JPH01205578A - Superconductive field effect transistor - Google Patents

Superconductive field effect transistor

Info

Publication number
JPH01205578A
JPH01205578A JP63031213A JP3121388A JPH01205578A JP H01205578 A JPH01205578 A JP H01205578A JP 63031213 A JP63031213 A JP 63031213A JP 3121388 A JP3121388 A JP 3121388A JP H01205578 A JPH01205578 A JP H01205578A
Authority
JP
Japan
Prior art keywords
electrode
superconducting
layer
electrons
excess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63031213A
Other languages
Japanese (ja)
Inventor
Kyozo Kanemoto
恭三 金本
Kazuyoshi Kojima
一良 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63031213A priority Critical patent/JPH01205578A/en
Publication of JPH01205578A publication Critical patent/JPH01205578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a superconductive field effect transistor easy to be made and able to control a big current by providing a superconductive layer to be realized by excess or scarcity of electrons to be caused near a junction interface of two kinds of materials having different electron affinity and an electrode impressing an electric field extinguishing excess or scarcity of electrons. CONSTITUTION:A BaPb1-xBixO3 layer 2, BaPb1-yBiyO3-delta layer 3 (0.35<x<y) is formed on an SrTiO3 single-crystal substrate 1. A material of the layer 2 becomes a superconductor having a critical temperature of about 13K in the case of x<0.35, while becoming a semiconductor or an insulator in the case of x>0.35, and even in the case of x>0.35, a superconductive layer 4 is generated due to excess or scarcity of electrons caused near a junction interface of the layers 1 and 2. Excess or scarcity of electrons near the interface can be extinguished by voltage to be impressed on a C electrode 6 enabling a superconductive current flowing between an A electrode 5a and a B electrode 5b to be controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超伝導トランジスタ、特に超伝導電流が外
部より印加される電界で制御できる超伝導電界効果トラ
ンジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to superconducting transistors, and particularly to superconducting field effect transistors in which superconducting current can be controlled by an externally applied electric field.

〔従来の技術〕[Conventional technology]

第5図は例えは、応用物理Vo1.56 p屋6(19
87)P、’753西野らによって報告された従来の超
伝導トランジスタを示す。図において、(7)はシ1ノ
コン単結晶、(8a)および(8b)は一方をA電極、
他方をB電極とする超伝導電極(鉛合金)、(9)はゲ
ート電極(Al)で0電極とする。σOはゲート絶縁膜
(sio2)である。
Figure 5 is an example of applied physics Vol. 1.56 pya 6 (19
87) P, '753 This shows the conventional superconducting transistor reported by Nishino et al. In the figure, (7) is a silicon single crystal, (8a) and (8b) are one with the A electrode,
The other is a superconducting electrode (lead alloy) which is a B electrode, and (9) is a gate electrode (Al) which is a 0 electrode. σO is a gate insulating film (sio2).

次に動作について説明する〇 一般に、超伝導体と常伝導体か接した糸においては、常
伝導体(あるいは半導体)中ヘクー、<−対電子か常伝
導体(あるいは半導体)のコヒーレンス長さ程度の範囲
に、しみ出すことかできる。
Next, we will explain the operation. In general, in a thread where a superconductor and a normal conductor are in contact, the coherence length of the normal conductor (or semiconductor) is approximately the same as the coherence length of the normal conductor (or semiconductor). It is possible to seep into the range of .

