりセル102,103内に循環される。充放電を行なわない場合、ポンプ112,113は停止され、電解液は循環されない。 One of the large-capacity storage batteries that store new energy such as solar power generation and wind power generation is an electrolyte circulation type battery, typically a redox flow battery (RF battery). An RF battery is a battery that charges and discharges using a difference in redox potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte (see, for example, Patent Document 1). As shown in the operational principle diagram of the RF battery α in FIG. 14, the RF battery α includes a battery cell 100 separated into a positive electrode portion 102 and a negative electrode portion 103 by a diaphragm 101 that allows hydrogen ions to pass therethrough. A positive electrode 104 is built in the positive electrode part 102, and a positive electrode tank 106 for storing a positive electrode electrolyte is connected to the positive electrode forward pipe 108 and the positive electrode return pipe 110. The positive electrode forward pipe 108 is provided with a pump (positive electrode liquid feeding device) 112, and a positive electrode circulation mechanism 100 </ b> P that circulates the positive electrode electrolyte is constituted by these members 106, 108, 110, and 112. Similarly, the negative electrode unit 103 includes a negative electrode 105 therein, and a negative electrode tank 107 that stores a negative electrode electrolyte is connected to the negative electrode forward tube 109 and the negative electrode return tube 111. The negative electrode forward pipe 109 is provided with a pump (negative electrode liquid feeding device) 113, and these members 107, 109, 111, 113 constitute a negative electrode circulation mechanism 100 N that circulates the negative electrode electrolyte. . The electrolyte stored in the tanks 106 and 107 is circulated in the cells 102 and 103 by the pumps 112 and 113 during charging and discharging. When charging / discharging is not performed, the pumps 112 and 113 are stopped and the electrolytic solution is not circulated.
 上記電池セル100は通常、図15に示すような、セルスタック200と呼ばれる構造体の内部に複数積層される。セルスタック200は、サブスタック200sと呼ばれる積層構造物をその両側から二枚のエンドプレート210,220で挟み込み、締付機構230で締め付けることで構成されている(図示する構成では、複数のサブスタック200sを用いている)。サブスタック200sは、図15の上図に示すように、セルフレーム120、正極電極104、隔膜101、負極電極105、およびセルフレーム120で構成されるセルユニットを複数積層し、その積層体を給排板190,190(図15の下図参照)で挟み込んだ構成を備える。セルユニットに備わるセルフレーム120は、貫通窓を有する枠体122と貫通窓を塞ぐ双極板121とを有しており、双極板121の一面側には正極電極104が接触するように配置され、双極板121の他面側には負極電極105が接触するように配置される。この構成では、隣接する各セルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。 A plurality of the battery cells 100 are usually stacked inside a structure called a cell stack 200 as shown in FIG. The cell stack 200 is configured by sandwiching a laminated structure called a sub-stack 200 s from both sides with two end plates 210 and 220 and tightening with a tightening mechanism 230 (in the illustrated configuration, a plurality of sub-stacks are arranged). 200 s is used). As shown in the upper diagram of FIG. 15, the sub-stack 200s is formed by stacking a plurality of cell units including the cell frame 120, the positive electrode 104, the diaphragm 101, the negative electrode 105, and the cell frame 120, and supplying the stacked body. It has a configuration sandwiched between the discharge plates 190 and 190 (see the lower diagram of FIG. 15). The cell frame 120 provided in the cell unit includes a frame 122 having a through window and a bipolar plate 121 that closes the through window, and is arranged so that the positive electrode 104 is in contact with one surface side of the bipolar plate 121. The negative electrode 105 is disposed on the other surface side of the bipolar plate 121 so as to be in contact therewith. In this configuration, one battery cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.
 サブスタック200sにおける給排板190,190を介した電池セル100への電解液の流通は、枠体122に形成される給液用マニホールド123,124と、排液用マニホールド125,126により行われる。正極用電解液は、給液用マニホールド123から枠体122の一面側(紙面表側)に形成される入口スリットを介して正極電極104に供給され、枠体122の上部に形成される出口スリットを介して排液用マニホールド125に排出される。同様に、負極用電解液は、給液用マニホールド124から枠体122の他面側(紙面裏側)に形成される入口スリット(点線で示す)を介して負極電極105に供給され、枠体122の上部に形成される出口スリット(点線で示す)を介して排液用マニホールド126に排出される。各セルフレーム120間には、Oリングや平パッキンなどの環状のシール部材127が配置され、サブスタック200sからの電解液の漏れが抑制されている。 Distribution of the electrolyte solution to the battery cell 100 via the supply / discharge plates 190, 190 in the sub stack 200 s is performed by the supply manifolds 123, 124 formed in the frame body 122 and the discharge manifolds 125, 126. . The positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 through an inlet slit formed on one side (the front side of the paper) of the frame 122, and the outlet slit formed at the top of the frame 122 Then, the liquid is discharged to the drainage manifold 125. Similarly, the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 through an inlet slit (shown by a dotted line) formed on the other surface side (back side of the paper surface) of the frame body 122. Is discharged to the drainage manifold 126 through an outlet slit (shown by a dotted line) formed in the upper portion of the liquid. An annular sealing member 127 such as an O-ring or a flat packing is disposed between the cell frames 120, and leakage of the electrolyte from the sub stack 200s is suppressed.
 サブスタック200sに備わる電池セル100と外部機器との間の電力の入出力は、導電性材料で構成された集電板を用いた集電構造によって行われる。集電板は、各サブスタック200sにつき一対設けられており、各集電板はそれぞれ、積層される複数のセルフレーム120のうち、積層方向の両端に位置するセルフレーム120の双極板121に導通されている。 The input / output of electric power between the battery cell 100 provided in the sub stack 200s and the external device is performed by a current collecting structure using a current collecting plate made of a conductive material. A pair of current collecting plates is provided for each sub-stack 200s, and each current collecting plate is electrically connected to the bipolar plate 121 of the cell frame 120 positioned at both ends in the stacking direction among the stacked cell frames 120. Has been.
特開2013-80613号公報JP 2013-80613 A
 レドックスフロー電池の運用上、セルスタック内の隔膜に作用する正極電解液の圧力および負極電解液の圧力のいずれか一方を他方よりも高くしたいというニーズがある。さらに本発明者らの検討によれば、両電解液の循環を停止する際も、一方の電解液の圧力が他方の電解液の圧力よりも高い状態を維持することが好ましいとの知見が得られた。なお、いずれの圧力を高くするかについてはケースバイケースである。 In operation of the redox flow battery, there is a need to make either one of the pressure of the positive electrode electrolyte and the pressure of the negative electrode electrolyte acting on the diaphragm in the cell stack higher than the other. Furthermore, according to the study by the present inventors, it was found that it is preferable that the pressure of one electrolyte is maintained higher than the pressure of the other electrolyte even when the circulation of both electrolytes is stopped. It was. Note that which pressure is to be increased is case by case.
 本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、正極電解液と負極電解液の循環から停止までの間、セルスタック内の隔膜に作用する正極電解液の圧力および負極電解液の圧力のいずれか一方を他方よりも高くすることができるレドックスフロー電池の運転方法、およびレドックスフロー電池を提供することにある。 The present invention has been made in view of the above circumstances, and one of its purposes is the pressure of the positive electrode electrolyte acting on the diaphragm in the cell stack from the circulation to the stop of the positive electrode electrolyte and the negative electrode electrolyte. Another object of the present invention is to provide a redox flow battery operating method and a redox flow battery in which one of the pressure of the negative electrode electrolyte and the pressure of the negative electrode electrolyte can be made higher than the other.
 本発明の一形態に係るレドックスフロー電池の運転方法は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法である。このレドックスフロー電池の運転方法では、前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、一方の電解液の循環量を他方の電解液の循環量よりも多くして、前記隔膜に作用する前記一方の電解液の圧力を、前記隔膜に作用する前記他方の電解液の圧力よりも高くした差圧状態とし、前記正極電解液と前記負極電解液の循環量を減少させ、両電解液の循環を停止する際にも、前記一方の電解液の循環量を前記他方の電解液の循環量よりも多くして、前記差圧状態を維持する。 A method for operating a redox flow battery according to an aspect of the present invention is to circulate a positive electrode electrolyte using a positive electrode circulation mechanism in a cell stack in which a plurality of battery cells having a positive electrode, a negative electrode, and a diaphragm are stacked, This is a method for operating a redox flow battery in which a negative electrode electrolyte is circulated using a negative electrode circulation mechanism. In the operating method of the redox flow battery, when the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack, the circulation amount of one electrolyte is larger than the circulation amount of the other electrolyte, The pressure of the one electrolytic solution acting on the diaphragm is set to a differential pressure state higher than the pressure of the other electrolytic solution acting on the diaphragm, and the circulation amount of the positive electrode electrolyte and the negative electrode electrolyte is decreased. Even when the circulation of the electrolytic solution is stopped, the circulating amount of the one electrolytic solution is made larger than the circulating amount of the other electrolytic solution to maintain the differential pressure state.
 また、本発明の一形態に係るレドックスフロー電池は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池である。このレドックスフロー電池は、前記正極電解液と前記負極電解液の循環から停止までの間、一方の電解液の循環量を他方の電解液の循環量よりも多くなるように、前記正極循環機構と前記負極循環機構とを制御する流量制御部を備える。 A redox flow battery according to an embodiment of the present invention includes a cell stack in which a plurality of battery cells having a positive electrode, a negative electrode, and a diaphragm are stacked, and a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack; A redox flow battery comprising a negative electrode circulation mechanism for circulating a negative electrode electrolyte in the cell stack. The redox flow battery includes the positive electrode circulation mechanism so that the circulation amount of one electrolyte solution is larger than the circulation amount of the other electrolyte solution from the circulation to the stop of the cathode electrolyte and the anode electrolyte. A flow rate controller for controlling the negative electrode circulation mechanism is provided.
 上記レドックスフロー電池の運転方法、およびレドックスフロー電池によれば、正極電解液と負極電解液の循環から停止までの間、セルスタック内の隔膜に作用する正極電解液の圧力および負極電解液の圧力のいずれか一方を他方よりも高くすることができる。 According to the above redox flow battery operation method and redox flow battery, the pressure of the positive electrode electrolyte and the pressure of the negative electrode electrolyte acting on the diaphragm in the cell stack during the circulation and stop of the positive electrode electrolyte and the negative electrode electrolyte. Any one of the above can be made higher than the other.
実施形態に係るレドックスフロー電池の概略構成図である。It is a schematic block diagram of the redox flow battery which concerns on embodiment. 正極電解液と負極電解液の循環を停止する制御パターンIに係るグラフである。It is a graph which concerns on the control pattern I which stops the circulation of a positive electrode electrolyte and a negative electrode electrolyte. 正極電解液と負極電解液の循環を停止する制御パターンIIに係るグラフである。It is a graph which concerns on the control pattern II which stops the circulation of a positive electrode electrolyte and a negative electrode electrolyte. 正極用復路管を負極用復路管よりも長くすることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by making the return pipe for positive electrodes longer than the return pipe for negative electrodes. 正極用復路管を負極用復路管よりも細くすることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by making the return pipe for positive electrodes thinner than the return pipe for negative electrodes. 正極用復路管を負極用復路管よりも複雑に屈曲させることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by bending the return pipe for positive electrodes more complicatedly than the return pipe for negative electrodes. 正極用熱交換器と負極用熱交換器とで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure | voltage formation mechanism comprised with the heat exchanger for positive electrodes, and the heat exchanger for negative electrodes. 正極電解液と負極電解液の循環を停止する制御パターンIIIに係るグラフである。It is a graph which concerns on the control pattern III which stops the circulation of a positive electrode electrolyte and a negative electrode electrolyte. 正極電解液と負極電解液の循環を停止する制御パターンIVに係るグラフである。It is a graph which concerns on the control pattern IV which stops the circulation of a positive electrode electrolyte and a negative electrode electrolyte. 負極用復路管を正極用復路管よりも長くすることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by making the return pipe for negative electrodes longer than the return pipe for positive electrodes. 負極用復路管を正極用復路管よりも細くすることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by making the return pipe for negative electrodes thinner than the return pipe for positive electrodes. 負極用復路管を正極用復路管よりも複雑に屈曲させることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by bending the return pipe for negative electrodes more complicatedly than the return pipe for positive electrodes. 正極用熱交換器と負極用熱交換器とで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure | voltage formation mechanism comprised with the heat exchanger for positive electrodes, and the heat exchanger for negative electrodes. レドックスフロー電池の動作原理図である。It is an operation | movement principle figure of a redox flow battery. セルスタックの概略構成図である。It is a schematic block diagram of a cell stack.
