JPH01123486A - Superconducting device - Google Patents

Superconducting device

Info

Publication number
JPH01123486A
JPH01123486A JP62281624A JP28162487A JPH01123486A JP H01123486 A JPH01123486 A JP H01123486A JP 62281624 A JP62281624 A JP 62281624A JP 28162487 A JP28162487 A JP 28162487A JP H01123486 A JPH01123486 A JP H01123486A
Authority
JP
Japan
Prior art keywords
properties
superconducting
insulating
electrons
semiconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62281624A
Other languages
Japanese (ja)
Other versions
JP2621245B2 (en
Inventor
Kyozo Kanemoto
恭三 金本
Shigetoshi Nara
奈良 重俊
Shigemitsu Maruno
丸野 茂光
Kazuyoshi Kojima
一良 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62281624A priority Critical patent/JP2621245B2/en
Publication of JPH01123486A publication Critical patent/JPH01123486A/en
Application granted granted Critical
Publication of JP2621245B2 publication Critical patent/JP2621245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconducting device whose superconducting current can be controlled from outside, by providing a material exhibiting superconductive properties and a means to realize a superconductive state by inducing, from outside, excess or shortage of electron in the material. CONSTITUTION:On a substrate 1 of SrTiO3 single crystal, a BaPb1-xBixO3 layer 2 is formed by using magnetron sputtering or the like. The value of (x) is about 0.35 or more, e.g., 0.4. At this time, the layer 2 presents a semiconductive behavior. By changing sputtering conditions on the layer 2, a BaPb1-xBiyO3-delta layer 3 is formed. The value of (y) is set larger than (x), e.g., y=0.8 and delta is not zero. Since superconducting state is originally realized by the influence from outside, superconducting current can be controlled by controlling the above mentioned influence, e.g., the quantity of free carrier to be introduced. Thereby obtaining a superconducting device whose superconducting current is controlled from outside.

Description

【発明の詳細な説明】 〔産業上の利用分野J この発明は、超伝導体装置に関するものである。[Detailed description of the invention] [Industrial Application Field J The present invention relates to a superconductor device.

〔従来の技術] 第5図は例えば文献(Yoahitami 5aito
 et al。
[Prior art] FIG.
et al.

: Japanese aTournal ofApp
lied Physics Vo126No4 (19
87) L491=L492) K示される従来の超伝
導体装置の一例を説明する特性図である。この図に示さ
れるように、La2Cu Oaは臨界温度が低く超伝導
を示さないが、Srを入れたBrx Lag−エCu 
04ではX之0.1で臨界温度的30〜40にの超伝導
状態が得られる。
: Japanese aTournal of App
Lied Physics Vo126No4 (19
87) L491=L492) K is a characteristic diagram illustrating an example of the conventional superconductor device shown. As shown in this figure, La2Cu Oa has a low critical temperature and does not exhibit superconductivity, but Brx Lag-ECu containing Sr
In 04, a superconducting state with a critical temperature of 30 to 40 can be obtained when X is 0.1.

また、文献(P、WlAnderson:5cier3
ce 235 (1987) P 1196 ’)によ
れば、La2CuO4はその強い電子相関のために絶縁
性を示すが、Sr表どの元素をドーピングしてフリーキ
ャリア(この場合はホー/I/)を導入することで金属
的になり、低温では超伝導状態が実現されることが示さ
れている。
In addition, the literature (P, Wl Anderson: 5 tier 3
CE 235 (1987) P 1196'), La2CuO4 exhibits insulating properties due to its strong electronic correlation, but doping with elements such as Sr to introduce free carriers (in this case Ho/I/) It has been shown that this makes it metallic, and that a superconducting state is achieved at low temperatures.

〔発明が解決しようとする問題点j ドーピングによって結晶全体にフリーキャリアを導入す
る従来の超伝導体装置で杜、超伝導状態は得られても一
度超伝導状態になってしまうと物質内部に電界が入れな
いため外部から超伝導電流の制御が行えない。このため
、電界効果トランジスタなどの半導体素子に似たものを
作るのは困難であった。
[Problems to be solved by the invention] Although a conventional superconductor device that introduces free carriers throughout the crystal by doping can achieve a superconducting state, once the superconducting state is reached, an electric field is generated inside the material. The superconducting current cannot be controlled from the outside because it cannot be input. For this reason, it has been difficult to create devices similar to semiconductor devices such as field-effect transistors.

