JPS63245973A - Superconducting element - Google Patents

Superconducting element

Info

Publication number
JPS63245973A
JPS63245973A JP62080419A JP8041987A JPS63245973A JP S63245973 A JPS63245973 A JP S63245973A JP 62080419 A JP62080419 A JP 62080419A JP 8041987 A JP8041987 A JP 8041987A JP S63245973 A JPS63245973 A JP S63245973A
Authority
JP
Japan
Prior art keywords
group
elements
layers
layer
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62080419A
Other languages
Japanese (ja)
Inventor
Kazuya Daimatsu
一也 大松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62080419A priority Critical patent/JPS63245973A/en
Publication of JPS63245973A publication Critical patent/JPS63245973A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To facilitate the alignment in a junction surface and to improve the characteristics of a semiconducting element by forming a substrate and an element body of ceramics which contains a combination of specific compounds, and forming part of the ceramics for forming the element body of a superconductor. CONSTITUTION:An optical trigger thyristor is sequentially formed with a substrate 1, an emitter layer 2, and a base layer 3 in this order, and formed with electrode layers 4, 5 made of superconductor on the base electrode 3. A depleted region 6 is formed on the region of the layer 3 between the layers 4 and 5, and a light of predetermined wavelength is applied to the region 6. The layers 1-5 are formed of ceramic layers which contains one or more types of group Ia, IIa, IIIa group elements, one or more types of group Ib, IIb, IIIb elements, and one or more of elements of oxygen, fluorine, sulfur, carbon and nitrogen. Accordingly, since the layers 1-5 are formed of the ceramics of the elements of the same type, the alignment in a junction surface is held to improve the characteristics.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は超電導素子に関し、さらに詳細にいえば、各
種電子部品、集積回路等に採用され、セラミックスを構
成要素とする超電導素子に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a superconducting element, and more specifically, to a superconducting element that is employed in various electronic components, integrated circuits, etc., and has ceramics as a component.

〈従来の技術〉 最近のエレクトロニクスの進歩は、シリコン、ガリウム
ひ素を初めとする半導体素子の発展に負うところが大き
い。
<Prior Art> Recent advances in electronics are largely due to the development of semiconductor devices including silicon and gallium arsenide.

しかし、上記半導体素子では、処理速度、消費電力等か
ら限界があるので、より優れた、かつ多様な機能を有す
る素子の開発が進められている。
However, the above-mentioned semiconductor devices have limitations due to processing speed, power consumption, etc., and therefore, efforts are being made to develop devices that are even better and have a variety of functions.

その一つとして、超電導が起こる臨界温度以下またはそ
の温度近傍で使用し、超電導転移時の特異な非平衡状態
において生ずる抵抗異常、電圧異常等を利用する素子(
以下「超電導素子」という)が注目されている。−例と
してジョセフソン素子があり、動作速度が極めて速いと
ともに、動作レベルが低いため消費電力が低く、今後の
エレクトロニクス技術の発展を担うものとして、大いに
期待されている。
One such device is a device that is used below or near the critical temperature at which superconductivity occurs, and that utilizes resistance abnormalities, voltage abnormalities, etc. that occur in the unique non-equilibrium state during superconducting transition.
(hereinafter referred to as "superconducting elements") are attracting attention. - An example of this is the Josephson element, which has extremely high operating speed and low power consumption due to its low operating level, and is highly expected to play a role in the future development of electronics technology.

ところで、ジョセフソン素子を初めとする超電導素子は
、例えばアモルファスダイヤ、真性シリコン、シリコン
の上にコートされたダイヤモンド膜、サファイヤ等の熱
良導体基板の上に、素子としての機能を提供する素子本
体を設けた構造を有するものである。この素子本体は、
少くとも一部に、例えば鉛合金、ニオブ合金等からなる
超電導体を含み、この超電導体は、基板に直接接合した
り、または同じ素子本体を構成する半導体もしくは金属
等に接合した状態で配置されている。
By the way, superconducting devices such as Josephson devices have a device body that provides the device function on a thermally conductive substrate such as amorphous diamond, intrinsic silicon, a diamond film coated on silicon, or sapphire. It has a built-in structure. This element body is
At least a portion thereof includes a superconductor made of, for example, a lead alloy, a niobium alloy, etc., and this superconductor is arranged in a state where it is directly bonded to a substrate or bonded to a semiconductor, metal, etc. that constitutes the same element body. ing.

