JPH01102973A - Photo-controlled superconducting device - Google Patents

Photo-controlled superconducting device

Info

Publication number
JPH01102973A
JPH01102973A JP62259672A JP25967287A JPH01102973A JP H01102973 A JPH01102973 A JP H01102973A JP 62259672 A JP62259672 A JP 62259672A JP 25967287 A JP25967287 A JP 25967287A JP H01102973 A JPH01102973 A JP H01102973A
Authority
JP
Japan
Prior art keywords
superconducting
electrode
electrodes
electric field
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62259672A
Other languages
Japanese (ja)
Inventor
Haruhiro Hasegawa
晴弘 長谷川
Juichi Nishino
西野 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62259672A priority Critical patent/JPH01102973A/en
Publication of JPH01102973A publication Critical patent/JPH01102973A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable any electric field to be applied to a semiconductor, and to realize a high sensitivity in order to enhance a photosensitivity by providing two electrodes other than two superconducting electrodes. CONSTITUTION:A semiconductor substrate 3 employs, for example, SrTiO3, and a thin film of YBa2Cu3O7-z(z>=0) is deposited on the substrate 3. And, a first gate electrode 6 and a second gate electrode 7 are so formed as to be situated over the respective parts of a source superconducting electrode 1 and a drain superconducting electrode 2. When light is emitted from an optical fiber 8, two superconducting electron waves then exude from the source superconducting electrode 1 and the drain superconducting electrode 2, respectively, and are coupled certain position each other. As a result, a superconductive current is caused to flow between these electrodes 1 and 2. Especially, when an electric field is applied which is perpendicular to the direction of the superconductive current flow, the maximum electric field effects are obtained, thereby optical responsiveness is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光照射により電気信号を制御する装置に係り、
特に制御する超電導電流の光感受性の向上に好適な光制
御超電導素子の構成と材料に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for controlling electrical signals by light irradiation,
In particular, the present invention relates to the structure and materials of a light-controlled superconducting element suitable for improving the photosensitivity of the superconducting current to be controlled.

従来、超電導電流の光による制御については、アイ・イ
ー・イー・イー、トランザクション オン マグネチッ
クス、エム ジー21.(1985年)第622頁から
第625頁(IEEE。
Conventionally, regarding the control of superconducting current by light, IE, Transaction on Magnetics, MG21. (1985) pp. 622-625 (IEEE.

Trans、 Magnetics、 MAG 21 
、 (1985)pP622−625)において論じら
れている。
Trans, Magnetics, MAG 21
, (1985) pP622-625).

この場合、トンネル障壁膜として、流化カドミウムを用
いている。
In this case, fluidized cadmium is used as the tunnel barrier film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は光感受性について配慮がなされておらず
、光照射時と遮断時の超電導電極、ソース、ドレイン間
に流れる超電導電流の変化量が小さいという問題があっ
た。これはソース、ドレインを隔てるトンネル障壁膜、
流化カドミウム中のキャリア密度が、光照射時と遮断時
で十分に変化していないためであることがわかった0本
発明の目的は、従来技術の問題点を解決し、光応答性の
大きい光制御超電導素子を提供することにある。
The above-mentioned conventional technology does not take photosensitivity into consideration, and has a problem in that the amount of change in superconducting current flowing between the superconducting electrode, source, and drain during light irradiation and light interruption is small. This is a tunnel barrier film that separates the source and drain.
It was found that this is because the carrier density in fluidized cadmium does not change sufficiently between the time of light irradiation and the time of light interruption.The purpose of the present invention is to solve the problems of the prior art and to provide a material with high photoresponsivity. An object of the present invention is to provide a light-controlled superconducting device.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、2つの超電導電極を隔てる半導体にこの2
つの超電導電極と異なる2つの電極を設け、2つの電極
により超電導電極間に流れる電流方向に直交する電場を
印加することにより達成される。
The above purpose is to create a semiconductor that separates two superconducting electrodes.
This is achieved by providing one superconducting electrode and two different electrodes, and using the two electrodes to apply an electric field perpendicular to the direction of current flowing between the superconducting electrodes.

但し、上記超電導電極としてPb、Nb。However, Pb and Nb are used as the superconducting electrode.

(L a 1−X)2 Cu 0s−y (但しM=B
a、Sr。
(L a 1-X)2 Cu 0s-y (However, M=B
a.Sr.