この発明は、外部からの電界その他の影響により、電流
が制御できる超伝導体装置を得ることを目的とする。
The object of the present invention is to obtain a superconductor device in which current can be controlled by external electric fields and other influences.

c問題点を解決するための手段1 この発明に係る超伝導体装置は、絶縁体または半導体的
な性質と、金属的な性質と、超伝導体的な性質とを、組
成比、温度、および欠陥の量の逮いに応じて示すような
物質系にあって絶縁体または半導体的な性質を示してい
る材料、並びに上記材料に外部から電子の過剰または不
足を誘起して超伝導状態を実現する°手段を備えたもの
である。
Means for Solving Problem 1 The superconductor device according to the present invention differentiates insulator or semiconductor properties, metal properties, and superconductor properties by varying the composition ratio, temperature, and A material that exhibits insulating or semiconducting properties depending on the amount of defects, and a superconducting state by inducing an excess or deficiency of electrons in the above material from the outside. It is equipped with means to do so.

〔作用J この発明における超伝導状態は、もともと外部からの影
響で実現されるものであるから、との影響例えば導入さ
れるフリーキャリアの量をIIJalすることで、超伝
導電流がコントロールできる。
[Function J] Since the superconducting state in this invention is originally achieved by external influences, the superconducting current can be controlled by controlling the influence, for example, the amount of free carriers introduced.

〔実施例J 第1図は、この発明の一実施例に関りBa−Pb−B1
−0系の薄膜を用いた電子親和度の異なる物質の接合を
゛利用するタイプの超伝導体装置の断面図を示す。図に
おいて、(1)は基板として用いた5rTi03の単結
晶、(2)は基板上にマグネトロンスパッタなどを用い
て作製したBaPb1−エntxoailであり、Xの
値は約0.35以上例えば0.4とする。このとき、こ
の物質は半導体的性質を示す。(3)はさらにスパッタ
リングの条件を変えて作りたBaPb1−yBiyos
−6層であり、yの値はXより大きくなるよう例えばy
 = o、 sにし、かつδは0でない値をとるものと
する。
[Example J FIG. 1 shows an example of the present invention with Ba-Pb-B1
1 is a cross-sectional view of a type of superconductor device that utilizes a junction of substances with different electron affinities using a -0-based thin film. In the figure, (1) is a single crystal of 5rTi03 used as a substrate, (2) is BaPb1-entxoail prepared on the substrate using magnetron sputtering, etc., and the value of X is about 0.35 or more, for example, 0. Set it to 4. At this time, this substance exhibits semiconducting properties. (3) is BaPb1-yBiyos made by further changing the sputtering conditions.
-6 layers, and the value of y is larger than X, for example, y
= o, s, and δ takes a non-zero value.

第2図は第1図で示した構造に対応する伝導バンドのバ
ンドダイアグラムで、横軸が膜厚方向の距l111%縦
軸が電子のエネルギーEを表わす。
FIG. 2 is a band diagram of a conduction band corresponding to the structure shown in FIG. 1, in which the horizontal axis represents the distance l111% in the film thickness direction, and the vertical axis represents the electron energy E.

AはBaPb1.xBLx03 (120,35)の領
域、BはBaPb+−yBxyos−J(y> X +
  δ〜0)の須坂を示す。
A is BaPb1. xBLx03 (120,35) region, B is BaPb+-yBxyos-J(y>X+
δ~0) is shown.

(11)はA、Bの接合界面、(12)は伝導バンド、
(13)は界面にたまった電子を表わす、EFはフェル
ミエネルギーである。
(11) is the junction interface between A and B, (12) is the conduction band,
(13) represents the electrons accumulated at the interface, and EF is the Fermi energy.

