JPH0360175A - Superconductive switching element - Google Patents

Superconductive switching element

Info

Publication number
JPH0360175A
JPH0360175A JP1196244A JP19624489A JPH0360175A JP H0360175 A JPH0360175 A JP H0360175A JP 1196244 A JP1196244 A JP 1196244A JP 19624489 A JP19624489 A JP 19624489A JP H0360175 A JPH0360175 A JP H0360175A
Authority
JP
Japan
Prior art keywords
superconducting
thin film
film
magnetic field
lead wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1196244A
Other languages
Japanese (ja)
Other versions
JP2849721B2 (en
Inventor
Hajime Yuzurihara
肇 譲原
Wasaburo Ota
太田 和三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1196244A priority Critical patent/JP2849721B2/en
Publication of JPH0360175A publication Critical patent/JPH0360175A/en
Application granted granted Critical
Publication of JP2849721B2 publication Critical patent/JP2849721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain an element whose power consumption is small and whose response speed is high, by forming superconducting thin films so as to sandwich a nonmagnetic metal, forming an electrode thereon, forming further an insulating film, and forming superconducting lead wires for applying magnetic field on the insulating film. CONSTITUTION:The basic constitution of the title element is composed of the following, a substrate 1, a junction part 2 formed of a nonmagnetic metal thin film, superconducting thin films 3 separated by the junction part 2, and superconducting lead wires 4 for applying magnetic field. In addition, electrodes 5 and an insulating film 6 are formed. The superconducting film 3 is formed by using one of superconductors such as Y1Ba2Cu3Ox, Ln1Ba2Cu3Ox whose critical temperatures are higher than 77K. The metal thin film used for the junction part 2 is formed by using one of Nb, Zn, Al, Cu-Al, etc. The nonmagnetic metal thin film 2, the SiO2 thin film 6, and the superconducting lead wires 4 for applying magnetic field are desirable to be manufactured by using vapor-deposition method. The two superconducting lead wires 4 for applying magnetic field are fixed almost above the junction part 2 so as to be parallel with each other. The junction part 2 and the lead wires 4 are manufactured by using photolithography method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超伝導スイッチ素子に関し、詳しくは、コンピ
ュータなどの集積回路などのスイッチ部分などに応用さ
れる酸化物高温超伝導スイッチ素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting switch element, and more particularly to an oxide high-temperature superconducting switch element applied to a switch part of an integrated circuit such as a computer.

〔従来技術〕[Prior art]

超伝導材料の研究、開発が随所で盛んに行なわれてきて
いるが、その多くはNb系超伝導合金である。ところが
近時、酸化物系超伝導体がエレクトロニクスの分野に応
用できる新規な物質として注目をあびている。だが、そ
の応用範囲はジョセフソン素子、5QUID、赤外線セ
ンサー等に大方限られているのが実情である。
Research and development of superconducting materials has been actively conducted everywhere, and most of them are Nb-based superconducting alloys. However, recently, oxide-based superconductors have been attracting attention as new materials that can be applied to the field of electronics. However, the reality is that its application range is largely limited to Josephson elements, 5QUIDs, infrared sensors, etc.

もっとも、スイッチ素子として酸化物高温超伝導体を用
いた光応答スイッチ素子は知られている(T、Nl5I
NO,H,NAKANE AND U、KAすABE、
Jpn、J、Appl。
However, photoresponsive switching devices using oxide high-temperature superconductors as switching devices are known (T, Nl5I
NO, H, NAKANE AND U, KASU ABE,
Jpn, J., Appl.