[本発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.
<1>実施形態に係るレドックスフロー電池の運転方法は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法である。このレドックスフロー電池の運転方法では、前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、一方の電解液の循環量を他方の電解液の循環量よりも多くして、前記隔膜に作用する前記一方の電解液の圧力を、前記隔膜に作用する前記他方の電解液の圧力よりも高くした差圧状態とし、前記正極電解液と前記負極電解液の循環量を減少させ、両電解液の循環を停止する際にも、前記一方の電解液の循環量を前記他方の電解液の循環量よりも多くして、前記差圧状態を維持する。 <1> The operation method of the redox flow battery according to the embodiment circulates the positive electrode electrolyte using a positive electrode circulation mechanism in a cell stack in which a plurality of battery cells each having a positive electrode, a negative electrode, and a diaphragm are stacked. This is a method for operating a redox flow battery in which a negative electrode electrolyte is circulated using a negative electrode circulation mechanism. In the operating method of the redox flow battery, when the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack, the circulation amount of one electrolyte is larger than the circulation amount of the other electrolyte, The pressure of the one electrolytic solution acting on the diaphragm is set to a differential pressure state higher than the pressure of the other electrolytic solution acting on the diaphragm, and the circulation amount of the positive electrode electrolyte and the negative electrode electrolyte is decreased. Even when the circulation of the electrolytic solution is stopped, the circulating amount of the one electrolytic solution is made larger than the circulating amount of the other electrolytic solution to maintain the differential pressure state.
 セルスタック内の正極電解液の圧力および負極電解液の圧力のいずれか一方を他方よりも高くすると、セルスタック内の隔膜に作用する一方の電解液の圧力が、隔膜に作用する他方の電解液の圧力よりも高い差圧状態となる。本発明者らの検討によれば、両電解液を循環させる際に上記差圧状態を維持する場合、両電解液の循環を停止する際にも、上記差圧状態を維持しておくことが好ましいとの知見が得られた。両電解液の循環の停止の際に隔膜に作用する圧力の方向が変わると、隔膜に過剰な負荷がかかる恐れがあるからである。 When either one of the pressure of the positive electrode electrolyte in the cell stack or the pressure of the negative electrode electrolyte is made higher than the other, the pressure of the one electrolyte acting on the diaphragm in the cell stack becomes the other electrolyte acting on the diaphragm. It becomes a differential pressure state higher than the pressure. According to the study by the present inventors, when the above-mentioned differential pressure state is maintained when both electrolytic solutions are circulated, the above-mentioned differential pressure state can be maintained even when the circulation of both electrolytic solutions is stopped. The knowledge that it was preferable was obtained. This is because if the direction of the pressure acting on the diaphragm changes when the circulation of both electrolytes is stopped, an excessive load may be applied to the diaphragm.
 本発明者らの知見に基づく上記レドックスフロー電池の運転方法によれば、セルスタック内に正極電解液と負極電解液の循環をさせるときも、両電解液の循環を停止するときも、上記差圧状態を維持しているため、隔膜に作用する圧力の方向を一定にすることができる。その結果、隔膜に過剰な応力が作用することを抑制することができ、隔膜の損傷を防止することができる。
 ここで、隔膜に作用する一方の電解液の圧力を、隔膜に作用する他方の電解液の圧力よりも高くした差圧状態とは、レドックスフロー電池の運転に実質的な支障が出ない程度に、一方の電解液の圧力が他方の電解液の圧力よりも高い状態をいう。両電解液の圧力の差は、目的に応じて適宜設定できる。例えば、電解液の循環を停止する作業を開始する前において(レドックスフロー電池の運転中において)、一方の電解液の圧力と他方の電解液の圧力の差は1000Pa以上とすることができる。
According to the operation method of the above redox flow battery based on the knowledge of the present inventors, the difference between the positive electrode solution and the negative electrode electrolyte is circulated in the cell stack and the circulation of both the electrolytes is stopped. Since the pressure state is maintained, the direction of the pressure acting on the diaphragm can be made constant. As a result, it is possible to suppress excessive stress from acting on the diaphragm, and to prevent the diaphragm from being damaged.
Here, the differential pressure state in which the pressure of one electrolyte acting on the diaphragm is higher than the pressure of the other electrolyte acting on the diaphragm is such that there is no substantial hindrance to the operation of the redox flow battery. The state in which the pressure of one electrolyte is higher than the pressure of the other electrolyte. The pressure difference between the two electrolytes can be set as appropriate according to the purpose. For example, before starting the operation of stopping the circulation of the electrolytic solution (during operation of the redox flow battery), the difference between the pressure of one electrolytic solution and the pressure of the other electrolytic solution can be 1000 Pa or more.
<2>実施形態に係るレドックスフロー電池の運転方法として、前記正極電解液と前記負極電解液の循環を停止する際、前記一方の電解液の循環量の減少速度を、前記他方の電解液の循環量の減少速度よりも大きくし、両電解液の循環を同時に停止する形態を挙げることができる。 <2> As a method for operating the redox flow battery according to the embodiment, when the circulation of the positive electrode electrolyte and the negative electrode electrolyte is stopped, the rate of decrease in the circulation amount of the one electrolyte is changed to that of the other electrolyte. It is possible to use a mode in which the circulation rate of the both electrolytes is stopped simultaneously by increasing the rate of circulation rate reduction.
 上記形態のように、一方の電解液の循環量が他方の電解液の循環量よりも多い状態を維持した上で、一方の電解液の循環量の減少速度を、他方の電解液の循環量の減少速度より大きくすることで、両電解液の循環量の差を徐々に小さくしながら両電解液の循環を停止することができる。その結果、両電解液の循環を停止するまでの間、隔膜に作用する応力を徐々に小さくすることができるため、隔膜の損傷を効果的に防止することができる。 While maintaining the state where the circulation amount of one electrolyte solution is larger than the circulation amount of the other electrolyte solution as in the above embodiment, the decrease rate of the circulation amount of one electrolyte solution is set to the circulation amount of the other electrolyte solution. By making it larger than the decrease rate of, the circulation of both electrolytes can be stopped while gradually reducing the difference in the circulation amount of both electrolytes. As a result, since the stress acting on the diaphragm can be gradually reduced until the circulation of both electrolytes is stopped, damage to the diaphragm can be effectively prevented.
<3>実施形態に係るレドックスフロー電池の運転方法として、前記正極電解液と前記負極電解液の循環を停止する際、前記一方の電解液の循環量の減少速度と、前記他方の電解液の循環量の減少速度と、を調整し、前記一方の電解液の循環を、前記他方の電解液の循環よりも後に停止する形態を挙げることができる。 <3> As a method for operating the redox flow battery according to the embodiment, when the circulation of the positive electrode electrolyte and the negative electrode electrolyte is stopped, the rate of decrease in the circulation amount of the one electrolyte solution, A mode in which the rate of decrease in the circulation amount is adjusted and the circulation of the one electrolyte solution is stopped after the circulation of the other electrolyte solution can be exemplified.
 上記形態に示すように、一方の電解液の循環を、他方の電解液の循環よりも後に停止することで、両電解液の循環が停止する瞬間まで、確実に上記差圧状態を維持することができる。 As shown in the above embodiment, by stopping the circulation of one electrolytic solution after the circulation of the other electrolytic solution, the above differential pressure state is reliably maintained until the moment when the circulation of both electrolytic solutions is stopped. Can do.
<4>実施形態に係るレドックスフロー電池の運転方法として、前記一方の電解液を循環させる循環機構に備わる電解液のタンクを、前記他方の電解液を循環させる循環機構に備わる電解液のタンクよりも高い位置に配置し、両電解液が循環していないときに、前記セルスタック内に両電解液を満たしたままとする形態を挙げることができる。 <4> As an operating method of the redox flow battery according to the embodiment, an electrolytic solution tank provided in a circulation mechanism for circulating the one electrolytic solution is used as an electrolytic solution tank provided in a circulation mechanism for circulating the other electrolytic solution. The cell stack may be filled with both electrolytes when both electrolytes are not circulated.
 上記形態によれば、両電解液が循環していないときにも、上記差圧状態を維持することができる。また、両電解液が循環していないときに差圧状態が維持されていれば、両電解液の循環を再開する際、一方の電解液を循環させる装置(例えば、ポンプなどの送液装置)の始動が何らかの理由で他方の電解液を循環させる装置の始動より遅れるなどしても、隔膜に作用する他方の電解液の圧力が一方の電解液の圧力よりも高くなる逆差圧状態となり難い。 According to the above embodiment, the differential pressure state can be maintained even when both electrolytes are not circulating. Also, if the differential pressure state is maintained when both electrolytes are not circulating, a device that circulates one electrolyte solution (for example, a liquid delivery device such as a pump) when recirculation of both electrolyte solutions is resumed. Even if the start-up is delayed from the start-up of the device that circulates the other electrolyte for some reason, it is difficult to achieve a reverse differential pressure state in which the pressure of the other electrolyte acting on the diaphragm is higher than the pressure of the one electrolyte.
<5>実施形態に係るレドックスフロー電池は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池である。このレドックスフロー電池は、前記正極電解液と前記負極電解液の循環から停止までの間、一方の電解液の循環量を他方の電解液の循環量よりも多くなるように、前記正極循環機構と前記負極循環機構とを制御する流量制御部を備える。 <5> A redox flow battery according to an embodiment includes a cell stack in which a plurality of battery cells each having a positive electrode, a negative electrode, and a diaphragm, a positive electrode circulation mechanism for circulating a positive electrolyte in the cell stack, and the cell A redox flow battery comprising: a negative electrode circulation mechanism that circulates a negative electrode electrolyte in a stack. The redox flow battery includes the positive electrode circulation mechanism so that the circulation amount of one electrolyte solution is larger than the circulation amount of the other electrolyte solution from the circulation to the stop of the cathode electrolyte and the anode electrolyte. A flow rate controller for controlling the negative electrode circulation mechanism is provided.
 上記レドックスフロー電池によれば、セルスタック内に正極電解液と負極電解液の循環をさせるときにも、両電解液の循環を停止するときにも、上記差圧状態を維持することができる。そのため、上記レドックスフロー電池は、レドックスフロー電池に備わる隔膜に作用する圧力の方向が一定で、隔膜が損傷し難いレドックスフロー電池となる。 According to the redox flow battery, the differential pressure state can be maintained both when the positive and negative electrolytes are circulated in the cell stack and when both the electrolytes are stopped. Therefore, the redox flow battery is a redox flow battery in which the direction of pressure acting on the diaphragm provided in the redox flow battery is constant and the diaphragm is not easily damaged.