〈発明が解決しようとする問題点〉 しかし、鉛合金、ニオブ合金等の超電導体を、上記のよ
うな基板、または半導体もしくは異なる金属等と接合し
た状態で形成すると、双方が異質の物質からなるもので
あるため、接合面での不整合によって、上記超電導体、
半導体、金属等の構造に歪や欠陥が生じ、超電導素子と
して特性の低下が生じるという問題がある。
<Problems to be solved by the invention> However, when a superconductor such as a lead alloy or a niobium alloy is bonded to the above-mentioned substrate, a semiconductor, or a different metal, both of them are made of different materials. Therefore, due to the mismatch at the junction surface, the above superconductor,
There is a problem in that distortions and defects occur in the structures of semiconductors, metals, etc., resulting in deterioration of the characteristics of superconducting elements.

〈発明の目的〉 この発明は上記の問題点に鑑みてなされたものであり、
接合面での整合性を容易にとれ、良好な特性を保持する
ことができる超電導素子を提供することを目的としてい
る。
<Object of the invention> This invention was made in view of the above problems,
It is an object of the present invention to provide a superconducting element that can easily match the bonding surfaces and maintain good characteristics.

く問題点を解決するための手段〉 上記の目的を達成するためのこの発明の超電導素子は、
基板および素子本体が、ともに周期律表Ia族元素、I
Ia族元素および■a族元素がら選ばれた少なくとも1
種の元素、Ib族元素、IIb族元素およびIIIb族
元素から選ばれた少なくとも1種の元素、並びに酸素、
窒素、フッ素、炭素および硫黄から選ばれた少なくとも
1種の元素を含むセラミックスからなり、このうち素子
本体を構成するセラミックスの少なくとも一部が超電導
体であるものである。
Means for Solving the Problems> The superconducting element of the present invention for achieving the above object has the following features:
Both the substrate and the element body are made of Group Ia elements of the periodic table, I
At least one selected from group Ia elements and group ■a elements
at least one element selected from a species element, a group Ib element, a group IIb element, and a group IIIb element, and oxygen,
The device is made of ceramics containing at least one element selected from nitrogen, fluorine, carbon, and sulfur, and at least a portion of the ceramics constituting the device body is a superconductor.

より詳細には、Ia族族元としては、Li1N a s
 K s Rb %Cs等が挙げられ、Ib族元素とし
ては、Cu、AgおよびAuが挙げられる。
More specifically, as a group Ia group element, Li1N a s
Examples of the Ib group elements include Cu, Ag, and Au.

また、IIa族元素りしては、B e s M g S
Ca sS「、BaおよびRaが挙げられ、IIb族元
素と ・しては、Zn、cd等が挙げられる。IIIa
IIa族元素は、Sc、Yやランタノイド系元素である
La、Ce%Gd、、Lu等、アクチノイド系元素であ
るAc、、Th、、Pa5Cf等が挙げられる。
In addition, for group IIa elements, B e s M g S
Examples of Group IIb elements include Zn, CD, etc. IIIa
Group IIa elements include Sc, Y, lanthanide elements such as La, Ce%Gd, and Lu, and actinide elements such as Ac, Th, Pa5Cf, and the like.

また、IIIb族元素としては、Aノ、G a 、、 
 I n sTJ等が挙げられる。
In addition, as IIIb group elements, A, Ga,...
Examples include I n sTJ and the like.

上記元素のうち、Ib族元素から選ばれた元素、IIa
族元素、■a族元素およびランタノイド系元素から選ば
れた元素、並びに酸素およびフッ素から選ばれた元素か
らなるセラミックスが好ましい。
Among the above elements, elements selected from group Ib elements, IIa
Ceramics made of an element selected from group elements, group ①a elements, and lanthanoid elements, and elements selected from oxygen and fluorine are preferred.