ソシテ、このコヒーレンス長さは、キャリア濃度に依存
している0 いま、A′fl!、極とゲート電極(9)の間に電圧を
かけて、ゲート電極(9)近くのシリコン単結晶(7)
内のキャリア濃度を多くすると、コヒーレンス長さが長
くなる。このときA、B電極間に電流を流そうとすると
、A2B電極間の間隔がコヒーレンス長さくらいであれ
は、A電極からシリコン単結晶(7)中へ入ったクーパ
一対電子がB電極まで達して電流が流れる。一方、ゲー
ト電極に電圧をかけないと、キャリアが少なくなってコ
ヒーレンス長さが短くなるためA、B電極間に電流は流
れなくなる。このようにしてゲート電圧を変化させるこ
とによってA、B電極間に流れる超伝導電流を制御する
This coherence length depends on the carrier concentration 0 Now, A'fl! , by applying a voltage between the pole and the gate electrode (9), the silicon single crystal (7) near the gate electrode (9)
Increasing the carrier concentration within increases the coherence length. At this time, if you try to flow a current between the A and B electrodes, if the distance between the A2B electrodes is about the coherence length, the Cooper pair of electrons that entered the silicon single crystal (7) from the A electrode will reach the B electrode. Current flows. On the other hand, if no voltage is applied to the gate electrode, the number of carriers decreases and the coherence length becomes short, so that no current flows between the A and B electrodes. By changing the gate voltage in this manner, the superconducting current flowing between the A and B electrodes is controlled.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

従来の超伝導トランジスタでは、クーパ一対電子の半導
体中へのしみ出しによる電流を使うため、大きな超伝導
電流を得ることは卸しい。また、電tM [41全コヒ
ーレンス長程度の長さ(約02μm以下)にする必要か
あるため、加工か難しい。さらにゲートミル4極の部分
も、A、B電極に近づける必要かあるためSi結晶を約
01μmの厚さに1で薄くする必要かあり、これも作製
を困難にしているなどの課題かあった。
Conventional superconducting transistors use the current generated by Cooper's pair of electrons seeping into the semiconductor, so it is difficult to obtain a large superconducting current. In addition, processing is difficult because it is necessary to make the electric current tM [41 total coherence length (approximately 0.2 μm or less) long. Furthermore, since the gate mill quadrupole part needs to be placed close to the A and B electrodes, it is necessary to thin the Si crystal to a thickness of about 0.1 μm, which also makes manufacturing difficult.

この発明は、かかる課題を解決するためになされたもの
で、作製が容易でかつ比較的大きな超伝導電流が制御で
きる超伝導電界効果トランジスタを得ることを目的とす
る。
The present invention was made in order to solve this problem, and an object of the present invention is to obtain a superconducting field effect transistor that is easy to manufacture and can control a relatively large superconducting current.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明に係る超伝導電界効果トランジスタは、組成比
、温度および欠陥の量の違いに応じて絶縁体または半導
体的な性質と、金属的な性質と、超伝導体的な性質とを
示すような物質系にあって絶縁体または半導体的な性質
を示し電子親和度またはイオン化エネルギーか異なる2
種の材料を接合することにより両材料の接合界面イ」近
に電子の過剰または不足を誘起して実現する超伝導層と
、この超伝導層の両端に設けられ超伝導電流を流す第1
および第2の電極と、上記絶縁体または半導体的な性質
を示す材料を超伝導層とで挾むように設けられ超伝導層
の過剰または不足型、子を消滅きせる電界を印加する第
3の電極を備えたものである。
The superconducting field effect transistor according to the present invention exhibits insulating or semiconducting properties, metallic properties, and superconducting properties depending on the composition ratio, temperature, and amount of defects. Material systems that exhibit insulating or semiconducting properties and differ in electron affinity or ionization energy2
A superconducting layer is realized by inducing an excess or deficiency of electrons near the bonding interface between the two materials by bonding two different materials, and a first layer is provided at both ends of this superconducting layer to conduct a superconducting current.
and a third electrode which is provided to sandwich the above-mentioned material exhibiting insulating or semiconducting properties between the second electrode and the superconducting layer, and applies an electric field to annihilate the superconducting layer. It is prepared.