Ca、0.05≦x<0.10.O<y<1) 。Ca, 0.05≦x<0.10. O<y<1).

AB arcu3O7−2 (但しA = Y 、 L
 a 、 E u 。
AB arcu3O7-2 (However, A = Y, L
a, Eu.

Gd、Tb、Dy、Ha、Er、Tm、Yb。Gd, Tb, Dy, Ha, Er, Tm, Yb.

Lu、0≦zく1)等の材料の群より選ばれた1つ又は
それ以上の材料を用い、上記半導体として、MgO,K
またはNaをドープしたMgO,SrT i 03.K
またはNaをドープしたS r T 1031Si、G
e、GaAs、Ga、4AQ)<As (0≦xく1)
t GaSb、InP、InAs、InSb。
Using one or more materials selected from the group of materials such as Lu, 0≦zku1), as the semiconductor, MgO, K
or Na-doped MgO, SrTi 03. K
or Na-doped S r T 1031Si, G
e, GaAs, Ga, 4AQ)<As (0≦x1)
tGaSb, InP, InAs, InSb.

CdS、CdSe、PbS、PbSe、ZnS。CdS, CdSe, PbS, PbSe, ZnS.

Zn5s等の材料の群より選ばれた1つ又はそれ以上の
材料を用いれば良い。
One or more materials selected from the group of materials such as Zn5s may be used.

〔作用〕[Effect]

光照射により半導体中には電子−正孔対が生成するが、
半導体に設けられた2つの電極により電場が生じるため
、電子−正孔対は瞬時に分離し、電場方向に自由電子密
度、すなわち自由正孔密度の勾配が形成される。半導体
中のコヒーレンス長は3次元系の場合、自由キャリア密
度の3分の1乗に比例する。従ってコヒーレンス長も自
由キャリア密度の勾配に沿って変化することになる。今
、勾配方向に直交する方向に2つの超電導電極が対向し
ているので、適当な光照射・電場印加により2つの超電
導電極の半導体中のコヒーレンス長が麓なり、2つの超
電導電極間に超電導電流が流れることになる。ところで
光照射により生じる自由キャリア密度は生成した電子−
正孔対の再結合する寿命によって決まる。すなわち、寿
命が長ければ、電子、正孔はそれだけ消滅することなく
存在できるので自由キャリア密度も大きくなることにな
る。従って、2つの超電導電極間に流れる超電導電流方
向に直交する方向に電場を印加し、光照射により生じた
自由キャリア密度分布が成る電流経路に沿って一定とな
るように設定することにより、電場の効果は最大となり
光感受性の高い、光制御超電導素子が実現可能となる。
Electron-hole pairs are generated in the semiconductor by light irradiation, but
Since an electric field is generated by two electrodes provided on the semiconductor, electron-hole pairs are instantaneously separated, and a gradient of free electron density, that is, free hole density is formed in the direction of the electric field. In a three-dimensional system, the coherence length in a semiconductor is proportional to the one-third power of the free carrier density. Therefore, the coherence length also changes along the gradient of free carrier density. Now, since the two superconducting electrodes are facing each other in the direction perpendicular to the gradient direction, by applying appropriate light and electric field, the coherence length of the two superconducting electrodes in the semiconductor becomes the base, and a superconducting current is generated between the two superconducting electrodes. will flow. By the way, the free carrier density caused by light irradiation is the generated electron −
It is determined by the recombination lifetime of hole pairs. In other words, the longer the lifetime, the more electrons and holes can exist without disappearing, and the free carrier density will also increase. Therefore, by applying an electric field in a direction perpendicular to the direction of the superconducting current flowing between two superconducting electrodes and setting it so that the free carrier density distribution generated by light irradiation is constant along the current path, the electric field can be reduced. The effect is maximized, and a photo-controlled superconducting device with high photosensitivity can be realized.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図及び第2図は本発明の第1の実施例を示す図であ
る。半導体基板3として5rTi03を用い、この上に
スパッタリング法により厚さ5ooo人のYBa2Cu
3o、−2(zく0)薄膜を堆積させ、レジスト塗布後
光りソグラフィ法によりレジストに幅1μmの空隙を設
け、さらに化学エツチングにより、上記薄膜を加工、ソ
ース超電導電極1、ドレイン超電導電極2を作製する。
1 and 2 are diagrams showing a first embodiment of the present invention. 5rTi03 is used as the semiconductor substrate 3, and YBa2Cu with a thickness of 500 mm is deposited on this by sputtering.
A 3o, -2 (z 0) thin film was deposited, and after applying a resist, a gap with a width of 1 μm was created in the resist by photolithography, and the thin film was further processed by chemical etching to form a source superconducting electrode 1 and a drain superconducting electrode 2. Create.