なお、Ib族元素としてはCuおよびAgが好ましい。Note that Cu and Ag are preferred as the Ib group elements.

また、上記セラミックスは、一般式、 (AB)CD 1−x  X  2  4 (式中Aは、周期律表ma族より選択された少なくとも
1種の元素を示し、Bは、周期律表Ia族、IIa族及
びma族より選択された少なくとも1種の元素を示し、
Cは、周期律表1b族、IIIb族及びIIIb族より
選択された少なくとも1種の元素を示し、Dは、周期律
表vb族、■b族及び■b族より選択された少なくとも
1種の元素を示し、係数Xは、Q<x<1の関係式を充
足する)で表されるペロブスカイト型であることが特に
好ましい。
Further, the above-mentioned ceramic has the general formula, (AB)CD 1-x , at least one element selected from group IIa and group ma,
C represents at least one element selected from Groups 1b, IIIb, and IIIb of the periodic table, and D represents at least one element selected from groups Vb, ■b, and ■b of the periodic table. It is particularly preferable that the perovskite type is represented by the following formula (where the coefficient X satisfies the relational expression Q<x<1).

なお、vb族元素としては、窒素、■b族族元としては
、硫黄、酸素、■b族族元としては、フッ素、塩素、臭
素、ヨウ素がそれぞれ挙げられ、このうち特に酸素が好
ましい。
The Vb group element includes nitrogen, the (2b) group element includes sulfur, oxygen, and the (2b) group element includes fluorine, chlorine, bromine, and iodine, among which oxygen is particularly preferred.

く作用〉 以上の構成の超電導素子であれば、基板と素子本体は、
基板と同一のセラミックスからなるものであるため、素
子本体を構成する超電導体は、基板または素子本体を構
成する他の部分に対して、接合面における整合性を容易
に保つことができる。
In the superconducting element with the above configuration, the substrate and the element body are
Since it is made of the same ceramic as the substrate, the superconductor constituting the element body can easily maintain consistency at the bonding surface with respect to the substrate or other parts constituting the element body.

〈実施例〉 以下、実施例を示す添付図面によって詳細に説明する。<Example> Hereinafter, embodiments will be described in detail with reference to the accompanying drawings showing examples.

図に、超電導素子の一実施例として、光トリガサイリス
クの断面図を示す。光トリスガサイリスクは、基板(1
)、エミツタ層(2)、ベース層(3)をこの順に形成
し、ベース層(3)の上に2つの電極層(4)、(5)
を形成している。電極層(4)、(5)間にあるベース
層(3)の領域には、空乏領域(6)が形成されており
、この空乏領域(6)に所定波長の光が照射されるよう
になっている。また、各層(1)〜(5)のうち、基板
(1)、エミツタ層(2)、ベース層(3)は、半導体
として、電極層(4)、(5)は超電導体として形成さ
れている。
The figure shows a cross-sectional view of a photo-triggered scissor as an example of a superconducting element. Optical trisgasilisk is a substrate (1
), an emitter layer (2), and a base layer (3) are formed in this order, and two electrode layers (4) and (5) are formed on the base layer (3).
is formed. A depletion region (6) is formed in the region of the base layer (3) between the electrode layers (4) and (5), and the depletion region (6) is irradiated with light of a predetermined wavelength. It has become. Furthermore, among the layers (1) to (5), the substrate (1), emitter layer (2), and base layer (3) are formed as semiconductors, and the electrode layers (4) and (5) are formed as superconductors. There is.

すなわち、この例では、上記各層(1)〜(5)は、(
Y   B a  )  Cu O4なる組成のベロブ
ス−xx2 カイト型のセラミックス酸化物により構成されている。
That is, in this example, each of the above layers (1) to (5) is (
YB a ) It is composed of a belobus-xx2 kite type ceramic oxide having a composition of CuO4.