[本発明の実施形態の詳細]
 以下、実施形態に係るレドックスフロー電池(RF電池)の運転方法、およびRF電池の実施形態を説明する。実施形態において、同一の符号で示される部材は、同一の機能を備える。なお、本発明は実施形態に示される構成に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
[Details of the embodiment of the present invention]
Hereinafter, the operation method of the redox flow battery (RF battery) according to the embodiment and the embodiment of the RF battery will be described. In the embodiment, members indicated by the same reference numerals have the same function. In addition, this invention is not necessarily limited to the structure shown by embodiment, and is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.
<実施形態1>
 ≪RF電池の全体構成≫
 図1の概略図に示すように、本実施形態に係るRF電池1は、従来のRF電池と同様に、セルスタック2と、正極用循環機構3Pと、負極用循環機構3Nと、を備える。この図1では、セルスタック2の構成を簡素化して示しているが、実際には図15の下図を参照して説明したように、複数のサブスタック200sをエンドプレート210,220で締め付けた構成を備えている。また、図1のセルスタック2には、電池セル100を一つだけ図示しているが、実際には複数の電池セル100が積層されている。各電池セル100は、正極電極104と、負極電極105と、両電極104,105を隔てる隔膜101と、で構成される。
<Embodiment 1>
≪Overall configuration of RF battery≫
As shown in the schematic diagram of FIG. 1, the RF battery 1 according to the present embodiment includes a cell stack 2, a positive electrode circulation mechanism 3P, and a negative electrode circulation mechanism 3N, as in the conventional RF battery. In FIG. 1, the configuration of the cell stack 2 is shown in a simplified manner, but actually, a configuration in which a plurality of sub-stacks 200 s are fastened with end plates 210 and 220 as described with reference to the lower diagram of FIG. 15. It has. Moreover, although only one battery cell 100 is illustrated in the cell stack 2 of FIG. 1, a plurality of battery cells 100 are actually stacked. Each battery cell 100 includes a positive electrode 104, a negative electrode 105, and a diaphragm 101 that separates both electrodes 104 and 105.
 正極用循環機構3Pは、正極用タンク106と、正極用往路管108および正極用復路管110で構成される正極用管路と、ポンプ(正極用送液装置)112と、を備える。正極用往路管108は、正極用タンク106からセルスタック2に正極電解液を供給する配管であり、正極用復路管110はセルスタック2から正極用タンク106に正極電解液を排出する配管である。ポンプ112は、正極用往路管108の途中に設けられ、正極電解液をセルスタック2に送り出す部材である。このような構成の場合、正極電解液の循環量は、ポンプ112の出力を調節することで変化させることができる。 The positive electrode circulation mechanism 3 </ b> P includes a positive electrode tank 106, a positive electrode pipe line including a positive electrode forward pipe 108 and a positive electrode return pipe 110, and a pump (a positive electrode liquid feeding device) 112. The positive electrode forward pipe 108 is a pipe that supplies the positive electrode electrolyte from the positive electrode tank 106 to the cell stack 2, and the positive electrode return pipe 110 is a pipe that discharges the positive electrode electrolyte from the cell stack 2 to the positive electrode tank 106. . The pump 112 is a member that is provided in the middle of the positive electrode outward pipe 108 and that sends out the positive electrode electrolyte to the cell stack 2. In the case of such a configuration, the circulation amount of the positive electrode electrolyte can be changed by adjusting the output of the pump 112.
 負極用循環機構3Nは、負極用タンク107と、負極用往路管109および負極用復路管111で構成される負極用管路と、ポンプ(負極用送液装置)113と、を備える。負極用往路管109は、負極用タンク107からセルスタック2に負極電解液を供給する配管であり、負極用復路管111はセルスタック2から負極用タンク107に負極電解液を排出する配管である。ポンプ113は、負極用往路管109の途中に設けられ、負極電解液をセルスタック2に送り出す部材である。このような構成の場合、負極電解液の循環量は、ポンプ113の出力を調整することで変化させることができる。 The negative electrode circulation mechanism 3 </ b> N includes a negative electrode tank 107, a negative electrode pipe composed of a negative electrode forward pipe 109 and a negative electrode return pipe 111, and a pump (negative electrode liquid feeding device) 113. The negative electrode forward pipe 109 is a pipe for supplying a negative electrode electrolyte from the negative electrode tank 107 to the cell stack 2, and the negative electrode return pipe 111 is a pipe for discharging the negative electrode electrolyte from the cell stack 2 to the negative electrode tank 107. . The pump 113 is a member that is provided in the middle of the negative electrode outgoing pipe 109 and that feeds the negative electrode electrolyte solution to the cell stack 2. In the case of such a configuration, the circulation amount of the negative electrode electrolyte can be changed by adjusting the output of the pump 113.
 上記構成を備える実施形態のRF電池1における従来との主な相違点は、セルスタック2内に正極電解液と負極電解液を循環させるときにも、両電解液の循環を停止するときにも、隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い第一の差圧状態(塗り潰し矢印の方向に圧力が作用する状態)を維持するための流量制御部5を備えることである。 The main difference between the RF battery 1 of the embodiment having the above-described configuration and the conventional one is that the positive electrode electrolyte and the negative electrode electrolyte are circulated in the cell stack 2 and the circulation of both electrolytes is stopped. And a flow rate controller 5 for maintaining a first differential pressure state (a state in which the pressure acts in the direction of the filled arrow) in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the negative electrode electrolyte. It is.
 ≪流量制御部≫
 流量制御部5は、ポンプ(正極用送液装置)112の出力と、ポンプ(負極用送液装置)113の出力と、を相対的に制御するように、両ポンプ112,113に電気的に接続される。各ポンプ112,113による電解液の送液量(即ち、電解液の循環量)は、ポンプ112,113の出力に応じて変化する。本実施形態の場合、ポンプ112からの正極電解液の送液量を、ポンプ113からの負極電解液の送液量よりも大きくすることで、セルスタック2内の隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い第一の差圧状態を作り出している。
≪Flow control part≫
The flow rate controller 5 is electrically connected to both the pumps 112 and 113 so as to relatively control the output of the pump (liquid feeding device for positive electrode) 112 and the output of the pump (liquid feeding device for negative electrode) 113. Connected. The amount of electrolyte sent by each pump 112, 113 (that is, the amount of electrolyte circulated) varies according to the output of the pumps 112, 113. In the case of the present embodiment, the positive electrode electrolyte that acts on the diaphragm 101 in the cell stack 2 by making the amount of the positive electrode electrolyte sent from the pump 112 larger than the amount of the negative electrode electrolyte sent from the pump 113. Creates a first differential pressure state in which the pressure of is higher than the pressure of the negative electrode electrolyte.
 流量制御部5は、両電解液の循環を停止する際にも、上記第一の差圧状態を維持できるように、ポンプ112,113を制御する。代表的な二つの制御パターンを図2、図3に基づいて説明する。図2,3はいずれも、両電解液を循環させた状態から循環を停止させるまでの間のポンプ112,113からの送液量(即ち、両電解液の循環量)の変化を示すグラフである。図2,3のグラフの縦軸は、ポンプ112,113からの送液量、横軸は時間である。また、グラフ中の実線は正極電解液の送液量、点線は負極電解液の送液量を示す。 The flow controller 5 controls the pumps 112 and 113 so that the first differential pressure state can be maintained even when the circulation of both electrolytes is stopped. Two typical control patterns will be described with reference to FIGS. 2 and 3 are graphs showing changes in the amount of liquid fed from the pumps 112 and 113 (that is, the amount of circulation of both electrolytes) from the state in which both electrolytes are circulated until the circulation is stopped. is there. 2 and 3, the vertical axis represents the amount of liquid fed from the pumps 112 and 113, and the horizontal axis represents time. Further, the solid line in the graph indicates the amount of the positive electrode electrolyte supplied, and the dotted line indicates the amount of the negative electrode electrolyte supplied.
  [制御パターンI]
 図2のグラフに示すように、制御パターンIでは、正極電解液の送液量を負極電解液の送液量よりも大きくして両電解液を循環させた状態から、時刻t0で両電解液の循環を停止し始める。その際、正極電解液の送液量(循環量)の減少速度を、負極電解液の送液量(循環量)の減少速度よりも大きくしている。そして、時刻t1で両電解液の送液をほぼ同時に停止する。
[Control pattern I]
As shown in the graph of FIG. 2, in the control pattern I, both electrolyte solutions are supplied at a time t0 from the state in which both electrolyte solutions are circulated with the amount of cathode electrolyte supplied larger than the amount of anode electrolyte supplied. Start to stop circulating. At this time, the rate of decrease in the amount (circulation amount) of the positive electrode electrolyte is set to be greater than the rate of decrease in the amount (circulation amount) of the negative electrode electrolyte. At time t1, the feeding of both electrolytes is stopped almost simultaneously.
 上記制御パターンIによれば、両電解液の送液量(循環量)の差を徐々に小さくしながら両電解液の循環を停止することができる。その結果、両電解液の循環を停止するまでの間、隔膜101(図1参照)に作用する応力を徐々に小さくすることができるため、隔膜101の損傷を効果的に防止することができる。 According to the control pattern I, it is possible to stop the circulation of both electrolytic solutions while gradually reducing the difference between the feeding amounts (circulating amounts) of both electrolytic solutions. As a result, since the stress acting on the diaphragm 101 (see FIG. 1) can be gradually reduced until the circulation of both electrolytes is stopped, damage to the diaphragm 101 can be effectively prevented.
  [制御パターンII]
 図3のグラフに示すように、制御パターンIIでも、時刻t0で両電解液の循環を停止し始める。ここで、制御パターンIIでは、正極電解液の送液量(循環量)の減少速度と、負極電解液の送液量(循環量)の減少速度と、を同程度としている。もともと、負極電解液の送液量が正極電解液の送液量よりも小さかったために、両電解液の送液量の減少速度が同程度であると、時刻t2で負極電解液の送液が停止し、その後、時刻t3で正極電解液の送液が停止する。つまり、負極電解液の循環が停止した後も正極電解液がセルスタック2(図1参照)内を循環することになるため、両電解液の循環が停止する瞬間まで、確実に第一の差圧状態を維持することができる。
[Control Pattern II]
As shown in the graph of FIG. 3, also in the control pattern II, the circulation of both electrolytes starts to be stopped at time t0. Here, in the control pattern II, the rate of decrease in the amount (circulation amount) of the positive electrode electrolyte is substantially equal to the rate of decrease in the amount (circulation amount) of the negative electrode electrolyte. Originally, since the amount of the negative electrode electrolyte supplied was smaller than the amount of the positive electrode electrolyte supplied, when the rate of decrease in the amount of both electrolytes supplied was the same, the negative electrode electrolyte was supplied at time t2. After that, the feeding of the positive electrode electrolyte stops at time t3. That is, since the cathode electrolyte circulates in the cell stack 2 (see FIG. 1) even after the circulation of the anode electrolyte is stopped, the first difference is surely made until the moment when the circulation of both electrolytes is stopped. The pressure state can be maintained.
 なお、図1に示すRF電池1の正極用管路と負極用管路のそれぞれには、複数のバルブが存在する。図1では、正極用管路にはバルブ114,116が存在し、負極用管路にはバルブ115,117が存在する。それらバルブ114~117の開度・開閉回数を流量制御部5に制御させても構わない。そうすることで、上記二つの制御パターンを行い易くなる。 A plurality of valves exist in each of the positive electrode conduit and the negative electrode conduit of the RF battery 1 shown in FIG. In FIG. 1, valves 114 and 116 are present in the positive line and valves 115 and 117 are present in the negative line. The opening / opening / closing times of the valves 114 to 117 may be controlled by the flow control unit 5. By doing so, it becomes easy to perform the two control patterns.