第3図は文献C「析超伝導体」日経マグロウヒル社、1
987年6月15日発行、P40〜P51、笛木和雄著
の「高温超電導セラミックスの化学的側面J)K示され
たBarb 1−より1x03の電子物性を示す状態図
である。この図より Barb>−より1xOsは組成
比および湿度に応じて半導体的な性質と、金属的な性質
と、超伝導体的な性質とを示す物質であることがわかる
。また、BaPb1−より1xO3は欠陥の量O逮いに
応じても上記のような半導体的な性質と金属的な性質と
、超伝導体的な性質とを示すことが知られている。
Figure 3 is Reference C “Analytic Superconductors” Nikkei McGraw-Hill Publishing, 1
Published on June 15, 1987, P40-P51, "Chemical aspects of high-temperature superconducting ceramics" by Kazuo Fueki J) K This is a phase diagram showing the electronic properties of 1x03 from Barb 1- shown. From this diagram Barb> From -, it can be seen that 1xOs is a substance that exhibits semiconducting properties, metallic properties, and superconducting properties depending on the composition ratio and humidity.Also, from BaPb1-, 1xO3 has the amount of defects O It is known that depending on the conditions, it exhibits the above-mentioned semiconductor-like properties, metallic properties, and superconductor-like properties.

また、Barb 1−xBixOsの性質については文
献(内円:固体物理Vo1.2GNo12 (1985
) P2S5. )に示される解説がある。それによる
と、x < 0.35では臨界温度的13にの超伝導体
であるが、X > 0.35では半導体になる。これは
Xが大きくなるにつれてバンド中の完全につまった部分
と、空いた部分が分裂し両者の藺にギャップが生じ、フ
リーキャリアがなくなることによると考えられている。
Also, regarding the properties of Barb 1-xBixOs, see the literature (inner circle: Solid State Physics Vol. 1.2 G No. 12 (1985
) P2S5. ) is the explanation given. According to this, when x < 0.35, it is a superconductor with a critical temperature of 13, but when x > 0.35, it becomes a semiconductor. This is thought to be due to the fact that as X increases, the completely filled part and the empty part in the band split, creating a gap between the two, and free carriers disappear.

したがって、前述の文献(P、W、Anderson 
: 5cience235 (1987) pH96)
でLa2CuO4について論じられたと同様に、! >
 0.35の半導体領域でも十分なフリーキャリアさえ
あれば超伝導を示すと考えられる、半導体となるx >
 0.35の@域で、Xを大きくしてゆくと、分裂した
バンド間のギャップは広がってゆく、このため、上側の
空のバンドは、エネルギーが高くなってゆき、!子親和
度は小さくなってゆく。
Therefore, the aforementioned literature (P, W, Anderson
: 5science235 (1987) pH96)
Similar to what was discussed for La2CuO4 in ! >
Even in the semiconductor region of 0.35, if there are enough free carriers, it is thought to exhibit superconductivity, becoming a semiconductor x >
In the @ region of 0.35, as X increases, the gap between the split bands widens, so the upper empty band becomes higher in energy. Child affinity decreases.

今、実施例に示すよう)C,x<yであるBarb 1
−xBixOsとBaPb1−yBiyOs−,5すな
わちA@域とB[戚を接合した系において、Bの側すな
わち電子親和度のより小さい方に自由な電子を導入する
と、それは、電子親和度のより大きなA側に流れ込ませ
ることができる。自由電子を導入する方法としては、例
えば特簡昭60−173885号公報に示すように、酸
素の大損を導入する方法が考えられる。半導体となった
BaPb1−yBiyOsの酸素を化学量論的な値であ
る3から減少させて3−δにしてゆくと、酸素大損に起
因した準位が生じ、伝導バンドに自由電子が現われる。
Now, as shown in the example) Barb 1 with C, x<y
-xBixOs and BaPb1-yBiyOs-, 5, i.e., in a system in which A@ region and B It can be made to flow into the A side. As a method of introducing free electrons, a method of introducing a large loss of oxygen can be considered, for example, as shown in Japanese Patent Application Publication No. 173885/1985. When the oxygen content of BaPb1-yBiyOs, which has become a semiconductor, is reduced from the stoichiometric value of 3 to 3-δ, a level due to large oxygen loss is generated, and free electrons appear in the conduction band.

この電子が、電子親和度の、より大きなA側に流れ込む
。電子が流れ込むことにより後に戊された正電荷と流れ
込んだ電子との引力によし生じるバンドの曲がりのため
、電子は界Ilj付近に高濃度で蓄積される。
These electrons flow to the A side, which has a higher electron affinity. Because of the bending of the band caused by the attractive force between the positive charges that are later removed by the flowing electrons and the flowing electrons, the electrons are accumulated in a high concentration near the field Ilj.