この場合、上記セラミックス酸化物は、Xの値の変化に
よって超電導特性を示したり、半導体としての電導特性
を示す。また、上記各層(1)〜(5)は所定の混合比
のY、Ba、Cu、Oを含む材料を用いて成形体を焼結
し、この成形体を真空蒸着法、プラズマCVD法、スパ
ッタリング法、液相工′ピタキシャル成長法等よにり蒸
着し、各層を順次積み重ねることによって作製されてい
る。また、各層(1)〜(5)の結晶構造、例えば単結
晶、多結晶、アモルファスの別についても成膜条件によ
って制御することができる。なお、空乏層(6)は例え
ば不純物原子のイオンプランテーションによって形成す
ることができる。
In this case, the ceramic oxide exhibits superconducting properties or conductive properties as a semiconductor depending on the change in the value of X. In addition, each of the above layers (1) to (5) is formed by sintering a molded body using a material containing Y, Ba, Cu, and O in a predetermined mixing ratio. It is fabricated by vapor deposition by a method such as a liquid phase process or a pitaxial growth method, and by stacking each layer one after another. Further, the crystal structure of each layer (1) to (5), for example, single crystal, polycrystal, or amorphous, can also be controlled by film forming conditions. Note that the depletion layer (6) can be formed, for example, by ion plantation of impurity atoms.

なお、上記各層(1)〜(5)は、互いに異なる構成元
素を含有していてもよい。また、上記各層(1)〜(5
)を構成する構成元素とその組成比は、所望する電気特
性特性等に応じて種々組合せて使用することができるが
、共通した同種の構成元素で構成することにより接合面
における整合性をより一層高めると共に、組成割合を変
えることにより、絶縁体、半導体、超電導体等となりう
る元素を選択するのが素子を設計するうえで好ましい。
Note that each of the layers (1) to (5) may contain mutually different constituent elements. In addition, each of the above layers (1) to (5)
) can be used in various combinations depending on the desired electrical properties, etc., but consistency at the bonding surface can be further improved by composing with the same kind of common constituent elements. In designing the device, it is preferable to select elements that can become insulators, semiconductors, superconductors, etc. by increasing the concentration and changing the composition ratio.

上記構成元素のうち、特に、周期律表IIa族元素およ
び■a族元素から選ばれた少なくとも1種の元素と、C
uと、酸素との組合せからなるものが好ましい。この場
合、周期律表■a族元素であるY1周期律表Ha族元素
であるBa、周期律表1b族元素であるCuおよび酸素
を、各層における共通の構成元素とする系において、上
記YとBa等との割合を変えることにより、絶縁層、半
導体層および超電導層等とすることができる。より具体
的には、(Y  Ba   )  CaO2からなる組
成においx      l−x    2 て、Xが、0.8〜0.9等のものは、半導体としての
特性に優れ、Xが0.2〜0.4等のものは超電導体と
しての特性に優れる。
Among the above constituent elements, at least one element selected from group IIa elements and group ■a elements of the periodic table, and C
A combination of u and oxygen is preferred. In this case, in a system in which common constituent elements in each layer are Y1, which is an element in group A of the periodic table, Ba, which is an element in group Ha of the periodic table, Cu, which is an element in group 1b of the periodic table, and oxygen, the above Y and By changing the ratio of Ba and the like, an insulating layer, a semiconductor layer, a superconducting layer, etc. can be formed. More specifically, a composition consisting of (YBa)CaO2 in which X is 0.8 to 0.9 has excellent properties as a semiconductor; A value such as 0.4 has excellent properties as a superconductor.

上記の光トリガサイリスクであれば、超電導電極層(4
)、(5)にバイアス電圧をかけた状態で光を照射する
ことによって、超電導電極層(4)、(5)から滲み出
した準粒子を励起して空乏領域(6)に電流を流し、高
速スイッチングを行うことができる。この動作中、各層
(2)〜(5)で発生した熱は、半導体基板(1)を通
って効率よく外部に放出される。
In the case of the above photo-triggered radiation risk, the superconducting electrode layer (4
), (5) are irradiated with light while a bias voltage is applied to excite the quasiparticles exuding from the superconducting electrode layers (4), (5) and cause a current to flow in the depletion region (6). Can perform high-speed switching. During this operation, the heat generated in each layer (2) to (5) is efficiently released to the outside through the semiconductor substrate (1).