 ≪循環停止時に係る構成≫
 図1に示す上記流量制御部5の制御によって両電解液の循環を停止した後も、隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い第一の差圧状態を維持することが好ましい。両電解液が循環していないときに差圧状態が維持されていれば、両電解液の循環を再開する際、正極電解液を循環させるポンプ112の始動が何らかの理由で負極電解液を循環させるポンプ113の始動より遅れるなどしても、隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高くなる逆差圧状態となり難いからである。
≪Configuration related to circulation stop≫
Even after the circulation of both electrolytes is stopped by the control of the flow rate control unit 5 shown in FIG. 1, the first differential pressure state in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the negative electrode electrolyte is maintained. It is preferable to do. If the differential pressure state is maintained when both electrolytes are not circulated, when the circulation of both electrolytes is resumed, the start of the pump 112 that circulates the cathode electrolyte causes the anode electrolyte to circulate for some reason. This is because even if it is delayed from the start of the pump 113, it is difficult to achieve a reverse differential pressure state in which the pressure of the negative electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the positive electrode electrolyte.
 両電解液の循環が循環していないときに上記第一の差圧状態を維持するには、例えば正極用タンク106を負極用タンク107よりも高い位置に配置すると良い。そして、両電解液の循環を停止した後も、セルスタック2内に両電解液を満たしたままとしておく。そうすることで、両電解液が循環していなくても、位置エネルギーによって第一の差圧状態を維持することができる。 In order to maintain the first differential pressure state when both the electrolytes are not circulated, for example, the positive electrode tank 106 may be disposed at a higher position than the negative electrode tank 107. Then, even after the circulation of both electrolytes is stopped, the cell stack 2 is filled with both electrolytes. By doing so, even if both electrolytes are not circulating, the first differential pressure state can be maintained by the potential energy.
 ≪第一の差圧状態を形成し易くするための構成≫
 上記ポンプ112,113からの送液量の差に加えて、第一の差圧状態を形成し易くするための第一の差圧形成機構をRF電池1に設けても良い。第一の差圧形成機構は、RF電池1に備わる既存の部材の構成(主として寸法)を変えること、具体的には正極用循環機構3Pと負極用循環機構3Nとに構成上の差異を設けることで形成することができる。以下、第一の差圧形成機構の一形態を図4~図7に基づいて説明する。図4~図6ではタンク、ポンプ及びバルブを省略し、図7ではさらにセルスタックも省略している。
≪Configuration to facilitate the formation of the first differential pressure state≫
In addition to the difference in the amount of liquid fed from the pumps 112 and 113, the RF battery 1 may be provided with a first differential pressure forming mechanism for facilitating the formation of the first differential pressure state. The first differential pressure forming mechanism changes the configuration (mainly dimensions) of the existing members provided in the RF battery 1, and specifically provides a structural difference between the positive electrode circulation mechanism 3P and the negative electrode circulation mechanism 3N. Can be formed. Hereinafter, an embodiment of the first differential pressure forming mechanism will be described with reference to FIGS. 4 to 6, the tank, the pump, and the valve are omitted, and in FIG. 7, the cell stack is also omitted.
  [正極用管路と負極用管路の長さが異なることによる差圧状態の形成]
 図4には、正極用復路管110を、負極用復路管111よりも長くすることで形成した差圧形成機構6Aが示されている。管を長くすると、管内を流れる電解液の圧力損失が増大する。図4の場合は、正極用復路管110を負極用復路管111よりも長くしているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い第一の差圧状態を作り出すことができる。
[Formation of a differential pressure state due to the difference in length between the positive and negative electrode conduits]
FIG. 4 shows a differential pressure forming mechanism 6 </ b> A formed by making the positive return pipe 110 longer than the negative return pipe 111. When the tube is lengthened, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 4, the positive return pipe 110 is longer than the negative return pipe 111, so that the pressure loss of the positive return pipe 110 is larger than the pressure loss of the negative return pipe 111. As a result, the pressure of the positive electrode electrolyte in the cell stack 2 becomes higher than the pressure of the negative electrode electrolyte, and the pressure of the positive electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the negative electrode electrolyte. The differential pressure state can be created.
 図示しないが、負極用往路管109を、正極用往路管108よりも長くすることで、差圧形成機構6Aを形成しても構わない。この場合、セルスタック2内の負極電解液の圧力が低くなり、相対的に正極電解液の圧力が負極電解液の圧力よりも高い状態が作り出される。もちろん、復路管110,111の長さが異なる構成と、往路管108,109の長さが異なる構成と、を組み合わせて差圧形成機構6Aを形成することもできる。 Although not shown in the drawings, the differential pressure forming mechanism 6A may be formed by making the negative electrode outward tube 109 longer than the positive electrode outward tube 108. In this case, the pressure of the negative electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the positive electrode electrolyte is relatively higher than the pressure of the negative electrode electrolyte is created. Of course, the differential pressure forming mechanism 6A can be formed by combining a configuration in which the lengths of the return pipes 110 and 111 are different from a configuration in which the lengths of the outgoing pipes 108 and 109 are different.
  [正極用管路と負極用管路の太さが異なることによる差圧状態の形成]
 図5には、正極用復路管110を、負極用復路管111よりも細くすることで形成した差圧形成機構6Bが示されている。管を細くすると、管内を流れる電解液の圧力損失が増大する。図5の場合は、正極用復路管110を負極用復路管111よりも細くしているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い第一の差圧状態を作り出すことができる。差圧形成機構6Bを採用する場合、正極用復路管110の内径を、負極用復路管111の内径の80%以下とすることが好ましい。
[Formation of a differential pressure state by the difference in thickness between the positive and negative electrode pipes]
FIG. 5 shows a differential pressure forming mechanism 6B formed by making the positive return pipe 110 thinner than the negative return pipe 111. When the tube is made thinner, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 5, the positive electrode return pipe 110 is made thinner than the negative electrode return pipe 111, so that the pressure loss of the positive electrode return pipe 110 is larger than the pressure loss of the negative electrode return pipe 111. As a result, the pressure of the positive electrode electrolyte in the cell stack 2 becomes higher than the pressure of the negative electrode electrolyte, and the pressure of the positive electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the negative electrode electrolyte. The differential pressure state can be created. When the differential pressure forming mechanism 6B is employed, the inner diameter of the positive return pipe 110 is preferably 80% or less of the inner diameter of the negative return pipe 111.
 図示しないが、負極用往路管109を、正極用往路管108よりも細くすることで、差圧形成機構6Bを形成しても構わない。この場合、セルスタック2内の負極電解液の圧力が低くなり、相対的に正極電解液の圧力が負極電解液の圧力よりも高い状態が作り出される。もちろん、復路管110,111の太さが異なる構成と、往路管108,109の太さが異なる構成と、を組み合わせて差圧形成機構6Bを形成することもできる。 Although not shown, the differential pressure forming mechanism 6B may be formed by making the negative electrode outward tube 109 thinner than the positive electrode outward tube 108. In this case, the pressure of the negative electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the positive electrode electrolyte is relatively higher than the pressure of the negative electrode electrolyte is created. Of course, the differential pressure forming mechanism 6B can be formed by combining a configuration in which the return pipes 110 and 111 have different thicknesses and a configuration in which the forward pipes 108 and 109 have different thicknesses.
  [正極用管路と負極用管路の経路が異なることによる差圧状態の形成]
 図6には、正極用復路管110を、負極用復路管111よりも複雑に屈曲させることで形成した差圧形成機構6Cが示されている。管の屈曲箇所が多いと、管内を流れる電解液の圧力損失が増大する。図6の場合は、正極用復路管110を負極用復路管111よりも複雑に屈曲させているので、正極用復路管110の圧力損失が負極用復路管111の圧力損失よりも大きくなる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い第一の差圧状態を作り出すことができる。なお、管の屈曲箇所を多くすること以外に、例えば管の屈曲箇所の曲げ半径を小さくすることによっても、管を複雑に屈曲させることができる。
[Formation of the differential pressure state due to the difference between the positive and negative lines]
FIG. 6 shows a differential pressure forming mechanism 6 </ b> C formed by bending the positive return pipe 110 more complicatedly than the negative return pipe 111. If there are many bent portions of the tube, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 6, since the positive return pipe 110 is bent more complicatedly than the negative return pipe 111, the pressure loss of the positive return pipe 110 is larger than the pressure loss of the negative return pipe 111. As a result, the pressure of the positive electrode electrolyte in the cell stack 2 becomes higher than the pressure of the negative electrode electrolyte, and the pressure of the positive electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the negative electrode electrolyte. The differential pressure state can be created. In addition to increasing the number of bent portions of the tube, the tube can be bent in a complicated manner, for example, by reducing the bending radius of the bent portion of the tube.
 図示しないが、負極用往路管109を、正極用往路管108よりも複雑に屈曲させることで、差圧形成機構6Cを形成しても構わない。もちろん、復路管110,111の屈曲状態が異なる構成と、往路管108,109の屈曲状態が異なる構成と、を組み合わせて差圧形成機構6Cを形成することもできる。 Although not shown in the drawings, the differential pressure forming mechanism 6C may be formed by bending the negative electrode outward tube 109 more complicatedly than the positive electrode outward tube 108. Of course, the differential pressure forming mechanism 6C can be formed by combining a configuration in which the return pipes 110 and 111 have different bending states and a configuration in which the outgoing pipes 108 and 109 have different bending states.
  [正極用管路と負極用管路のバルブの開度が異なることによる差圧状態の形成]
 図1に示すRF電池1の正極用管路と負極用管路のそれぞれには複数のバルブが存在する。バルブ114~117は、セルスタック2への電解液の循環を停止する際などに利用される。これらバルブ114~117を利用して差圧形成機構を形成することもできる。例えば、正極用復路管110のバルブ116を、負極用復路管111のバルブ117よりも絞る(開度を小さくする)ことで、正極用復路管110の圧力損失を負極用復路管111の圧力損失よりも大きくできる。その結果、セルスタック2内の正極電解液の圧力が負極電解液の圧力よりも高くなり、セルスタック2内の隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い第一の差圧状態を作り出すことができる。
 なお、バルブ114~117の位置は図1に示される位置に限定されない。また、図1では正極用管路と負極用管路のそれぞれに2つずつのバルブが存在するが、バルブの数はこれに限定されない。例えば、正極用管路と負極用管路のそれぞれが3つ以上のバルブを備えていても良いし、1つずつバルブを備えていても良い。
[Differential pressure state formation due to different valve openings in the positive and negative lines]
A plurality of valves exist in each of the positive electrode conduit and the negative electrode conduit of the RF battery 1 shown in FIG. The valves 114 to 117 are used when stopping the circulation of the electrolyte solution to the cell stack 2. These valves 114 to 117 can be used to form a differential pressure forming mechanism. For example, the valve 116 of the positive return pipe 110 is throttled (the opening degree is made smaller) than the valve 117 of the negative return pipe 111, thereby reducing the pressure loss of the positive return pipe 110 to the pressure loss of the negative return pipe 111. Can be bigger. As a result, the pressure of the positive electrode electrolyte in the cell stack 2 becomes higher than the pressure of the negative electrode electrolyte, and the pressure of the positive electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the negative electrode electrolyte. The differential pressure state can be created.
The positions of the valves 114 to 117 are not limited to the positions shown in FIG. In FIG. 1, two valves exist in each of the positive electrode pipe and the negative electrode pipe, but the number of valves is not limited thereto. For example, each of the positive electrode conduit and the negative electrode conduit may include three or more valves, or one valve each.