バンドの曲がりが大きく、界面付近のバンドがフェルミ
エネルギーEFより下になると、そこには、電子ガスの
状態ができる。このような界面付近に生じた2次元的な
電子ガスの濃度がある程度以上になると、低温で超伝導
状態が実現できる。
When the bending of the band is large and the band near the interface falls below the Fermi energy EF, an electron gas state is created there. When the concentration of two-dimensional electron gas generated near such an interface exceeds a certain level, a superconducting state can be achieved at low temperatures.

この電子ガスは、もともとバンドの曲がりで誘起された
ものである。このため、外部からバンドの曲がりを変え
るような電界を加えることで、電子ガスの厚さを制御で
きる。たとえば十分に大きな逆バイアスをかけることで
電子ガスをなくすることができ、超伝導状態は存在でき
なくなる。したがって、逆バイアスをON、OFFする
ことで超伝導電流をスイッチできることになる。
This electron gas is originally induced by band bending. Therefore, by applying an external electric field that changes the bending of the band, the thickness of the electron gas can be controlled. For example, by applying a sufficiently large reverse bias, the electron gas can be eliminated, and superconducting states cannot exist. Therefore, the superconducting current can be switched by turning on and off the reverse bias.

なお、この例では接合を形成しただけで電子が界面にた
まったような状錫であったが、外部からの電界により、
はじめて界面に電子がたまって超伝導状態が得られるよ
うKすることもできる。
In this example, the tin was in a state where electrons were accumulated at the interface just by forming a junction, but due to an external electric field,
It is also possible to increase K so that electrons accumulate at the interface for the first time and a superconducting state is obtained.

また、上記実施例では接合した2つの材料の電子親和度
の遣いを利用して接合界面付近に電子が過剰に存在する
層を作ることで超伝導状態を得たが、接合する2つの材
料のイオン化エネルギーの遠いと利用して、接合界面付
近にホールが過剰に存在する層すなわち電子が不足する
層を作ることでも超伝導状態が得られる。この場合の師
電子バンドのパンドダイアグフムを第4図に示す。
In addition, in the above example, a superconducting state was obtained by creating a layer with an excess of electrons near the bonding interface by utilizing the electron affinity of the two bonded materials. A superconducting state can also be obtained by taking advantage of the far ionization energy to create a layer with an excess of holes, that is, a layer lacking electrons, near the junction interface. The Pandemic diagram of the electronic band in this case is shown in FIG.

図中、横軸は膜厚方向の距離、縦軸は電子のエネルギー
を表わす。Aはイオン化エネルギーのより小さな材料、
Bはイオン化エネルギーのよし大きな材料を表わす。(
11)はA、Bの接合界面、(12)は画電子バンドで
あり、はどこした斜線は電子がつまっていることを模式
的に示している。(3)は界面にたまったホールを表わ
す。EFはフェルミエネルギーである。この場合には、
Bの側にドーピングあるいは欠陥の導入などによりフリ
ーホールを生成する。そうするとイオン化エネルギーの
違いのため、このホールがへの側に移り、先に示した実
施例同様、今度はホールガスができる。そうしてこの部
分が超伝導状態になる。
In the figure, the horizontal axis represents distance in the film thickness direction, and the vertical axis represents electron energy. A is a material with smaller ionization energy,
B represents a material with high ionization energy. (
11) is the bonding interface between A and B, and (12) is the image electron band, where the diagonal line schematically shows that electrons are packed. (3) represents holes accumulated at the interface. EF is Fermi energy. In this case,
Free holes are generated on the B side by doping or introducing defects. Then, due to the difference in ionization energy, this hole moves to the side, and as in the embodiment shown above, a hole gas is formed this time. This part then becomes superconducting.

また、電子親和度、イオン化エネルギーのどちらもが異
なる2つの材料を接合した場合にも上記実施例と同様の
効果が得られるのはぎうまでもない。
Further, it goes without saying that the same effect as in the above embodiment can be obtained even when two materials having different electron affinities and ionization energies are joined together.