各層(1)〜(5)は、組成の相違はあっても、同種の
構成元素からなるセラミックス酸化物であるため、接合
面における整合性は保たれ、各層(1)〜(5)に不整
合を原因とする歪や欠陥が発生することは少ない。した
がって、各層(1)〜(5)において良好な特性を得る
ことができ、超電導素子としても特性のよいものを得る
ことができる。
Although each layer (1) to (5) has a difference in composition, since it is a ceramic oxide made of the same kind of constituent elements, consistency at the bonding surface is maintained, and there is no difference in each layer (1) to (5). Distortion and defects caused by alignment are less likely to occur. Therefore, good characteristics can be obtained in each layer (1) to (5), and a superconducting element with good characteristics can also be obtained.

なお、この発明は上記の実施例に限定されるものではな
く、例えばサイリスタとして、光で動作するタイプでな
く、ゲート電極を設けて空乏層(6)の領域に電圧を印
加するタイプを実施してもよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and for example, a thyristor may be implemented not of a type that operates by light but of a type in which a gate electrode is provided and a voltage is applied to the region of the depletion layer (6). It's okay.

その他、超電導素子を太陽電池、高速スイッチング素子
、温度、磁界、光、電波等の物理的パラメータを検出す
る各種センサ等種々の分野へ応用することもできる。
In addition, superconducting elements can be applied to various fields such as solar cells, high-speed switching elements, and various sensors that detect physical parameters such as temperature, magnetic fields, light, and radio waves.

〈発明の効果〉 以上のように、この発明の超電導素子によれば、基板お
よび素子本体は、組成は異なっても同種の構成元素から
なるセラミックスあるため、接合面での整合性を容易に
とることができる、したかって、超電導素子として良好
な特性を得ることができ、ひいては信頼性、歩留まりの
向上を図ることができるという特有の効果を奏する。
<Effects of the Invention> As described above, according to the superconducting element of the present invention, since the substrate and the element body are made of ceramics made of the same kind of constituent elements even though their compositions are different, consistency at the bonding surface can be easily achieved. Therefore, it is possible to obtain good characteristics as a superconducting element, and as a result, it has the unique effect of being able to improve reliability and yield.

【図面の簡単な説明】[Brief explanation of drawings]

図は超電導素子の一実施例を示す断面図。 The figure is a sectional view showing one embodiment of a superconducting element.

Claims (1)

【特許請求の範囲】 1、基板および素子本体が、ともに周期律表Ia族元素
、IIa族元素およびIIIa族元素から選ばれた少なくと
も1種の元素、Ib族元素、IIb族元素およびIIIb族
元素から選ばれた少なくとも1種の元素、並びに酸素、
窒素、フッ素、炭素および硫黄から選ばれた少なくとも
1種の元素を含むセラミックスからなり、このうち素子
本体を構成するセラミックスの少なくとも一部が超電導
体であることを特徴とする超電導素子。 2、上記セラミックスが、一般式、(A_1_−_xB
_x)_2CD_4 (式中Aは、周期律表IIIa族より選択された少なくと
も1種の元素を示し、Bは、周期律表Ia族、IIa族及
びIIIa族より選択された少なくとも1種の元素を示し
、Cは、周期律表Ib族、IIb族およびIIIb族より選
択された少なくとも1種の元素を示し、Dは、周期律表
Vb族、VIb族及びVIIb族より選択された少なくとも
1種の元素を示し、係数xは、0<x<1の関係式を充
足する) で表されるペロブスカイト型である上記特許請求の範囲
第1項記載の超電導素子。
[Scope of Claims] 1. Both the substrate and the element body contain at least one element selected from group Ia, group IIa, and group IIIa elements of the periodic table, group Ib, group IIb, and group IIIb. at least one element selected from, and oxygen,
A superconducting element comprising a ceramic containing at least one element selected from nitrogen, fluorine, carbon and sulfur, wherein at least a part of the ceramic constituting the element body is a superconductor. 2. The above ceramic has the general formula, (A_1_−_xB
_x)_2CD_4 (In the formula, A represents at least one element selected from Group IIIa of the periodic table, and B represents at least one element selected from Groups Ia, IIa, and IIIa of the periodic table. , C represents at least one element selected from Groups Ib, IIb and IIIb of the Periodic Table, and D represents at least one element selected from Groups Vb, VIb and VIIb of the Periodic Table. The superconducting element according to claim 1, which is a perovskite type superconducting element represented by:
JP62080419A 1987-03-31 1987-03-31 Superconducting element Pending JPS63245973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080419A JPS63245973A (en) 1987-03-31 1987-03-31 Superconducting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080419A JPS63245973A (en) 1987-03-31 1987-03-31 Superconducting element