〔作用〕[Effect]

この発明においては、外部より超伝導層の過剰または不
足電子を消滅させる電界を印加することによシ超伝導電
流が遮断する。
In this invention, superconducting current is interrupted by applying an external electric field to eliminate excess or insufficient electrons in the superconducting layer.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例の超伝導電界効果トランジ
スタを示す断面図であり、(1)は基板として用いた5
rTi○5の単結晶、(2)は基板上にマグネトコンス
バツタなどを用いて作製したEaPbl−xBlx03
層であシ、Xの値は約035以上例えば04にした第1
材料である。(3)はさらにスパッタリングの条件を変
えて作ったBaPb1−yBiy03−δ層であり、y
の値ばXより大きくなるよう例えはy−〇8にし、かつ
δはOてない値をとるものにした第2材料である。これ
ら2種の側斜(,13a’PbBiO3J脅)は絶縁体
または半導体的性質を示す。この材料の物性及び上記2
種の材料を接合したとき超伝導層が誘起されることは、
例えは、同一出願人より特許出願している特願昭62−
281624号「超伝導体装置」にて詳細に述べられて
いるので、ここではそれを引用して説明する。
FIG. 1 is a sectional view showing a superconducting field effect transistor according to an embodiment of the present invention, and (1) is a sectional view showing a superconducting field effect transistor according to an embodiment of the present invention.
Single crystal of rTi○5, (2) is EaPbl-xBlx03 prepared using a magnetoconverter etc. on the substrate.
In the first layer, the value of X is about 035 or more, for example 04.
It is the material. (3) is a BaPb1-yBiy03-δ layer made by changing the sputtering conditions;
For example, the second material is set to y-08 so that the value of is larger than X, and δ takes a value other than O. These two types of lateral slopes (13a'PbBiO3J) exhibit insulating or semiconducting properties. Physical properties of this material and 2 above
The fact that a superconducting layer is induced when seed materials are joined is that
For example, a patent application filed by the same applicant in 1982-
Since it is described in detail in No. 281624 "Superconductor Device", it will be explained here by quoting it.

まず・BaPb1  、Bix03は・第2図−その電
子物性の状態図を示すように組成比および温度に応じて
絶縁体または半導体的な性質と、金属的な性質と、超伝
導体的な性質とを示す物質であり、さらに欠陥の量の違
いに応じても上記のような性質を示すことが知られてい
る。すなわち、x (035では臨界温度約13にの超
伝導体であるが、X〉○35の領域で、Xを太きくして
ゆくと、バンド中の完全につまった部分と、空いた部分
が分裂し両者の間にギャップが生じ、フリーキャリアが
なくなるとともに上側の空のバンドは、エネルギーが高
くなってゆき、電子親和度は小さくなってゆく。こうし
て絶縁体まだは半導体的性質を示すが、この領域でも十
分なフリーキャリアさえあれは超伝導を示すと考えられ
ている。
First, BaPb1 and Bix03 have insulating or semiconducting properties, metallic properties, and superconducting properties depending on the composition ratio and temperature, as shown in Figure 2 - Phase diagram of their electronic properties. It is also known that the above-mentioned properties can be exhibited depending on the amount of defects. In other words, x (035 is a superconductor with a critical temperature of about 13, but as X becomes thicker in the region of However, a gap is created between the two, and as the free carriers disappear, the energy of the upper empty band increases and the electron affinity decreases.Thus, the insulator still exhibits semiconducting properties, but this It is believed that superconductivity can occur if there are sufficient free carriers in the region.

次に、接合による超伝導層の誘起について説明する。Next, the induction of a superconducting layer by bonding will be explained.

第3図は第1図で示した構造に対応する伝導バンドのバ
ンドダイアダラムで、横軸が膜厚方向の距離11縦軸か
電子のエネルギーEを表わす。
FIG. 3 is a band diagram of a conduction band corresponding to the structure shown in FIG. 1, in which the horizontal axis represents the distance 11 in the film thickness direction, and the vertical axis represents the electron energy E.