さらに、絶縁体または半導体的な性質と、金属的な性質
と、超伝導体的な性質とを、組成比、温度、および欠陥
の量の逮いに応じて示すような物質系にあって絶縁体ま
たは半導体的な性質を示している材料、例えは上述の半
導体状態のBaPb 1−より1x03に光や電子線等
のビームを照射することによね電子の過剰または不足を
誘起して超伝導状態を実現することもできる。
Furthermore, insulating material systems exhibit insulating or semiconducting properties, metallic properties, and superconducting properties depending on the composition ratio, temperature, and amount of defects. By irradiating 1x03 with a beam such as light or an electron beam to a material exhibiting semiconductor-like or semiconductor-like properties, for example BaPb 1- in the semiconductor state mentioned above, a superconducting state is created by inducing an excess or deficiency of electrons. It is also possible to realize

〔発明の効果J 以上のように、この発明によれば、絶縁体または半導体
的な性質と、金属的な性質と、超伝導体的な性質とを、
組成比、温度、および欠陥の量の違いに応じて示すよう
な物質系にあって絶縁体または半導体的な性質を示して
いる材料、並びに上記材料に外部から電子の過剰または
不足を誘起して超伝導状態を実現する手段を備えたので
、超伝導電流を外部から制御できる超伝導体装置が得ら
れる効果がある。
[Effect of the invention J As described above, according to the present invention, insulator or semiconductor properties, metallic properties, and superconductor properties can be
Materials that exhibit insulating or semiconducting properties depending on the composition ratio, temperature, and amount of defects, as well as materials that exhibit an excess or deficiency of electrons in the above materials from the outside. Since a means for achieving a superconducting state is provided, a superconductor device whose superconducting current can be controlled from the outside can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による超伝導体装置を示す
断面図、第2図は第1図に示した構造にt4応fる伝導
バンドのバンドダイアダラムを示す特性図、第3図はB
arbl−より1xOaの電子物性を示す状態図、第4
図はこの発明の他の実施例に係る価電子バンドのバンド
ダイアダラムを示す特性図、第5図は従来の超伝導体装
置の一例を説明する特性図である。 図において、(1)は5rTi03単結晶基板、(2)
は抛Pb1−xBix0a層、(3) tf B aP
b 1−7B i y 0s−6層、(11)は接合界
面、(12)は伝導(価電子)バンド、(13)は界面
にたまった電子(ホー/I/)である。 なお、各図中同−符らは同一または相当部分を示すもの
とする。
FIG. 1 is a sectional view showing a superconductor device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing a band diagram of a conduction band corresponding to t4 and f in the structure shown in FIG. 1, and FIG. is B
Phase diagram showing electronic properties of 1xOa from arbl-, No. 4
FIG. 5 is a characteristic diagram showing a band diagram of a valence band according to another embodiment of the present invention, and FIG. 5 is a characteristic diagram illustrating an example of a conventional superconductor device. In the figure, (1) is a 5rTi03 single crystal substrate, (2)
is the layer Pb1-xBix0a, (3) tf B aP
b 1-7B i y 0s-6 layer, (11) is the junction interface, (12) is the conduction (valence electron) band, and (13) is the electron (Ho/I/) accumulated at the interface. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁体または半導体的な性質と、金属的な性質と
、超伝導体的な性質とを、組成比、温度、および欠陥の
量の違いに応じて示すような物質系にあつて絶縁体また
は半導体的な性質を示している材料、並びに上記材料に
外部から電子の過剰または不足を誘起して超伝導状態を
実現する手段を備えた超伝導体装置。
(1) Insulating material systems exhibit insulating or semiconducting properties, metallic properties, and superconducting properties depending on the composition ratio, temperature, and amount of defects. A superconductor device comprising a material exhibiting solid or semiconducting properties, and means for externally inducing an excess or deficiency of electrons in the material to achieve a superconducting state.
(2)超伝導状態を実現する手段は、絶縁体または半導
体的な性質と、金属的な性質と、超伝導体的な性質とを
、組成比、温度、および欠陥の量の違いに応じて示すよ
うな物質系にあつて絶縁体または半導体的な性質を示し
ている第1材料に、上記物質系にあつて絶縁体または半
導体的な性質を示しており、第1材料と電子親和度の異
なる第2材料を接合し、両材料の接合界面付近に電子の
過剰を誘起するものである特許請求の範囲第1項記載の
超伝導体装置。
(2) The means to achieve a superconducting state is to combine insulating or semiconducting properties, metallic properties, and superconducting properties according to differences in composition ratio, temperature, and amount of defects. A first material exhibiting insulating or semiconducting properties in the material system shown above has an electron affinity with the first material, which exhibits insulating or semiconductor properties in the above material system 2. The superconductor device according to claim 1, wherein different second materials are bonded and an excess of electrons is induced near the bonding interface between the two materials.
(3)超伝導状態を実現する手段は、絶縁体または半導
体的な性質と、金属的な性質と、超伝導体的な性質とを
、組成比、温度、および欠陥の量の違いに応じて示すよ
うな物質系にあつて絶縁体または半導体的な性質を示し
ている第1材料に、上記物質系にあつて絶縁体または半
導体的な性質を示しており、第1材料とイオン化エネル
ギーの異なる第2材料を接合し、両材料の接合界面付近
に電子の不足を誘起するものである特許請求の範囲第1
項または第2項記載の超伝導体装置。
(3) The means to achieve a superconducting state is to combine insulating or semiconducting properties, metallic properties, and superconducting properties according to differences in composition ratio, temperature, and amount of defects. A first material that exhibits insulating or semiconducting properties in the material system shown above has insulating or semiconducting properties and has a different ionization energy from the first material. Claim 1: The second material is bonded to induce a shortage of electrons near the bonding interface between the two materials.
The superconductor device according to item 1 or 2.
(4)超伝導状態を実現する手段は、材料へのビームの
照射手段である特許請求の範囲第1項記載の超伝導体装
置。
(4) The superconductor device according to claim 1, wherein the means for realizing the superconducting state is means for irradiating the material with a beam.
JP62281624A 1987-11-06 1987-11-06 Superconductor device Expired - Lifetime JP2621245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281624A JP2621245B2 (en) 1987-11-06 1987-11-06 Superconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281624A JP2621245B2 (en) 1987-11-06 1987-11-06 Superconductor device