 負極用往路管109のバルブ115を、正極用往路管108のバルブ114よりも絞ることでも、セルスタック2内の負極電解液の圧力を低くして、上記差圧状態を作り出すことができる。もちろん、復路管110,111の各バルブ116,117の開度が異なる構成と、往路管108,109の各バルブ114,115の開度が異なる構成と、を組み合わせて差圧形成機構を形成することもできる。 The above-mentioned differential pressure state can also be created by lowering the pressure of the negative electrode electrolyte in the cell stack 2 by narrowing the valve 115 of the negative electrode outward tube 109 than the valve 114 of the positive electrode outward tube 108. Of course, a differential pressure forming mechanism is formed by combining a configuration in which the opening degrees of the valves 116 and 117 of the return pipes 110 and 111 are different from a configuration in which the opening degrees of the valves 114 and 115 of the outgoing pipes 108 and 109 are different. You can also.
  [正極用熱交換器と負極用熱交換器の構成が異なることによる差圧状態の形成]
 図1に示すRF電池1は、正極用復路管110の途中に設けられる正極用熱交換器4Pと、負極用復路管111の途中に設けられる負極用熱交換器4Nと、を備える。これら熱交換器4P,4Nによっても差圧形成機構6D(図7参照)を形成することができる。
[Formation of differential pressure state due to different configurations of positive and negative heat exchangers]
The RF battery 1 shown in FIG. 1 includes a positive electrode heat exchanger 4P provided in the middle of the positive electrode return pipe 110 and a negative electrode heat exchanger 4N provided in the middle of the negative electrode return pipe 111. The differential pressure forming mechanism 6D (see FIG. 7) can also be formed by these heat exchangers 4P and 4N.
 図7の上部には負極用熱交換器4Nの概略構成図が、図7の下部には正極用熱交換器4Pの概略構成図が示されている。熱交換器の基本的な構成は、例えば特開2013-206566号公報に記載のように公知である。例えば、図5に示すように、冷媒40P(40N)を貯留する容器41P(41N)内に配管42P(42N)を這わせることで熱交換器4P(4N)を構成することができる。配管42P(42N)は、復路管110(111)に繋がっており、従って、その内部には正極電解液(負極電解液)が流れる。正極電解液(負極電解液)は、配管42P(42N)を流れる間に、冷媒40P(40N)によって冷却される。冷媒40P(40N)は、空冷用の気体冷媒や、水冷用の液体冷媒があり、図示しない冷却機構で冷却される。ここで、配管42P(42N)は、復路管110(111)の一部と見做すことができる。 7 is a schematic configuration diagram of the negative electrode heat exchanger 4N, and a lower configuration of FIG. 7 is a schematic configuration diagram of the positive electrode heat exchanger 4P. The basic configuration of the heat exchanger is known as described in, for example, Japanese Patent Application Laid-Open No. 2013-206566. For example, as shown in FIG. 5, the heat exchanger 4P (4N) can be configured by placing a pipe 42P (42N) in a container 41P (41N) that stores the refrigerant 40P (40N). The pipe 42P (42N) is connected to the return pipe 110 (111), and therefore, the positive electrode electrolyte (the negative electrode electrolyte) flows therein. The positive electrode electrolyte (negative electrode electrolyte) is cooled by the refrigerant 40P (40N) while flowing through the pipe 42P (42N). The refrigerant 40P (40N) includes a gas refrigerant for air cooling and a liquid refrigerant for water cooling, and is cooled by a cooling mechanism (not shown). Here, the pipe 42P (42N) can be regarded as a part of the return pipe 110 (111).
 熱交換器4P,4Nで差圧形成機構6Dを形成する場合、図示するように、正極用熱交換器4Pの配管42Pを、負極用熱交換器4Nの配管42Nよりも長くすれば良い。そうすることで、復路管110,111の長さを変化させた差圧形成機構6Aと同様の理由により、隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い差圧状態を作り出すことができる。 When the differential pressure forming mechanism 6D is formed by the heat exchangers 4P and 4N, the pipe 42P of the positive electrode heat exchanger 4P may be made longer than the pipe 42N of the negative electrode heat exchanger 4N as illustrated. By doing so, for the same reason as the differential pressure forming mechanism 6A in which the lengths of the return pipes 110 and 111 are changed, the pressure difference of the positive electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the negative electrode electrolyte. Can produce.
 その他、配管42Pを配管42Nよりも細くする、あるいは配管42Pの屈曲箇所を配管42Nの屈曲箇所よりも多くすることでも、上記差圧状態を作り出すことができる。もちろん、配管長、配管太さ、配管の屈曲状態を組み合わせて上記差圧状態を作り出しても良い。なお、正極用熱交換器4Pのみを設けて、負極用熱交換器4Nを設けないことでも、上記差圧状態を作り出すことができる。 In addition, the above-mentioned differential pressure state can also be created by making the pipe 42P thinner than the pipe 42N or by making the bent part of the pipe 42P more than the bent part of the pipe 42N. Of course, the differential pressure state may be created by combining the pipe length, the pipe thickness, and the bent state of the pipe. The differential pressure state can also be created by providing only the positive electrode heat exchanger 4P and not the negative electrode heat exchanger 4N.
  [その他の方策]
 図1の正極用タンク106を負極用タンク107よりも高く配設することで、上記差圧状態を形成することもできる。また、正極用復路管110を負極用復路管111より高い位置に取回すことでも上記差圧状態を形成することができる。
[Other measures]
By arranging the positive electrode tank 106 in FIG. 1 higher than the negative electrode tank 107, the above-described differential pressure state can be formed. The differential pressure state can also be formed by routing the positive return pipe 110 to a position higher than the negative return pipe 111.
  [組み合わせについて]
 以上説明した各差圧形成機構は、単独あるいは組み合わせて用いることができる。例えば、正極用管路と負極用管路の長さが異なる構成と、正極用管路と負極用管路の太さが異なる構成と、を組み合わせると、所望の差圧状態を形成し易い。
[About combination]
Each of the differential pressure forming mechanisms described above can be used alone or in combination. For example, when a configuration in which the lengths of the positive and negative electrode conduits are different from a configuration in which the thickness of the positive and negative electrode conduits are different, a desired differential pressure state is easily formed.
 なお、第一の差圧状態は、隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い差圧状態であることが好ましい。これは、単にセルスタックから排出された直後の正極電解液の圧力が負極電解液の圧力よりも高かったとしても、隔膜の面上の局所で隔膜に作用する正極電解液の圧力が負極電解液の圧力よりも小さい場合があるからである。上述の差圧形成機構により、隔膜101の全面にわたって隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高い差圧状態を作り出すことが可能である。 The first differential pressure state is preferably a differential pressure state in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the negative electrode electrolyte. This is because even if the pressure of the positive electrode electrolyte immediately after being discharged from the cell stack is higher than the pressure of the negative electrode electrolyte, the pressure of the positive electrode electrolyte acting on the diaphragm locally on the surface of the diaphragm is This is because the pressure may be smaller than the pressure. With the above-described differential pressure forming mechanism, it is possible to create a differential pressure state in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the negative electrode electrolyte.
  [第一の差圧形成機構の効果]
 上述の実施形態では、セルスタック2内における正極電解液の流路と負極電解液の流路は構成上同一であり、正極用循環機構3Pと負極用循環機構3Nとに構成上の差異を設けることによって、所望の差圧状態を形成している。したがって、以上説明した第一の差圧形成機構を利用することで、セルスタック2を分解することなく所望の差圧状態を容易に形成することができる。これに対して、特許文献1のRF電池のように、セルスタック内のセルフレームにおける正極電解液の流路と負極電解液の流路とを異ならせる場合、例えば電解液の種類などの電解液の流通条件を変化させたときに、その流通条件の変化に応じて所望の差圧状態を作り出すことが難しい。流通条件に応じたセルフレームとするには、セルスタックを分解する手間、セルフレームを加工する手間、再びセルスタックを組み立てる手間がかかる上、加工したセルフレームで所望の差圧状態を達成することができない場合、さらに分解・加工・組み立てを行う必要があるからである。
[Effect of first differential pressure forming mechanism]
In the above-described embodiment, the flow path of the positive electrode electrolyte and the flow path of the negative electrode electrolyte in the cell stack 2 are the same in configuration, and a difference in configuration is provided between the positive electrode circulation mechanism 3P and the negative electrode circulation mechanism 3N. Thus, a desired differential pressure state is formed. Therefore, a desired differential pressure state can be easily formed without disassembling the cell stack 2 by using the first differential pressure forming mechanism described above. On the other hand, when the flow path of the positive electrode electrolyte and the flow path of the negative electrode electrolyte in the cell frame in the cell stack are different as in the RF battery of Patent Document 1, for example, the electrolyte such as the type of the electrolyte When the flow conditions are changed, it is difficult to create a desired differential pressure state according to the change in the flow conditions. To make the cell frame suitable for the distribution conditions, it takes time to disassemble the cell stack, time to process the cell frame, time to assemble the cell stack again, and achieve the desired differential pressure state with the processed cell frame. This is because if it is not possible, further disassembly, processing, and assembly are required.
<実施形態2>
 実施形態2では、図1に示すRF電池1において、セルスタック2内に正極電解液と負極電解液を循環させるときにも、両電解液の循環を停止するときにも、隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い第二の差圧状態(隔膜101に対して、図1の電池セル100中の白抜き矢印の方向に圧力が作用する状態)を維持する例を説明する。
<Embodiment 2>
In Embodiment 2, the RF battery 1 shown in FIG. 1 acts on the diaphragm 101 both when the positive and negative electrolytes are circulated in the cell stack 2 and when the circulation of both electrolytes is stopped. A second differential pressure state in which the pressure of the negative electrode electrolyte is higher than the pressure of the positive electrode electrolyte (a state in which pressure acts on the diaphragm 101 in the direction of the white arrow in the battery cell 100 of FIG. 1) is maintained. An example will be described.
 上記第二の差圧状態は、流量制御部5によって負極用循環機構3Nのポンプ113からの負極電解液の送液量を、正極用循環機構3Pのポンプ112からの正極電解液の送液量よりも大きくすることで、作り出される。 In the second differential pressure state, the flow rate control unit 5 controls the flow rate of the negative electrode electrolyte from the pump 113 of the negative electrode circulation mechanism 3N, and the flow rate of the positive electrode electrolyte from the pump 112 of the positive electrode circulation mechanism 3P. It is produced by making it bigger.
 さらに流量制御部5は、両電解液の循環を停止する際にも、上記第二の差圧状態を維持できるように、ポンプ112,113を制御する。代表的な二つの制御パターンを図8、図9に基づいて説明する。図8,9の見方は、実施形態1の図2,3と同様である。 Further, the flow rate control unit 5 controls the pumps 112 and 113 so that the second differential pressure state can be maintained even when the circulation of both electrolytes is stopped. Two typical control patterns will be described with reference to FIGS. The views of FIGS. 8 and 9 are the same as those of FIGS.
  [制御パターンIII]
 図8のグラフに示すように、制御パターンIIIでは、負極電解液の送液量を正極電解液の送液量よりも大きくして両電解液を循環させた状態から、時刻t0で両電解液の循環を停止し始める。その際、負極電解液の送液量(循環量)の減少速度を、正極電解液の送液量(循環量)の減少速度よりも大きくしている。そして、時刻t1で両電解液の送液をほぼ同時に停止する。
[Control Pattern III]
As shown in the graph of FIG. 8, in the control pattern III, both electrolyte solutions are supplied at a time t0 from the state in which both electrolyte solutions are circulated with the negative electrode electrolyte solution supplied larger than the positive electrode electrolyte supply amount. Start to stop circulating. At this time, the rate of decrease in the amount (circulation amount) of the negative electrode electrolyte is set to be greater than the rate of decrease in the amount (circulation amount) of the positive electrode electrolyte. At time t1, the feeding of both electrolytes is stopped almost simultaneously.