AはBaPb1−XBlx03 (x>0.35 )の
領域、BはB L Pb 1− yE i yO5−δ
(y>X、δニー、o)の領域を示す。0】〕はA、1
3の接合界面、OΔは伝導バンド、σ3は界面にたまっ
た電子を表わす。EFはフェルミエネルギーである。今
、Bの側すなわち電子親和度のよシ小さい方に自由な電
子を導入すると、それは、電子親和度のより大き々A側
に流れ込ませることができる。自由電子を導入する方法
としては、酸素の欠損を導入する方法が考えられる。半
導体となったBaPb1  yBiy03の酸素を化学
量論的な値である3から減少させて3−δにしてゆくと
、酸素欠損に起因した準位か生じ、伝導バンドに自由電
子が現tツれる。この電子か、電子親和度の、より太き
々A側に流れ込む。電子か流れ込むことにより後に残き
れた正電荷と流れ込んだ電子との引力により生じるバン
ドの曲がりのため、電子は界面付近に高濃度で著積はれ
る。
A is the region of BaPb1-XBlx03 (x>0.35), B is the region of B L Pb 1- yE i yO5-δ
The region of (y>X, δ knee, o) is shown. 0]] is A, 1
3 represents the junction interface, OΔ represents the conduction band, and σ3 represents the electrons accumulated at the interface. EF is Fermi energy. Now, if free electrons are introduced to the B side, that is, to the side with a smaller electron affinity, they can be made to flow to the A side, which has a much larger electron affinity. A possible method for introducing free electrons is to introduce oxygen vacancies. When the oxygen content of BaPb1 yBiy03, which has become a semiconductor, is reduced from the stoichiometric value of 3 to 3-δ, a level due to oxygen vacancies is generated, and free electrons appear in the conduction band. . These electrons flow more strongly to the A side of the electron affinity. Due to the bending of the band caused by the attractive force between the positive charges left behind by the flowing electrons and the flowing electrons, electrons accumulate at a high concentration near the interface.

バンドの曲かシが大きく、界1m付近のバンドかフェル
ミエネルギーEFよシ下になると、そこには電子ガスの
状態かできる。このような界面付近に生じた2次元的な
電子ガスの濃度かある程度以上になると、低温で超伝導
状態が実現できる。
When the frequency of the band is large and the field is around 1 m or below the Fermi energy EF, an electron gas state is created there. When the concentration of two-dimensional electron gas generated near such an interface reaches a certain level, a superconducting state can be achieved at low temperatures.

又、接合する2つの材料のイオン化エネルギーの違いを
利用して、接合界面付近にホールが過剰に存在する層す
なわち電子が不足する層を作ることでも超伝導状態か得
られる。この場合の価電子バンドのバンドダイアダラム
を第4図に示す。
A superconducting state can also be obtained by making use of the difference in ionization energy between the two materials to be bonded to create a layer with an excess of holes, that is, a layer lacking electrons, near the bonding interface. The band diagram of the valence band in this case is shown in FIG.

図中、横軸は膜厚方向の距離、縦軸は電子のエネルギー
を表わす。Aはイオン化エネルギーのよシ小さな材料、
Bはイオン化エネルギーのより大きな材料を表わす。圓
はA、Eの接合界面、[株]は価電子バンド、日は界面
にたまったホールを表わす。
In the figure, the horizontal axis represents distance in the film thickness direction, and the vertical axis represents electron energy. A is a material with a smaller ionization energy,
B represents a material with higher ionization energy. The circle represents the junction interface of A and E, the valence band and the holes accumulated at the interface.

EFハフエルミエネルギーである。この場合には、Bの
側にドーピングあるいは欠陥の導入などによシフリーホ
ールを生成する。そうするとイオン化エネルギーの違い
のため、このホールかAの側ニ移り、先に示したのと同
様に、今度はホールガスができる。そうしてこの部分か
超伝導状態になる。
EF Hafelmi energy. In this case, Schiffly holes are generated on the B side by doping or introducing defects. Then, due to the difference in ionization energy, this hole moves to the side of A, and as shown above, a hole gas is created this time. This part then becomes superconducting.