Publications (2)

Publication Number Publication Date
JPH01123486A true JPH01123486A (en) 1989-05-16
JP2621245B2 JP2621245B2 (en) 1997-06-18

Family

ID=17641715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281624A Expired - Lifetime JP2621245B2 (en) 1987-11-06 1987-11-06 Superconductor device

Country Status (1)

Country Link
JP (1) JP2621245B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177573A (en) * 1987-01-19 1988-07-21 Hitachi Ltd Superconducting transistor
JPS63283178A (en) * 1987-05-15 1988-11-21 Toshiba Corp Superconducting transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177573A (en) * 1987-01-19 1988-07-21 Hitachi Ltd Superconducting transistor
JPS63283178A (en) * 1987-05-15 1988-11-21 Toshiba Corp Superconducting transistor

Also Published As

Publication number Publication date
JP2621245B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
Mannhart High-transistors
EP0329507A1 (en) Thin film superconductor material device and process for making it
JPS63299282A (en) Superconducting device
US3733526A (en) Lead alloy josephson junction devices
JPH01123486A (en) Superconducting device
JPS6386485A (en) Tunnel type josephson junction device
JPS61148876A (en) Charge transfer device
JPH01205578A (en) Superconductive field effect transistor
JP2585269B2 (en) Superconducting transistor
JPH0484469A (en) Three-terminal device
Yoshida et al. Current transport in interface-engineered high-Tc Josephson junctions
JP2941811B2 (en) Superconducting transistor
JP4552007B2 (en) Setting method of crossing angle in high temperature superconducting Josephson tunnel junction structure.
Camerlingo et al. Preliminary results on tunnel junctions on YBCO bulk with an artificial barrier
JPS63245973A (en) Superconducting element
JP2564545B2 (en) Superconducting device operating method
JPH02194638A (en) Semiconductor device
JP2610427B2 (en) Superconducting device
JPS6218776A (en) Superconductive device
JPS63283177A (en) Superconducting transistor
JPH01102973A (en) Photo-controlled superconducting device
JPH01137682A (en) Superconducting switching element
JPH02137378A (en) Tunnel junction element of high-temperature oxide superconductor
JPH0260177A (en) Superconductive transistor
Gavaler et al. High temperature superconducting films and multilayers for electronics