 上記制御パターンIIIによれば、両電解液の送液量(循環量)の差を徐々に小さくしながら両電解液の循環を停止することができる。その結果、両電解液の循環を停止するまでの間、隔膜101(図1参照)に作用する応力を徐々に小さくすることができるため、隔膜101の損傷を効果的に防止することができる。 According to the control pattern III, the circulation of both electrolytes can be stopped while gradually reducing the difference in the amount (circulation amount) of both electrolytes. As a result, since the stress acting on the diaphragm 101 (see FIG. 1) can be gradually reduced until the circulation of both electrolytes is stopped, damage to the diaphragm 101 can be effectively prevented.
  [制御パターンIV]
 図9のグラフに示すように、制御パターンIVでも、時刻t0で両電解液の循環を停止し始める。ここで、制御パターンIVでは、正極電解液の送液量(循環量)の減少速度と、負極電解液の送液量(循環量)の減少速度と、を同程度としている。もともと、正極電解液の送液量が負極電解液の送液量よりも小さかったために、両電解液の送液量の減少速度が同程度であると、時刻t2で正極電解液の送液が停止し、その後、時刻t3で負極電解液の送液が停止する。つまり、正極電解液の循環が停止した後も負極電解液がセルスタック2(図1参照)内を循環することになるため、両電解液の循環が停止する瞬間まで、確実に第二の差圧状態を維持することができる。
[Control Pattern IV]
As shown in the graph of FIG. 9, even in the control pattern IV, the circulation of both electrolytes starts to be stopped at time t0. Here, in the control pattern IV, the rate of decrease in the amount (circulation amount) of the positive electrode electrolyte is substantially the same as the rate of decrease in the amount (circulation amount) of the negative electrode electrolyte. Originally, since the amount of the positive electrode electrolyte supplied was smaller than the amount of the negative electrode electrolyte supplied, the rate of decrease in the amount of electrolyte supplied by both electrolytes was approximately the same. After that, the feeding of the negative electrode electrolyte stops at time t3. That is, since the negative electrode electrolyte circulates in the cell stack 2 (see FIG. 1) even after the circulation of the positive electrolyte is stopped, the second difference is surely ensured until the moment when the circulation of both electrolytes is stopped. The pressure state can be maintained.
 なお、図1に示すRF電池1の正極用管路と負極用管路のそれぞれには複数のバルブが存在する。図1では、正極用管路にはバルブ114,116が存在し、負極用管路にはバルブ115,117が存在する。それらバルブ114~117の開度・開閉回数を流量制御部5に制御させても構わない。そうすることで、上記二つの制御パターンを行い易くなる。 Note that a plurality of valves exist in each of the positive electrode conduit and the negative electrode conduit of the RF battery 1 shown in FIG. In FIG. 1, valves 114 and 116 are present in the positive line and valves 115 and 117 are present in the negative line. The opening / opening / closing times of the valves 114 to 117 may be controlled by the flow control unit 5. By doing so, it becomes easy to perform the two control patterns.
 ≪循環停止時に係る構成≫
 図1に示す上記流量制御部5の制御によって両電解液の循環を停止した後も、隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い第二の差圧状態を維持することが好ましい。両電解液が循環していないときに差圧状態が維持されていれば、両電解液の循環を再開する際、負極電解液を循環させるポンプ113の始動が何らかの理由で正極電解液を循環させるポンプ112の始動より遅れるなどしても、隔膜101に作用する正極電解液の圧力が負極電解液の圧力よりも高くなる逆差圧状態となり難いからである。
≪Configuration related to circulation stop≫
Even after the circulation of both electrolytes is stopped by the control of the flow rate control unit 5 shown in FIG. 1, the second differential pressure state in which the pressure of the negative electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the positive electrode electrolyte is maintained. It is preferable to do. If the differential pressure state is maintained when both electrolytes are not circulated, when the circulation of both electrolytes is resumed, the start of the pump 113 that circulates the anode electrolyte causes the cathode electrolyte to circulate for some reason. This is because even if it is delayed from the start of the pump 112, it is difficult to achieve a reverse differential pressure state in which the pressure of the positive electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the negative electrode electrolyte.
 両電解液の循環が循環していないときに上記第二の差圧状態を維持するには、例えば負極用タンク107を正極用タンク106よりも高い位置に配置すると良い。そして、両電解液の循環を停止した後も、セルスタック2内に両電解液を満たしたままとしておく。そうすることで、両電解液が循環していなくても、位置エネルギーによって第二の差圧状態を維持することができる。 In order to maintain the second differential pressure state when both the electrolytes are not circulated, for example, the negative electrode tank 107 may be disposed at a higher position than the positive electrode tank 106. Then, even after the circulation of both electrolytes is stopped, the cell stack 2 is filled with both electrolytes. By doing so, even if both electrolytes are not circulating, the second differential pressure state can be maintained by the potential energy.
 ≪第二の差圧状態を形成し易くするための構成≫
 上記ポンプ112,113からの送液量の差に加えて、第二の差圧状態を形成し易くするための第二の差圧形成機構をRF電池1に設けても良い。第二の差圧形成機構は、RF電池1に備わる既存の部材の構成(主として寸法)を変えること、具体的には正極用循環機構3Pと負極用循環機構3Nとに構成上の差異を設けることで形成することができる。以下、第二の差圧形成機構の一形態を図10~図13に基づいて説明する。図10~図12ではタンク、ポンプ及びバルブを省略し、図13ではさらにセルスタックも省略している。
≪Configuration to facilitate the formation of the second differential pressure state≫
In addition to the difference in the amount of liquid fed from the pumps 112 and 113, the RF battery 1 may be provided with a second differential pressure forming mechanism for facilitating the formation of the second differential pressure state. The second differential pressure forming mechanism changes the configuration (mainly dimensions) of the existing members provided in the RF battery 1, and specifically provides a structural difference between the positive electrode circulation mechanism 3P and the negative electrode circulation mechanism 3N. Can be formed. Hereinafter, an embodiment of the second differential pressure forming mechanism will be described with reference to FIGS. 10 to 12, the tank, pump, and valve are omitted, and in FIG. 13, the cell stack is also omitted.
  [正極用管路と負極用管路の長さが異なることによる差圧状態の形成]
 図10には、負極用復路管111を、正極用復路管110よりも長くすることで形成した差圧形成機構6Eが示されている。管を長くすると、管内を流れる電解液の圧力損失が増大する。図10の場合は、負極用復路管111を正極用復路管110よりも長くしているので、負極用復路管111の圧力損失が正極用復路管110の圧力損失よりも大きくなる。その結果、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い第二の差圧状態を作り出すことができる。
[Formation of a differential pressure state due to the difference in length between the positive and negative electrode conduits]
FIG. 10 shows a differential pressure forming mechanism 6E formed by making the return pipe 111 for the negative electrode longer than the return pipe 110 for the positive electrode. When the tube is lengthened, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 10, the negative electrode return pipe 111 is longer than the positive electrode return pipe 110, so that the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110. As a result, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the positive electrode electrolyte. The differential pressure state can be created.
 図示しないが、正極用往路管108を、負極用往路管109よりも長くすることで、差圧形成機構6Eを形成しても構わない。この場合、セルスタック2内の正極電解液の圧力が低くなり、相対的に負極電解液の圧力が正極電解液の圧力よりも高い状態が作り出される。もちろん、復路管110,111の長さが異なる構成と、往路管108,109の長さが異なる構成と、を組み合わせて差圧形成機構6Aを形成することもできる。 Although not shown, the differential pressure forming mechanism 6E may be formed by making the positive electrode outward tube 108 longer than the negative electrode outward tube 109. In this case, the pressure of the positive electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the negative electrode electrolyte is relatively higher than the pressure of the positive electrode electrolyte is created. Of course, the differential pressure forming mechanism 6A can be formed by combining a configuration in which the lengths of the return pipes 110 and 111 are different from a configuration in which the lengths of the outgoing pipes 108 and 109 are different.
  [正極用管路と負極用管路の太さが異なることによる差圧状態の形成]
 図11には、負極用復路管111を、正極用復路管110よりも細くすることで形成した差圧形成機構6Fが示されている。管を細くすると、管内を流れる電解液の圧力損失が増大する。図11の場合は、負極用復路管111を正極用復路管110よりも細くしているので、負極用復路管111の圧力損失が正極用復路管110の圧力損失よりも大きくなる。その結果、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い第二の差圧状態を作り出すことができる。差圧形成機構6Fを採用する場合、負極用復路管111の内径を、正極用復路管110の内径の80%以下とすることが好ましい。
[Formation of a differential pressure state by the difference in thickness between the positive and negative electrode pipes]
FIG. 11 shows a differential pressure forming mechanism 6 </ b> F formed by making the negative electrode return pipe 111 thinner than the positive electrode return pipe 110. When the tube is made thinner, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 11, the negative electrode return pipe 111 is made thinner than the positive electrode return pipe 110, so that the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110. As a result, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the positive electrode electrolyte. The differential pressure state can be created. When the differential pressure forming mechanism 6F is employed, the inner diameter of the negative electrode return pipe 111 is preferably 80% or less of the inner diameter of the positive electrode return pipe 110.
 図示しないが、正極用往路管108を、負極用往路管109よりも細くすることで、差圧形成機構6Fを形成しても構わない。この場合、セルスタック2内の正極電解液の圧力が低くなり、相対的に負極電解液の圧力が正極電解液の圧力よりも高い状態が作り出される。もちろん、復路管110,111の太さが異なる構成と、往路管108,109の太さが異なる構成と、を組み合わせて差圧形成機構6Fを形成することもできる。 Although not shown, the differential pressure forming mechanism 6F may be formed by making the positive electrode outward tube 108 thinner than the negative electrode outward tube 109. In this case, the pressure of the positive electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the negative electrode electrolyte is relatively higher than the pressure of the positive electrode electrolyte is created. Of course, the differential pressure forming mechanism 6F can be formed by combining a configuration in which the return pipes 110 and 111 have different thicknesses and a configuration in which the forward pipes 108 and 109 have different thicknesses.
  [正極用管路と負極用管路の経路が異なることによる差圧状態の形成]
 図12には、負極用復路管111を、正極用復路管110よりも複雑に屈曲させることで形成した差圧形成機構6Gが示されている。管の屈曲箇所が多いと、管内を流れる電解液の圧力損失が増大する。図12の場合は、負極用復路管111を正極用復路管110よりも複雑に屈曲させているので、負極用復路管111の圧力損失が正極用復路管110の圧力損失よりも大きくなる。その結果、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い第二の差圧状態を作り出すことができる。なお、管の屈曲箇所を多くすること以外に、例えば管の屈曲箇所の曲げ半径を小さくすることによっても、管を複雑に屈曲させることができる。
[Formation of the differential pressure state due to the difference between the positive and negative lines]
FIG. 12 shows a differential pressure forming mechanism 6G formed by bending the negative electrode return pipe 111 more complicatedly than the positive electrode return pipe 110. If there are many bent portions of the tube, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 12, the negative electrode return pipe 111 is bent more complicatedly than the positive electrode return pipe 110, so that the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110. As a result, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the positive electrode electrolyte. The differential pressure state can be created. In addition to increasing the number of bent portions of the tube, the tube can be bent in a complicated manner, for example, by reducing the bending radius of the bent portion of the tube.