この電子ガスまたはホールガスは、もともとバンドの曲
かシで誘起されたものである。このため、外部からバン
ドの曲がシを変えるような電界を加えることで、電子ガ
スまたはホールガスの厚さを制御できる。たとえは十分
に大きな電界をかけることで電子ガスまたはホールガス
をなくすることができ、超伝導状態は存在できなく々る
This electron gas or hole gas was originally induced by the band's songs. Therefore, the thickness of the electron gas or hole gas can be controlled by applying an external electric field that changes the band curvature. For example, by applying a sufficiently large electric field, the electron gas or hole gas can be eliminated, and superconducting states can no longer exist.

このように、絶縁体または半導体的性質を示し、電子親
和度またはイオン化エネルギーの異なる2種の材料を接
合することによシ超伝導層が実現でき、さらにこの超伝
導状態は外部より電界を印加することにより制御できる
。これを電界効果トランジスタとして応用したのが第1
図に示した本発明の実施例である。図において、(4)
は上記2種の材料の接合により誘起された超伝導層、(
5a) + (5b)はこの超伝導層の両端に設けられ
超伝導電流を流す電極で、一方を第1の電極(八重極)
、他方を第2の電極(B電極)とする。(6)は絶縁体
または半導体的性質を示す材料(層)を超伝導層とで挾
むように設けられ、外部よシ超伝導層の過剰または不足
電子を消滅させる電界を印加するための第3の′電極(
C電極)である。
In this way, a superconducting layer can be realized by joining two materials that exhibit insulating or semiconducting properties and have different electron affinities or ionization energies, and this superconducting state can be achieved by applying an external electric field. It can be controlled by The first application of this was as a field effect transistor.
1 is an embodiment of the invention shown in the figure; In the figure, (4)
is a superconducting layer induced by joining the above two materials, (
5a) + (5b) are electrodes that are provided at both ends of this superconducting layer and allow superconducting current to flow, one of which is the first electrode (octupole).
, the other is the second electrode (B electrode). (6) is provided to sandwich a material (layer) exhibiting insulating or semiconducting properties with a superconducting layer, and is used to apply an electric field to extinguish excess or insufficient electrons in the superconducting layer from the outside. 'electrode(
C electrode).

このように構成された超伝導電界効果トランジスタにお
いて、A、B電極間より超伝導層に超伝導電流を流した
状態で、0電極に適当な電界を印加すれは、この電極に
近い超伏導層近傍のバンドが変形され、前述した電子ガ
スまたはホールガスが々くなりこの付近の超伝導層が存
在できなくなる。このため超伝導電流が流れなくなる。
In a superconducting field effect transistor configured in this way, when a suitable electric field is applied to the 0 electrode while a superconducting current is flowing through the superconducting layer between the A and B electrodes, the superconductor near this electrode is The band near the layer is deformed, and the electron gas or hole gas mentioned above increases, making it impossible for the superconducting layer to exist in this vicinity. Therefore, superconducting current no longer flows.

このようにして、0電極より印加する電界によって超伝
導電流を流したり遮断したりすることができる0上記実
施例では絶縁体または半導体的性質を示し電子親和度ま
たはイオン化エネルギーの異なる2種の接合される材料
としてBaPbB105を示したが、接合することによ
って接合界面付近に電子の過剰または不足を誘起して超
伝導層が実現でき、これが外部よシの電界によシ制御で
きる材料でありさえすれは、上記実施例と同様の効果を
奏する。
In this way, a superconducting current can be caused to flow or be interrupted by an electric field applied from an electrode. In the above embodiment, two types of junctions exhibit insulating or semiconducting properties and have different electron affinities or ionization energies. Although BaPbB105 is shown as a material that can be bonded, it is possible to create a superconducting layer by inducing an excess or deficiency of electrons near the bonding interface, and it is possible that this is a material that can be controlled by an external electric field. produces the same effect as the above embodiment.