これを酸素雰囲気高中で93O℃2時間熱処理した後、
アルゴン、酸素の混合プラズマで表面を処理してから抵
抗加熱蒸着法により厚さ2μmのCdSを堆積し、トン
ネル絶縁膜4を形成する。続いて化学的相成長法(CV
D法)により厚さ約50nmのS i 02よりなるゲ
ート絶縁膜5を形成し、さらに、アルミニウムを抵抗加
熱法により厚さ約500nm堆積させたのちエツチング
法により加工し、第1ゲート電極及び第2ゲート電極7
を形成する。但し、第2図に示すごとく第1ゲート電極
6、第2ゲート電極7はソース超電導電極1、ドレイン
超電導電極2の一部の上に位置するように加工する。第
1ゲート電極6に、第2ゲート電極7に対して正の電圧
を印加し、第1ゲート電極6から第2ゲート電極7の−
向きに電場を生じさると、光ファイバ8から照射された
光によりトンネル絶縁膜4中で生成した電子−正孔対は
瞬時に分離し、第1ゲート電極6付近ではより多くの電
子が、第2ゲート電極7付近では逆にゆり多くの正孔が
集まり、第1ゲート電極6と第2ゲート電極7の方向に
自由キャリア密度の勾配が形成される。従って半導体中
のコヒーレンス長は第2ゲート電極7から第1ゲート電
極6へ向って長くなり、成る光照射、ゲート電圧の条件
の時。
After heat-treating this in an oxygen atmosphere at 93O℃ for 2 hours,
After the surface is treated with a mixed plasma of argon and oxygen, CdS is deposited to a thickness of 2 μm by a resistance heating evaporation method to form a tunnel insulating film 4. Next, chemical phase growth method (CV
A gate insulating film 5 made of SiO2 with a thickness of about 50 nm is formed using the method D), and aluminum is further deposited to a thickness of about 500 nm using a resistance heating method, and then processed using an etching method to form the first gate electrode and the first gate electrode. 2 gate electrode 7
form. However, as shown in FIG. 2, the first gate electrode 6 and the second gate electrode 7 are processed so as to be located on part of the source superconducting electrode 1 and drain superconducting electrode 2. A positive voltage is applied to the first gate electrode 6 with respect to the second gate electrode 7, and the −
When an electric field is generated in the direction, the electron-hole pairs generated in the tunnel insulating film 4 by the light irradiated from the optical fiber 8 are instantaneously separated, and more electrons are generated in the vicinity of the first gate electrode 6. Conversely, a large number of holes gather near the second gate electrode 7, and a gradient of free carrier density is formed in the direction of the first gate electrode 6 and the second gate electrode 7. Therefore, the coherence length in the semiconductor increases from the second gate electrode 7 to the first gate electrode 6 under the following light irradiation and gate voltage conditions.

ある位置でソース超電導電極1及びドレイン超電導電極
2から染み出した超電導電子波がつながり。
At a certain position, the superconducting electron waves seeping out from the source superconducting electrode 1 and the drain superconducting electrode 2 are connected.

超電導電流がこれらの電極間に流れる。さらに、今の場
合、第1ゲート電極6と第2ゲート電極7はソース超電
導電極1とドレイン超電導電極2と独立であるため、ト
ンネル絶縁4の中に任意の電場をかけることができ、特
に超電導電流の流れる方向に直交する電場をかけること
により電場効果は最大となり、光応答性の大きい光制御
超電導素子を実現できる。尚、本実施例において界ソー
ス超電導電極1.ドレイン超電導電極2としてYBa2
Cu3O.z (z<O)を用いたが、これに代えて、
pbあるいはその合金、Nbあるいはその金属間化合物
t (L at−Mx)zc u 0s−y (但しM
=Ba、Sr、Ca、0.05≦xく0.10゜Q く
yく)HAB a2Cu3O7−x (但しA = L
 a 。
A superconducting current flows between these electrodes. Furthermore, in this case, since the first gate electrode 6 and the second gate electrode 7 are independent of the source superconducting electrode 1 and the drain superconducting electrode 2, it is possible to apply an arbitrary electric field within the tunnel insulation 4. By applying an electric field perpendicular to the direction of current flow, the electric field effect is maximized, making it possible to realize a light-controlled superconducting device with high photoresponsiveness. In this example, the field source superconducting electrode 1. YBa2 as drain superconducting electrode 2
Cu3O. z (z<O) was used, but instead of this,
pb or its alloy, Nb or its intermetallic compound t (L at-Mx)zc u 0s-y (However, M
=Ba, Sr, Ca, 0.05≦x0.10゜Q) HAB a2Cu3O7-x (However, A = L
a.