Phys、、26(1987)、L1320)、この素
子は、第3図にみられるように、MgO基板11.Y、
Ba、Cu、Ox超伝導薄膜12. CdS光導電性薄
膜13、電極14、光ファイバー15から構成されてい
る。ここでの超伝導薄膜12は高周波スパッタ法を用い
て製膜した後、熱処理して形成されたものであって、膜
厚は2μ臘、臨界温度は85Kを示すとしている。超伝
導薄膜12の中央部には幅8II11、深さ5μ■の溝
が予め設けられており、この溝の底縁についている超伝
導薄膜の厚さは0.5μl以下である。この部分を弱結
合部というが、この上に、さらにCdS薄膜13を真空
蒸着法によって0.2μmの厚さにつける。超伝導薄膜
12の上部に設けられた電極14に電流を流すと、はじ
めは電圧Oで流れるが、電流値が増加するとともに電圧
が増加する0次に1弱結合部に光ファイバー15で導か
れた波長0.35μI11〜0.8μ厘の光を照射する
と照射前に比べて電流値が減少するこの効果を利用して
スイッチング動作に供せられる。第4図は第3図に示し
たスイッチ素子の電流電圧特性を示すものである。第4
図において、aは照射前、bは照射後のものである。
Phys, 26 (1987), L1320), this device is constructed using an MgO substrate 11. Y,
Ba, Cu, Ox superconducting thin film 12. It is composed of a CdS photoconductive thin film 13, an electrode 14, and an optical fiber 15. The superconducting thin film 12 here is formed by heat treatment after being formed using a high frequency sputtering method, and is said to have a thickness of 2 μm and a critical temperature of 85K. A groove with a width of 8II11 and a depth of 5 μm is previously provided in the center of the superconducting thin film 12, and the thickness of the superconducting thin film attached to the bottom edge of this groove is 0.5 μl or less. This portion is called a weak coupling portion, and a CdS thin film 13 is further applied thereon to a thickness of 0.2 μm by vacuum evaporation. When a current is passed through the electrode 14 provided on the top of the superconducting thin film 12, it initially flows at a voltage of O, but as the current value increases, the voltage increases as the current increases. When irradiated with light having a wavelength of 0.35 .mu.l to 0.8 .mu.l, the current value decreases compared to before irradiation. This effect is used for switching operation. FIG. 4 shows the current-voltage characteristics of the switch element shown in FIG. 3. Fourth
In the figure, a is before irradiation and b is after irradiation.

しかしながら、この第3図の構造が採用されたスイッチ
素子は、光の照射前後でのI−V特性が必ずしも良好で
あるとはいえず、このため、0N−OFF動作の対応に
改善の余地が残されている。
However, the switch element adopting the structure shown in Fig. 3 does not necessarily have good IV characteristics before and after irradiation with light, and therefore there is room for improvement in dealing with 0N-OFF operation. left behind.

〔発明が解決しようとする課題] 本発明は超伝導体の特性である低消費電力、高速応答性
を利用し、酸化物高温超伝導体を用いた新規なデバイス
(超電導スイッチ素子)を提供することを目的とするも
のである。
[Problems to be solved by the invention] The present invention utilizes the characteristics of superconductors, such as low power consumption and high-speed response, to provide a novel device (superconducting switch element) using an oxide high-temperature superconductor. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明の超伝導スイッチ素子は、絶縁基板上に非磁性金
属又は合金薄膜(接合部)を挾んで超伝導薄膜が面方向
に形成され、その超伝導薄膜上には該接合部の両側に電
極が形成され、更にこれらの上に絶縁膜が形成され、及
び、該接合部に近接するようにして該絶縁膜上に磁場印
加用超伝導導線が設けられていることを特徴としている
In the superconducting switch element of the present invention, a superconducting thin film is formed in the plane direction by sandwiching a non-magnetic metal or alloy thin film (junction) on an insulating substrate, and electrodes are placed on the superconducting thin film on both sides of the junction. is formed, an insulating film is further formed on these, and a superconducting conductive wire for applying a magnetic field is provided on the insulating film in proximity to the junction.

以下に、本発明を図面に従がいながらさらに詳細に説明
する。
The present invention will be explained in more detail below with reference to the drawings.

本発明のスイッチ素子は、端的にいえば、第1図に示さ
れるように、絶縁性セラミックt Mg(LSrTiO
,などの基板lと、非磁性金属(合金)薄膜で形成され
た接合部2と、その接合部2を隔てるようにつけた超伝
導薄膜3と、磁場印加用超伝導導線4を基本構成とし、
他にInあるいはAu電極5.5int膜6(絶縁膜)
を設けたものである。
To put it simply, the switch element of the present invention is made of insulating ceramic tMg (LSrTiO
, etc., a bonding portion 2 formed of a non-magnetic metal (alloy) thin film, a superconducting thin film 3 attached to separate the bonding portion 2, and a superconducting conductive wire 4 for applying a magnetic field.
In addition, In or Au electrode 5.5 int film 6 (insulating film)
It has been established.

超伝導薄膜3は、臨界温度77Kを越えるYよりa、 
Cu。
The superconducting thin film 3 has a
Cu.

Ox、 LnlBa、Cu30x(Ln=Nd、 Sm
、 Eu、 Gd、 Dy、 Ha、 Er、 Tm、
 Yb等)、あるいはBi、Sr、Ca、Cu30x、
 T12Ha2Ca、 Cu、 Ox超伝導体のいずれ
か一つであり、接合部2に用いる金属又は合金薄膜には
Nb、Zn、 A1. Cu−A1等がある。超伝導薄
膜3の作製方法としては。
Ox, LnlBa, Cu30x (Ln=Nd, Sm
, Eu, Gd, Dy, Ha, Er, Tm,
Yb, etc.), or Bi, Sr, Ca, Cu30x,
T12Ha2Ca, Cu, Ox superconductor, and the metal or alloy thin film used for the joint part 2 includes Nb, Zn, A1. There are Cu-A1 and the like. As for the method for producing the superconducting thin film 3.