また、電界を印加するC電極の幅を狭くしておけは超伝
導層が存在できなくなる部分か狭くなる。
Furthermore, if the width of the C electrode to which the electric field is applied is narrowed, the area where the superconducting layer cannot exist will become narrower.

このため、印加する電界により超伝導層の弱結合状態か
存在し、電界の大きさにより弱結合領域を制御できるジ
ョセフソン結合型電界効果トランジスタを得ることもで
きる。
Therefore, a weakly coupled state of the superconducting layer exists depending on the applied electric field, and a Josephson coupled field effect transistor can be obtained in which the weakly coupled region can be controlled depending on the magnitude of the electric field.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、組成比、温度および欠
陥の量の違いに応じて絶縁体または半導体的な性質と、
金属的な性質と、超伝導体的な性質とを示すような物質
系にあって絶縁体または半導体的な性質を示し電子親和
度またはイオン化エネルギーが異なる2種の材料を接合
することによυ両材料の接合界面付近に電子の過剰また
は不足を誘起して実現する超伝導層と、この超伝導層の
両端に設けられ超伝導電流を流す第1および第2の電極
と、上記絶縁体または半導体的な性質を示す側斜を超伝
導層とで挾むように設けられ超伝導層の過剰または不足
電子を消滅させる電界を印加する第3の電極を備える構
成にしたので、作製が容易でかつ比較的大きな超伝導電
流が制御できる超伝導電界効果トランジスタか得られる
効果がある0
As described above, according to the present invention, depending on the composition ratio, temperature, and amount of defects, the properties of an insulator or a semiconductor,
By joining two materials that have insulating or semiconducting properties and have different electron affinities or ionization energies in a material system that exhibits metallic properties and superconducting properties, υ A superconducting layer realized by inducing an excess or shortage of electrons near the bonding interface of both materials, first and second electrodes provided at both ends of this superconducting layer to flow a superconducting current, and the above insulator or The third electrode is placed between the side slope exhibiting semiconducting properties and the superconducting layer, and applies an electric field to annihilate excess or insufficient electrons in the superconducting layer, making it easy to manufacture and easy to compare. Superconducting field effect transistors that can control large superconducting currents have the advantage of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による超伝導電界効果トラ
ンジスタを示す断面図、第2図は第1図の実施例に用い
られるBaPb1−xBixo 3の電子物性を示す状
態図、第3図および第4図は第1図に示した構造に対応
する伝導バンドまたは価電子バンドダイアダラムをそれ
ぞれ示す特性図、第5図は従来の超伝導トランジスタを
示す断面図である。 図において、(2)は第1材料(BaPb1−xBix
o3層)、(3)は第2材料(Barb 1−yBi3
r03−δ層)、(4)は超伝導層、(5a)、(5b
)は第1の電極(A電極)及び第2の電極(B電極)、
(6)は第3の電極(0電極)である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing a superconducting field effect transistor according to an embodiment of the present invention, FIG. 2 is a phase diagram showing electronic properties of BaPb1-xBixo 3 used in the embodiment of FIG. 1, and FIG. FIG. 4 is a characteristic diagram showing a conduction band or valence band diaphragm corresponding to the structure shown in FIG. 1, and FIG. 5 is a cross-sectional view showing a conventional superconducting transistor. In the figure, (2) is the first material (BaPb1-xBix
o3 layer), (3) is the second material (Barb 1-yBi3
r03-δ layer), (4) is a superconducting layer, (5a), (5b
) is the first electrode (A electrode) and the second electrode (B electrode),
(6) is the third electrode (0 electrode). Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  絶縁体または半導体的な性質と、金属的な性質と、超
伝導体的な性質とを、組成比、温度、および欠陥の量の
違いに応じて示すような物質系にあって絶縁体または半
導体的な性質を示している第1材料に、上記物質系にあ
って絶縁体または半導体的な性質を示しており、第1材
料と電子親和度またはイオン化エネルギーの異なる第2
材料を接合し、両材料の接合界面付近に電子の過剰また
は不足を誘起して実現する超伝導層と、この超伝導層の
両端に設けられ超伝導電流を流す第1および第2の電極
と、上記第1材料または第2材料を上記超伝導層とで挾
むように設けられ超伝導層の過剰または不足電子を消滅
させる電界を印加する第3の電極とを備えたことを特徴
とする超伝導電界効果トランジスタ。
An insulator or semiconductor is a material system that exhibits insulator or semiconductor properties, metallic properties, and superconductor properties depending on the composition ratio, temperature, and amount of defects. A second material, which is in the above-mentioned material system and exhibits insulating or semiconducting properties and has a different electron affinity or ionization energy from the first material, is added to the first material that exhibits the properties of
A superconducting layer that is realized by bonding materials and inducing excess or deficiency of electrons near the bonding interface of both materials, and first and second electrodes that are provided at both ends of this superconducting layer and allow a superconducting current to flow. , a third electrode that is provided so as to sandwich the first material or the second material with the superconducting layer and applies an electric field to annihilate excess or insufficient electrons in the superconducting layer. field effect transistor.
JP63031213A 1988-02-12 1988-02-12 Superconductive field effect transistor Pending JPH01205578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031213A JPH01205578A (en) 1988-02-12 1988-02-12 Superconductive field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031213A JPH01205578A (en) 1988-02-12 1988-02-12 Superconductive field effect transistor