Publications (1)

Publication Number Publication Date
JPS63245973A true JPS63245973A (en) 1988-10-13

Family

ID=13717772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080419A Pending JPS63245973A (en) 1987-03-31 1987-03-31 Superconducting element

Country Status (1)

Country Link
JP (1) JPS63245973A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301426A (en) * 1987-06-01 1988-12-08 Semiconductor Energy Lab Co Ltd Manufacture of superconductive material
JPS6486575A (en) * 1987-06-17 1989-03-31 Hitachi Ltd Superconducting device
US4990487A (en) * 1988-03-11 1991-02-05 The University Of Tokyo Superconductive optoelectronic devices
US5221660A (en) * 1987-12-25 1993-06-22 Sumitomo Electric Industries, Ltd. Semiconductor substrate having a superconducting thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63301426A (en) * 1987-06-01 1988-12-08 Semiconductor Energy Lab Co Ltd Manufacture of superconductive material
JPS6486575A (en) * 1987-06-17 1989-03-31 Hitachi Ltd Superconducting device
US5221660A (en) * 1987-12-25 1993-06-22 Sumitomo Electric Industries, Ltd. Semiconductor substrate having a superconducting thin film
US4990487A (en) * 1988-03-11 1991-02-05 The University Of Tokyo Superconductive optoelectronic devices

Similar Documents

Publication Publication Date Title
KR910002311B1 (en) A superconductor device
EP0329603A2 (en) Grain boundary junction devices using high-TC superconductors
JPH0725640B2 (en) Superconductor device with epitaxial structure
JPS63245973A (en) Superconducting element
JPS63224375A (en) Superconducting transistor
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
EP0618626A1 (en) Josephson junction device of oxide superconductor having low noise level at liquid nitrogen temperature
US6441394B2 (en) Intrinsic Josephson superconducting tunnel junction device
JP2868286B2 (en) Superconducting element and circuit element having the same
JP3379533B2 (en) Method for manufacturing superconducting device
Yoshida et al. Novel Interface-engineered Junction Technology for Digital Circuit Applications
US5188906A (en) Substrates suitable for deposition of superconducting thin films
JPH01183175A (en) Superconducting 3-terminal element
JPH02111082A (en) Superconductive transistor and manufacture thereof
JPH02111081A (en) Superconductive transistor and manufacture thereof
Talvacchio et al. HTS Films and Multilayers for Electronics
JPH01170078A (en) Semiconductor substrate provided with superconductor layer
JPH0360175A (en) Superconductive switching element
JPH04318983A (en) Josephson junction element and manufacture thereof
JPH01173674A (en) Semiconductor substrate containing superconductor layer
JPH0513829A (en) Squid
JPH01170068A (en) Semiconductor substrate equipped with superconductor layer
JPH04206666A (en) Superconducting element
JPS63308976A (en) Superconducting transistor
JPH01170074A (en) Semicondcutor substrate provided with superconductor layer