スパッタ法、蒸着(抵抗加熱、電子ビームによる)法、
イオンブレーティング法、MB2法あるいは熱分解法、
スプレーパイロシス法、プラズマCvD法その他の方法
が用いられる。また、非磁性金属(合金)薄膜2.5i
02 Wt膜6、磁場印加用超伝導導線4は、スパッタ
法、蒸着法を用いて作製するのが好ましい、この場合、
超伝導導線4には酸化物系のものを用いる。
Sputtering method, vapor deposition (resistance heating, electron beam) method,
Ion blating method, MB2 method or thermal decomposition method,
Spray pyrosis method, plasma CVD method and other methods are used. Also, non-magnetic metal (alloy) thin film 2.5i
The 02 Wt film 6 and the superconducting wire 4 for applying a magnetic field are preferably produced using a sputtering method or a vapor deposition method. In this case,
The superconducting wire 4 is made of oxide.

超伝導薄膜3の厚さは0.5μ−一2μm、金属又は合
金薄膜2は同様に0.5μll〜2μ料こし、その接合
部2の幅は0.2μlI〜1μmが望ましい、 Sin
、膜6と超伝導導線4は各々0.2μ−〜0.5μ藁の
厚さで、導線幅は0゜2〜0.5μ量である。この磁場
印加用超伝導導線4は、2本手行に約0.5μ園間隔で
ほぼ接合部2上につける。
The thickness of the superconducting thin film 3 is preferably 0.5 μl to 12 μm, the thickness of the metal or alloy thin film 2 is similarly 0.5 μl to 2 μm, and the width of the joint 2 is preferably 0.2 μl to 1 μm.
, the membrane 6 and the superconducting wire 4 each have a thickness of 0.2 to 0.5 μ, and a wire width of 0°2 to 0.5 μ. Two superconducting conductive wires 4 for applying a magnetic field are attached approximately on the joint portion 2 at an interval of about 0.5 μm.

接合部2並びに導線4はフォトリソグラフィー法を用い
て作製する。
The joint portion 2 and the conductive wire 4 are manufactured using a photolithography method.

次に1本発明スイッチ素子の動作原理について説明する
Next, the operating principle of the switch element of the present invention will be explained.

超伝導状態において、電極5から電流を流すと超伝導電
流が非磁性金属又は合金薄膜2側に浸み出すいわゆる“
近接効果”により、電流は超伝導体(超伝導薄膜3)か
ら非磁性金属又は合金薄膜2を介してもう一方の超伝導
薄膜3へ流れる。この超伝導電流はある値までは零電圧
で流れる(最大零電圧電流)が、電流の増加と共に電圧
が増加し始め、第2図に示したような電流電圧特性曲線
になる。
In a superconducting state, when a current is passed from the electrode 5, the superconducting current leaks into the non-magnetic metal or alloy thin film 2 side.
Due to the "proximity effect", current flows from the superconductor (superconducting thin film 3) to the other superconducting thin film 3 via the non-magnetic metal or alloy thin film 2.This superconducting current flows at zero voltage up to a certain value. (maximum zero voltage current), the voltage begins to increase as the current increases, resulting in a current-voltage characteristic curve as shown in FIG.

続いて、互いに平行に2本設けられた超伝導導線4に互
いに逆向きに電流を流して磁場を発生させる。磁場の大
きさは超伝導体の下部臨界磁場以下が良く、例えばY1
Ba2Cu、Oxの場合には約1000e以下である。
Next, currents are applied in opposite directions to the two superconducting conductive wires 4 provided in parallel to each other to generate a magnetic field. The magnitude of the magnetic field is preferably below the lower critical magnetic field of the superconductor, for example Y1
In the case of Ba2Cu and Ox, it is about 1000e or less.

また、磁場発生に必要な導線電流の大きさは超伝導体の
臨界電流値を越えないことが必要である。印加された磁
場は接合部2に集中し、接合部2を流れる電流はこの磁
場によって受ける磁気抵抗効果で減少し、第2図すのよ
うな曲線を示す。従っズ、磁場印加前後の電流(電圧)
変化を0N−OFF動作に対応させ、スイッチング動作
させるものである。
Further, it is necessary that the magnitude of the conductor current required to generate the magnetic field does not exceed the critical current value of the superconductor. The applied magnetic field concentrates on the junction 2, and the current flowing through the junction 2 decreases due to the magnetoresistive effect caused by this magnetic field, showing a curve as shown in FIG. Current (voltage) before and after applying magnetic field
The change corresponds to ON-OFF operation, and switching operation is performed.