 図示しないが、正極用往路管108を、負極用往路管109よりも複雑に屈曲させることで、差圧形成機構6Gを形成しても構わない。もちろん、復路管110,111の屈曲状態が異なる構成と、往路管108,109の屈曲状態が異なる構成と、を組み合わせて差圧形成機構6Gを形成することもできる。 Although not shown, the differential pressure forming mechanism 6G may be formed by bending the positive electrode outward tube 108 more complicatedly than the negative electrode outward tube 109. Of course, the differential pressure forming mechanism 6G can be formed by combining a configuration in which the return pipes 110 and 111 have different bending states and a configuration in which the outgoing pipes 108 and 109 have different bending states.
  [正極用管路と負極用管路のバルブの開度が異なることによる差圧状態の形成]
 図1に示すRF電池1の正極用管路と負極用管路のそれぞれには複数のバルブが存在する。バルブ114~117は、セルスタック2への電解液の循環を停止する際などに利用される。これらバルブ114~117を利用して差圧形成機構を形成することもできる。例えば、負極用復路管111のバルブ117を、正極用復路管110のバルブ116よりも絞る(開度を小さくする)ことで、負極用復路管111の圧力損失を正極用復路管110の圧力損失よりも大きくできる。その結果、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い第二の差圧状態を作り出すことができる。
 なお、バルブ114~117の位置は図1に示される位置に限定されない。また、図1では正極用管路と負極用管路のそれぞれに2つずつのバルブが存在するが、バルブの数はこれに限定されない。例えば、正極用管路と負極用管路のそれぞれが3つ以上のバルブを備えていても良いし、1つずつバルブを備えていても良い。
[Differential pressure state formation due to different valve openings in the positive and negative lines]
A plurality of valves exist in each of the positive electrode conduit and the negative electrode conduit of the RF battery 1 shown in FIG. The valves 114 to 117 are used when stopping the circulation of the electrolyte solution to the cell stack 2. These valves 114 to 117 can be used to form a differential pressure forming mechanism. For example, the valve 117 of the negative return pipe 111 is throttled (the opening degree is made smaller) than the valve 116 of the positive return pipe 110, thereby reducing the pressure loss of the negative return pipe 111 to the pressure loss of the positive return pipe 110. Can be bigger. As a result, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 in the cell stack 2 is higher than the pressure of the positive electrode electrolyte. The differential pressure state can be created.
The positions of the valves 114 to 117 are not limited to the positions shown in FIG. In FIG. 1, two valves exist in each of the positive electrode pipe and the negative electrode pipe, but the number of valves is not limited thereto. For example, each of the positive electrode conduit and the negative electrode conduit may include three or more valves, or one valve each.
 正極用往路管108のバルブ114を、負極用往路管109のバルブ115よりも絞ることでも、セルスタック2内の正極電解液の圧力を低くして、上記差圧状態を作り出すことができる。もちろん、復路管110,111の各バルブ116,117の開度が異なる構成と、往路管108,109の各バルブ114,115の開度が異なる構成と、を組み合わせて差圧形成機構を形成することもできる。 The pressure difference of the positive electrode electrolyte in the cell stack 2 can be reduced by creating the valve 114 of the positive electrode outward pipe 108 smaller than the valve 115 of the negative electrode outgoing pipe 109. Of course, a differential pressure forming mechanism is formed by combining a configuration in which the opening degrees of the valves 116 and 117 of the return pipes 110 and 111 are different from a configuration in which the opening degrees of the valves 114 and 115 of the outgoing pipes 108 and 109 are different. You can also.
  [正極用管路熱交換器と負極用熱交換器の構成が異なることによる差圧状態の形成]
 図1に示すRF電池1は、正極用復路管110の途中に設けられる正極用熱交換器4Pと、負極用復路管111の途中に設けられる負極用熱交換器4Nと、を備える。これら熱交換器4P,4Nによっても差圧形成機構6H(図13参照)を形成することができる。
[Formation of differential pressure state due to different configurations of positive line heat exchanger and negative heat exchanger]
The RF battery 1 shown in FIG. 1 includes a positive electrode heat exchanger 4P provided in the middle of the positive electrode return pipe 110 and a negative electrode heat exchanger 4N provided in the middle of the negative electrode return pipe 111. The differential pressure forming mechanism 6H (see FIG. 13) can also be formed by these heat exchangers 4P and 4N.
 図13の上部には負極用熱交換器4Nの概略構成図が、図13の下部には正極用熱交換器4Pの概略構成図が示されている。熱交換器の基本的な構成は、例えば特開2013-206566号公報に記載のように公知である。例えば、図13に示すように、冷媒40P(40N)を貯留する容器41P(41N)内に配管42P(42N)を這わせることで熱交換器4P(4N)を構成することができる。配管42P(42N)は、復路管110(111)に繋がっており、従って、その内部には正極電解液(負極電解液)が流れる。正極電解液(負極電解液)は、配管42P(42N)を流れる間に、冷媒40P(40N)によって冷却される。冷媒40P(40N)は、空冷用の気体冷媒や、水冷用の液体冷媒があり、図示しない冷却機構で冷却される。ここで、配管42P(42N)は、復路管110(111)の一部と見做すことができる。 13 is a schematic configuration diagram of the negative electrode heat exchanger 4N, and a lower configuration of FIG. 13 is a schematic configuration diagram of the positive electrode heat exchanger 4P. The basic configuration of the heat exchanger is known as described in, for example, Japanese Patent Application Laid-Open No. 2013-206566. For example, as shown in FIG. 13, the heat exchanger 4P (4N) can be configured by placing a pipe 42P (42N) in a container 41P (41N) that stores the refrigerant 40P (40N). The pipe 42P (42N) is connected to the return pipe 110 (111), and therefore, the positive electrode electrolyte (the negative electrode electrolyte) flows therein. The positive electrode electrolyte (negative electrode electrolyte) is cooled by the refrigerant 40P (40N) while flowing through the pipe 42P (42N). The refrigerant 40P (40N) includes a gas refrigerant for air cooling and a liquid refrigerant for water cooling, and is cooled by a cooling mechanism (not shown). Here, the pipe 42P (42N) can be regarded as a part of the return pipe 110 (111).
 熱交換器4P,4Nで差圧形成機構6Hを形成する場合、図示するように、負極用熱交換器4Nの配管42Nを、正極用熱交換器4Pの配管42Pよりも長くすれば良い。そうすることで、復路管110,111の長さを変化させた差圧形成機構6Aと同様の理由により、隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い差圧状態を作り出すことができる。 When the differential pressure forming mechanism 6H is formed by the heat exchangers 4P and 4N, the pipe 42N of the negative electrode heat exchanger 4N may be made longer than the pipe 42P of the positive electrode heat exchanger 4P as illustrated. By doing so, for the same reason as the differential pressure forming mechanism 6A in which the lengths of the return pipes 110 and 111 are changed, the pressure difference of the negative electrode electrolyte acting on the diaphragm 101 is higher than the pressure of the positive electrode electrolyte. Can produce.
 その他、配管42Nを配管42Pよりも細くする、あるいは配管42Nの屈曲箇所を配管42Pの屈曲箇所よりも多くすることでも、上記差圧状態を作り出すことができる。もちろん、配管長、配管太さ、配管の屈曲状態を組み合わせて上記差圧状態を作り出しても良い。なお、負極用熱交換器4Nのみを設けて、正極用熱交換器4Pを設けないことでも、上記差圧状態を作り出すことができる。 In addition, the above-mentioned differential pressure state can also be created by making the pipe 42N thinner than the pipe 42P, or by making the bent part of the pipe 42N more than the bent part of the pipe 42P. Of course, the differential pressure state may be created by combining the pipe length, the pipe thickness, and the bent state of the pipe. The above differential pressure state can also be created by providing only the negative electrode heat exchanger 4N and not the positive electrode heat exchanger 4P.
  [その他の方策]
 図1の負極用タンク107を正極用タンク106よりも高く配設することで、上記差圧状態を形成することもできる。また、負極用復路管111を正極用復路管110より高い位置に取回すことでも上記差圧状態を形成することができる。
[Other measures]
The above-described differential pressure state can be formed by disposing the negative electrode tank 107 of FIG. 1 higher than the positive electrode tank 106. Further, the differential pressure state can also be formed by routing the negative electrode return pipe 111 to a position higher than the positive electrode return pipe 110.
  [組み合わせについて]
 以上説明した各差圧形成機構は、単独あるいは組み合わせて用いることができる。例えば、正極用管路と負極用管路の長さが異なる構成と、正極用管路と負極用管路の太さが異なる構成と、を組み合わせると、所望の差圧状態を形成し易い。
[About combination]
Each of the differential pressure forming mechanisms described above can be used alone or in combination. For example, when a configuration in which the lengths of the positive and negative electrode conduits are different from a configuration in which the thickness of the positive and negative electrode conduits are different, a desired differential pressure state is easily formed.
 なお、第二の差圧状態は、隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い差圧状態であることが好ましい。これは、単にセルスタックから排出された直後の負極電解液の圧力が正極電解液の圧力よりも高かったとしても、隔膜の面上の局所で隔膜に作用する負極電解液の圧力が正極電解液の圧力よりも小さい場合があるからである。上述の差圧形成機構により、隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い差圧状態を作り出すことが可能である。 It should be noted that the second differential pressure state is preferably a differential pressure state in which the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the positive electrode electrolyte. Even if the pressure of the negative electrode electrolyte immediately after being discharged from the cell stack is higher than the pressure of the positive electrode electrolyte, the pressure of the negative electrode electrolyte acting on the diaphragm locally on the surface of the diaphragm is This is because the pressure may be smaller than the pressure. With the above-described differential pressure forming mechanism, it is possible to create a differential pressure state in which the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the positive electrode electrolyte.
  [第二の差圧形成機構の効果]
 上述の実施形態では、セルスタック2内における正極電解液の流路と負極電解液の流路は構成上同一であり、正極用循環機構3Pと負極用循環機構3Nとに構成上の差異を設けることによって、所望の差圧状態を形成している。したがって、以上説明した第二の差圧形成機構を利用することで、セルスタック2を分解することなく所望の差圧状態を容易に形成することができる。これに対して、特許文献1のRF電池のように、セルスタック内のセルフレームにおける正極電解液の流路と負極電解液の流路とを異ならせる場合、例えば電解液の種類などの電解液の流通条件を変化させたときに、その流通条件の変化に応じて所望の差圧状態を作り出すことが難しい。流通条件に応じたセルフレームとするには、セルスタックを分解する手間、セルフレームを加工する手間、再びセルスタックを組み立てる手間がかかる上、加工したセルフレームで所望の差圧状態を達成することができない場合、さらに分解・加工・組み立てを行う必要があるからである。
[Effect of second differential pressure forming mechanism]
In the above-described embodiment, the flow path of the positive electrode electrolyte and the flow path of the negative electrode electrolyte in the cell stack 2 are the same in configuration, and a difference in configuration is provided between the positive electrode circulation mechanism 3P and the negative electrode circulation mechanism 3N. Thus, a desired differential pressure state is formed. Therefore, by utilizing the second differential pressure forming mechanism described above, a desired differential pressure state can be easily formed without disassembling the cell stack 2. On the other hand, when the flow path of the positive electrode electrolyte and the flow path of the negative electrode electrolyte in the cell frame in the cell stack are different as in the RF battery of Patent Document 1, for example, the electrolyte such as the type of the electrolyte When the flow conditions are changed, it is difficult to create a desired differential pressure state according to the change in the flow conditions. To make the cell frame suitable for the distribution conditions, it takes time to disassemble the cell stack, time to process the cell frame, time to assemble the cell stack again, and achieve the desired differential pressure state with the processed cell frame. This is because if it is not possible, further disassembly, processing, and assembly are required.