Publications (1)

Publication Number Publication Date
JPH01205578A true JPH01205578A (en) 1989-08-17

Family

ID=12325154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031213A Pending JPH01205578A (en) 1988-02-12 1988-02-12 Superconductive field effect transistor

Country Status (1)

Country Link
JP (1) JPH01205578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828079A (en) * 1992-06-29 1998-10-27 Matsushita Electric Industrial Co., Ltd. Field-effect type superconducting device including bi-base oxide compound containing copper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220773A (en) * 1975-08-09 1977-02-16 Shinji Kawamichi Semi-conductor element
JPS5727079A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Manufacture of josephson element of oxide superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220773A (en) * 1975-08-09 1977-02-16 Shinji Kawamichi Semi-conductor element
JPS5727079A (en) * 1980-07-25 1982-02-13 Nippon Telegr & Teleph Corp <Ntt> Manufacture of josephson element of oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828079A (en) * 1992-06-29 1998-10-27 Matsushita Electric Industrial Co., Ltd. Field-effect type superconducting device including bi-base oxide compound containing copper

Similar Documents

Publication Publication Date Title
JPH03228384A (en) Superconducting element
JPH01205578A (en) Superconductive field effect transistor
JPS63269585A (en) Josephson junction device
JPH0217943B2 (en)
JPS6175575A (en) Superconductive device
JPH0484469A (en) Three-terminal device
JPH01101676A (en) Superconducting transistor
JP2583922B2 (en) Superconducting switching element
JP2955407B2 (en) Superconducting element
JP2867956B2 (en) Superconducting transistor
JPH01123486A (en) Superconducting device
JP2774713B2 (en) Superconducting element
JPH02194667A (en) Superconducting transistor and manufacture thereof
JPS63308974A (en) Superconducting transistor
JPH02186682A (en) Josephson junction device
JPH01300575A (en) Superconducting element
JP2829173B2 (en) Superconducting element
JP2597745B2 (en) Superconducting element and fabrication method
JPS6256672B2 (en)
JPH03274775A (en) Superconducting element
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JPS587889A (en) Resistance element for josephson integrated circuit
JP2583924B2 (en) Superconducting switching element
JPH01137682A (en) Superconducting switching element
JPH0283986A (en) Superconducting diode