〔実施例〕〔Example〕

MgO基板上に対向ターゲットスパッタ法によりEr−
Ba−Cu−0超伝導薄膜を設けた。ターゲット組成は
Er:Ba:Cu=1:2:3に近い組成にし、Arと
酸素との混合ガス雰囲気中で基板温度約500℃で、膜
厚約1.2μmの膜をつけた後、電気炉を用いて酸素雰
囲気中にて900℃で2時間アニールした。膜はC軸に
配向していて、臨界温度は84Kを示した。
Er-
A Ba-Cu-0 superconducting thin film was provided. The target composition was set to be close to Er:Ba:Cu=1:2:3, and after depositing a film with a thickness of approximately 1.2 μm in a mixed gas atmosphere of Ar and oxygen at a substrate temperature of approximately 500°C, Annealing was performed at 900° C. for 2 hours in an oxygen atmosphere using a furnace. The film was oriented along the C-axis and exhibited a critical temperature of 84K.

次に、幅約1.2μmの間隙が膜中央部にできるように
フォトレジスト法でパターンをつくる6間隙部の超伝導
膜をウェットエツチングにより除去した。ただし、ウェ
ット材は水を含むものは避ける。
Next, the superconducting film was patterned using a photoresist method so that a gap of about 1.2 μm in width was formed at the center of the film, and the superconducting film was removed by wet etching. However, avoid using wet materials that contain water.

そして、この溝に金属薄膜としてNbをつける。金属膜
はDCマグネトロンスパッタ法により、Arガス雰囲気
中、基板温度約350℃で約1.5μ重の厚さにし、接
合部にした。 Nb膜はC軸配向膜になっていた。この
ものの表面端部にマスクを置き厚さ約0゜2μmのSi
n、膜を真空蒸着法により製膜し保護膜とした。マスク
で膜のついていない部分は電極をつけるための部分で、
その幅は約2〜3II11である。次に、接合部上に幅
約0.2μ厘、厚さ約2μ■の超伝導導線を約0.8μ
■間隔で2本平行につけた。この超伝導導線には前記と
同じEr系超伝導体を用いた。
Then, Nb is applied as a metal thin film to this groove. The metal film was formed to a thickness of about 1.5 μm by DC magnetron sputtering in an Ar gas atmosphere at a substrate temperature of about 350° C. to form a bonding portion. The Nb film was a C-axis oriented film. A mask is placed on the edge of the surface of this material, and a Si film with a thickness of approximately 0°2 μm is placed.
n. A film was formed by a vacuum evaporation method to serve as a protective film. The part of the mask that does not have a membrane is the part where the electrodes are attached.
Its width is approximately 2-3II11. Next, a superconducting wire with a width of about 0.2 μm and a thickness of about 2 μm is placed on the joint.
■Two wires were attached in parallel at intervals. The same Er-based superconductor as above was used for this superconducting wire.

膜をSiO□上に作製するため、前記方法とは異なり。This differs from the previous method because the film is fabricated on SiO□.

基板加熱を行なわずアモルファス状の膜にした後、レー
ザーアニール法により膜を結晶化させる。この膜は多結
晶膜であり、Jcは約10’A/a#、 Tcは約80
に近付であった。そして、フォトレジスト法により導線
のパターンを作製した。
After forming an amorphous film without heating the substrate, the film is crystallized by laser annealing. This film is a polycrystalline film, with Jc of approximately 10'A/a# and Tc of approximately 80
It was close to. Then, a conductive wire pattern was created using a photoresist method.

最後に、Au電極をスパック法で作製して素子とした。Finally, an Au electrode was fabricated by the spuck method to form a device.

電極に電流を流し、磁場を発生させないときの電流電圧
曲線が第2図aのようになった。ただし、素子周辺部の
温度は77にである。次に、各導線に互いに逆方向に2
〜3■Aの電流を流し、約6006の磁場を印加したま
ま、電極から電流を流し電流電圧特性を測定したところ
、第2図すのような曲線になった。aをON状態に、b
をOFF状態とすることでスイッチング動作させること
が可能になった。
The current-voltage curve when a current was passed through the electrodes and no magnetic field was generated was as shown in Figure 2a. However, the temperature around the element was 77°C. Next, attach two wires to each conductor in opposite directions.
When a current of ~3 A was applied and a magnetic field of about 6006 mm was applied, a current was passed through the electrodes and the current-voltage characteristics were measured, resulting in a curve as shown in Figure 2. a to ON state, b
By turning OFF, switching operation can be performed.