 本発明のレドックスフロー電池およびレドックスフロー電池の運転方法は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などに利用できる他、一般的な発電所に併設されて、瞬時電圧低下対策・停電対策や負荷平準化にも利用することができる。 The redox flow battery and the operation method of the redox flow battery according to the present invention include stabilization of fluctuations in power generation output, power storage when surplus generated power, load leveling for new energy power generation such as solar power generation and wind power generation. In addition to being used for general power plants, it can also be used for instantaneous voltage drop countermeasures, power outage countermeasures, and load leveling.
1,α レドックスフロー電池(RF電池)
2 セルスタック
100 電池セル
 101 隔膜
 102 正極部 103 負極部 104 正極電極 105 負極電極
3P,100P 正極用循環機構
 106 正極用タンク 108 正極用往路管 110 正極用復路管
 112 ポンプ(正極用送液装置) 114 正極用往路管のバルブ
 116 正極用復路管のバルブ
3N,100N 負極用循環機構
 107 負極用タンク 109 負極用往路管 111 負極用復路管
 113 ポンプ(負極用送液装置) 115 負極用復路管のバルブ
 117 負極用復路管のバルブ
4P 正極用熱交換器
 40P 冷媒 41P 容器 42P 配管
4N 負極用熱交換器
 40N 冷媒 41N 容器 42N 配管
5 流量制御部
6A,6B,6C,6D,6E,6F,6G,6H 差圧形成機構
120 セルフレーム 121 双極板 122 枠体
123,124 給液用マニホールド 125,126 排液用マニホールド
127 シール部材
190 給排板 210,220 エンドプレート
200 セルスタック 200s サブスタック 230 締付機構
1, α Redox flow battery (RF battery)
2 Cell stack 100 Battery cell 101 Diaphragm 102 Positive electrode part 103 Negative electrode part 104 Positive electrode 105 Negative electrode 3P, 100P Positive electrode circulation mechanism 106 Positive electrode tank 108 Positive electrode outward pipe 110 Positive electrode return pipe 112 Pump (liquid supply apparatus for positive electrode) 114 Valve for Positive Pipe for Outward Pipe 116 Valve 3N, 100N for Return Pipe for Positive Electrode Circulation Mechanism for Negative Electrode 107 Tank for Negative Electrode 109 Outbound Pipe for Negative Electrode 111 Pump for Negative Electrode 113 Pump (Liquid Feed Device for Negative Electrode) 115 Valve 117 Valve for negative electrode return pipe 4P Heat exchanger for positive electrode 40P Refrigerant 41P Container 42P Piping 4N Heat exchanger for negative electrode 40N Refrigerant 41N Container 42N Piping 5 Flow control units 6A, 6B, 6C, 6D, 6E, 6F, 6G, 6H Differential pressure forming mechanism 120 Cell frame 121 Bipolar plate 122 Frame 1 3,124 supply fluid manifold 125,126 drainage manifold 127 seal member 190 feed and discharge plate 210, 220 end plate 200 cell stack 200s sub-stack 230 clamping mechanism

Claims (5)

  1.  正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法であって、
     前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、一方の電解液の循環量を他方の電解液の循環量よりも多くして、前記隔膜に作用する前記一方の電解液の圧力を、前記隔膜に作用する前記他方の電解液の圧力よりも高くした差圧状態とし、
     前記正極電解液と前記負極電解液の循環量を減少させ、両電解液の循環を停止する際にも、前記一方の電解液の循環量を前記他方の電解液の循環量よりも多くして、前記差圧状態を維持するレドックスフロー電池の運転方法。
    Redox flow in which a positive electrode electrolyte is circulated using a positive electrode circulation mechanism and a negative electrode electrolyte is circulated in a cell stack in which a plurality of battery cells having positive electrodes, negative electrodes, and diaphragms are stacked. A battery operating method,
    When circulating the positive electrode electrolyte and the negative electrode electrolyte to the cell stack, the circulation amount of one electrolyte solution is made larger than the circulation amount of the other electrolyte solution, and the one electrolyte solution acting on the diaphragm The pressure is set to a differential pressure state higher than the pressure of the other electrolyte acting on the diaphragm,
    When the circulation amount of the positive electrode electrolyte and the negative electrode electrolyte is decreased and the circulation of both electrolytes is stopped, the circulation amount of the one electrolyte solution is made larger than the circulation amount of the other electrolyte solution. The operation method of the redox flow battery which maintains the said differential pressure state.
  2.  前記正極電解液と前記負極電解液の循環を停止する際、前記一方の電解液の循環量の減少速度を、前記他方の電解液の循環量の減少速度よりも大きくし、両電解液の循環を同時に停止する請求項1に記載のレドックスフロー電池の運転方法。 When stopping the circulation of the positive electrode electrolyte and the negative electrode electrolyte, the decrease rate of the circulation amount of the one electrolyte solution is made larger than the decrease rate of the circulation amount of the other electrolyte solution, The operation method of the redox flow battery according to claim 1, wherein the two are stopped simultaneously.
  3.  前記正極電解液と前記負極電解液の循環を停止する際、前記一方の電解液の循環量の減少速度と、前記他方の電解液の循環量の減少速度と、を調整し、
     前記一方の電解液の循環を、前記他方の電解液の循環よりも後に停止する請求項1に記載のレドックスフロー電池の運転方法。
    When stopping the circulation of the positive electrode electrolyte and the negative electrode electrolyte, the reduction rate of the circulation amount of the one electrolyte solution and the reduction rate of the circulation amount of the other electrolyte solution are adjusted,
    The method for operating a redox flow battery according to claim 1, wherein the circulation of the one electrolytic solution is stopped after the circulation of the other electrolytic solution.
  4.  前記一方の電解液を循環させる循環機構に備わる電解液のタンクを、前記他方の電解液を循環させる循環機構に備わる電解液のタンクよりも高い位置に配置し、
     両電解液が循環していないときに、前記セルスタック内に両電解液を満たしたままとする請求項1~請求項3のいずれか1項に記載のレドックスフロー電池の運転方法。
    An electrolyte solution tank provided in a circulation mechanism for circulating the one electrolyte solution is disposed at a higher position than an electrolyte solution tank provided in the circulation mechanism for circulating the other electrolyte solution,
    The operating method of the redox flow battery according to any one of claims 1 to 3, wherein the cell stack is filled with both electrolytes when both electrolytes are not circulating.
  5.  正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池であって、
     前記正極電解液と前記負極電解液の循環から停止までの間、一方の電解液の循環量を他方の電解液の循環量よりも多くなるように、前記正極循環機構と前記負極循環機構とを制御する流量制御部を備えるレドックスフロー電池。
    A cell stack in which a plurality of battery cells having a positive electrode, a negative electrode, and a diaphragm are stacked, a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack, and a negative electrode circulation mechanism that circulates a negative electrode electrolyte in the cell stack A redox flow battery comprising:
    The positive electrode circulation mechanism and the negative electrode circulation mechanism are arranged so that the circulation amount of one electrolyte solution is larger than the circulation amount of the other electrolyte solution between the circulation of the positive electrode electrolyte and the negative electrode electrolyte. A redox flow battery including a flow control unit for controlling.
PCT/JP2015/085612 2015-01-23 2015-12-21 Redox-flow battery operation method and redox-flow battery WO2016117265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015011849A JP2018037135A (en) 2015-01-23 2015-01-23 Redox flow battery operation method, and redox flow battery
JP2015-011849 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016117265A1 true WO2016117265A1 (en) 2016-07-28

Family

ID=56416824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085612 WO2016117265A1 (en) 2015-01-23 2015-12-21 Redox-flow battery operation method and redox-flow battery

Country Status (3)

Country Link
JP (1) JP2018037135A (en)
TW (1) TW201631831A (en)
WO (1) WO2016117265A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201092A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and systems for operating a redox flow battery system
WO2018201079A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and system for a battery
WO2018201081A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and systems for redox flow battery electrolyte hydration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124966A (en) * 1987-11-10 1989-05-17 Nkk Corp Electrolyte flow type cell system
JPH02195657A (en) * 1989-01-23 1990-08-02 Sumitomo Electric Ind Ltd Electrolyte circulation type secondary battery
JP2006147376A (en) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The Redox flow battery
JP2013080613A (en) * 2011-10-04 2013-05-02 Sumitomo Electric Ind Ltd Cell frame, cell stack, and redox flow cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124966A (en) * 1987-11-10 1989-05-17 Nkk Corp Electrolyte flow type cell system
JPH02195657A (en) * 1989-01-23 1990-08-02 Sumitomo Electric Ind Ltd Electrolyte circulation type secondary battery
JP2006147376A (en) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The Redox flow battery
JP2013080613A (en) * 2011-10-04 2013-05-02 Sumitomo Electric Ind Ltd Cell frame, cell stack, and redox flow cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018201092A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and systems for operating a redox flow battery system
WO2018201079A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and system for a battery
WO2018201081A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and systems for redox flow battery electrolyte hydration
CN110574199A (en) * 2017-04-28 2019-12-13 Ess技术有限公司 System and method for operating a redox flow battery
US10680263B2 (en) 2017-04-28 2020-06-09 Ess Tech, Inc. Methods and systems for operating a redox flow battery system
JP2020518950A (en) * 2017-04-28 2020-06-25 イーエスエス テック インコーポレーテッドESS Tech,Inc. Redox flow battery system operating method and system
US11233257B2 (en) 2017-04-28 2022-01-25 Ess Tech, Inc. Methods and system for a battery
JP7121043B2 (en) 2017-04-28 2022-08-17 イーエスエス テック インコーポレーテッド Redox flow battery system operating method and system
US11594750B2 (en) 2017-04-28 2023-02-28 Ess Tech, Inc. Methods and systems for redox flow battery electrolyte hydration
CN110574199B (en) * 2017-04-28 2024-04-19 Ess技术有限公司 System and method for operating redox flow battery

Also Published As

Publication number Publication date
TW201631831A (en) 2016-09-01
JP2018037135A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6536840B2 (en) Redox flow battery
JP5138994B2 (en) Operation method of redox flow battery system
US9640813B2 (en) Cell frame, cell stack, and redox flow battery
JP2014523087A (en) Electrolyte flow configuration for metal-halogen flow batteries
KR101357822B1 (en) Redox flow battery
JP5831112B2 (en) Cell frame, cell stack, and redox flow battery
EP3118923A1 (en) Electrolyte-circulating battery, heat exchanger, and pipe
WO2016117265A1 (en) Redox-flow battery operation method and redox-flow battery
US10665882B2 (en) Redox flow battery
WO2019106723A1 (en) Redox flow battery
KR101791319B1 (en) Redox flow battery system having reduced shunt loss
WO2016117263A1 (en) Redox-flow battery operation method and redox-flow battery
JP2017147121A (en) Power control method for fuel cell system
WO2016117262A1 (en) Redox-flow battery operation method and redox-flow battery
JP3676282B2 (en) Gas generator
JP2011070783A (en) Fuel cell stack
JP7149623B2 (en) redox flow battery
JP6629911B2 (en) Redox flow battery
US10199664B2 (en) Frame body, cell frame, cell stack, and redox flow battery
CN110400955B (en) Redox flow battery
EP3561930B1 (en) Redox flow battery
JP2015053191A (en) Electrolyte circulating battery, supply and discharge plate of electrolyte circulating battery, and connection structure between supply and discharge plate and conduit of electrolyte circulating battery
JP2016081852A (en) Fuel battery system and operation method for the same
JP2010146733A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15878954

Country of ref document: EP

Kind code of ref document: A1