〔発明の効果〕〔Effect of the invention〕

本発明の酸化物系高温超伝導体を用いて特定の構造につ
くられたスイッチ素子は、第2図から判るとおり低消費
電力でしかも高速応答性にすぐれている。
As can be seen from FIG. 2, a switch element made with a specific structure using the oxide-based high temperature superconductor of the present invention has low power consumption and excellent high-speed response.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超伝導スイッチ素子の主要部の概
略図、第2図はこのスイッチ素子の特性図である。 第3図は従来の超伝導スイッチ素子の主要部の概略図、
第4図はその従来のスイッチ素子の特性図である。 l・・・絶縁性基板 2・・・接合部(非磁性金属又は合金薄膜)3・・・超
伝導薄膜 4・・・磁場印加用超伝導導線 5・・・電極 6・・・絶縁膜(保護膜)
FIG. 1 is a schematic diagram of the main parts of a superconducting switch element according to the present invention, and FIG. 2 is a characteristic diagram of this switch element. Figure 3 is a schematic diagram of the main parts of a conventional superconducting switch element.
FIG. 4 is a characteristic diagram of the conventional switch element. l...Insulating substrate 2...Joint part (non-magnetic metal or alloy thin film) 3...Superconducting thin film 4...Superconducting conductor wire for magnetic field application 5...Electrode 6...Insulating film ( Protective film)

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上に非磁性金属又は合金薄膜を挾んで超
伝導薄膜が面方向に形成され、その超伝導薄膜上には該
接合部の両側に電極が形成され、更にこれらの上に絶縁
膜が形成され、及び、該接合部に近接するようにして該
絶縁膜上に磁場印加用超伝導導線が設けられていること
を特徴とする超伝導スイッチ素子。
(1) A superconducting thin film is formed in the plane direction by sandwiching a nonmagnetic metal or alloy thin film on an insulating substrate, and electrodes are formed on the superconducting thin film on both sides of the joint, and further insulated on top of these. 1. A superconducting switch element comprising: a film formed thereon; and a superconducting wire for applying a magnetic field provided on the insulating film so as to be close to the junction.
JP1196244A 1989-07-28 1989-07-28 Superconducting switch element Expired - Lifetime JP2849721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1196244A JP2849721B2 (en) 1989-07-28 1989-07-28 Superconducting switch element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196244A JP2849721B2 (en) 1989-07-28 1989-07-28 Superconducting switch element

Publications (2)

Publication Number Publication Date
JPH0360175A true JPH0360175A (en) 1991-03-15
JP2849721B2 JP2849721B2 (en) 1999-01-27

Family

ID=16354586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196244A Expired - Lifetime JP2849721B2 (en) 1989-07-28 1989-07-28 Superconducting switch element

Country Status (1)

Country Link
JP (1) JP2849721B2 (en)

Also Published As

Publication number Publication date
JP2849721B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
JP3221403B2 (en) Oxide superconductor
JPS63299282A (en) Superconducting device
US5291035A (en) Microelectronic superconducting crossover and coil
JPH0360175A (en) Superconductive switching element
JP3016566B2 (en) Superconducting switch element
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP2950958B2 (en) Superconducting element manufacturing method
JPS63245973A (en) Superconducting element
JP2698364B2 (en) Superconducting contact and method of manufacturing the same
JP3379533B2 (en) Method for manufacturing superconducting device
JPS5629383A (en) Manufacture of tunnel-junction type josephson element
JP2944238B2 (en) Method for forming superconductor and superconducting element
JPH03274775A (en) Superconducting element
JP2786827B2 (en) Superconducting element
JPS6167282A (en) Resistance element for superconductor integrated circuit and manufacture thereof
JP3160406B2 (en) Superconducting optoelectronic devices
JP2776004B2 (en) Method of manufacturing Josephson device
JPH0249481A (en) Oxide josephson junction device
JPH02390A (en) Semiconductor substrate with superconductor layer
JPH03241781A (en) Grain boundary josephson junction
JPH02184087A (en) Superconducting weakly-coupled element
JPH01283885A (en) Josephson element and manufacture thereof
JPH01170060A (en) Semiconductor substrate having superconductor layer
JPH04171872A (en) Josephson device and manufacture thereof
JPH02389A (en) Semiconductor substrate with superconductor layer