E u g G d m T b g D y g H
o * E r g T rn tYb、Lu、0くz
く1)等を用いても、また、トンネル絶縁膜4として用
いたCdSに代えて。
E u g G d m T b g D y g H
o * E r g T rn tYb, Lu, 0kuz
1) etc., or instead of CdS used as the tunnel insulating film 4.

Sx、Ge、GaAse Ga、−zAQzAg (0
ICXく)、GaSb、InP、InAs、CdSe*
PbS、Pb5ee ZnS、Zn5e等を用いても本
発明の目的を達成し、光応答性の大きい光制御超電導素
子を実現できることは言うまでもない。
Sx, Ge, GaAse Ga, -zAQzAg (0
ICX), GaSb, InP, InAs, CdSe*
It goes without saying that the object of the present invention can be achieved by using PbS, Pb5ee, ZnS, Zn5e, etc., and a photocontrolled superconducting element with high photoresponsivity can be realized.

次に第3図及び第3図を用いて本発明の第2の・実施例
を説明する0本発明の第1の実施例では、ソース超電導
電極1とドレイン超電導電極2の間に幅1μmの微小な
空隙を作る必要があったが、ソース超電導電極1.トン
ネル絶縁膜4、ドレイン超電導電極2の三層構造にする
ことにより、微細加工工程を除くこともできる。半導体
基板3として5rTi03を用い、この上にスパッタリ
ング法により厚さ1μmのYBa2Cu3o、−、(Z
20)の薄膜を堆積させ、酸素雰囲気中で93O℃、2
時間熱処理した後、アルゴン、酸素の混合プラズマで表
面を処理し、ドレイン超電導電極2を形成する。その後
、抵抗加熱蒸着法により厚さ100人のCdSを堆積し
、トンネル絶縁膜4を形成する。続いてアルゴン、酸素
の混合プラズマで表面を処面し、CdSのピンホールに
より露出しているYBa2Cu3O7−z(Z20)面
を絶縁体化した後、化学的気相成長法(CVD法)によ
り厚さ約50nmの5i02を形成し、ドライエツチン
グ法により加工してゲート絶縁膜5を形成する。さらに
レジスト塗布、光露光、境象後、抵抗加熱蒸着により厚
さ500人のpbを堆積し、リフトオフ法により、ソー
ス超電算電極1.及び第1ゲート電極6、第2ゲート電
極7を形成する。
Next, a second embodiment of the present invention will be explained with reference to FIGS. Although it was necessary to create a small gap, the source superconducting electrode 1. By forming the three-layer structure of the tunnel insulating film 4 and the drain superconducting electrode 2, the microfabrication process can be omitted. 5rTi03 is used as the semiconductor substrate 3, and YBa2Cu3o, -, (Z
20) was deposited and heated at 930°C in an oxygen atmosphere for 2
After heat treatment for a period of time, the surface is treated with a mixed plasma of argon and oxygen to form a drain superconducting electrode 2. Thereafter, CdS is deposited to a thickness of 100 nm using a resistance heating evaporation method to form a tunnel insulating film 4. Next, the surface was treated with a mixed plasma of argon and oxygen, and the YBa2Cu3O7-z (Z20) surface exposed through the CdS pinhole was made into an insulator. A 5i02 film having a thickness of approximately 50 nm is formed and processed by a dry etching method to form a gate insulating film 5. Further, after resist coating, light exposure, and imaging, a 500-μm thick PB was deposited by resistance heating vapor deposition, and a lift-off method was used to deposit the source supercomputer electrode 1. Then, a first gate electrode 6 and a second gate electrode 7 are formed.

光ファイバ8をソース超電導電極1の上に配置し、光照
射すると、ソース超電導電極1は膜厚が薄いため、光は
該電極を透過、トンネル絶縁膜4に達し、該絶縁膜中で
電子−正孔対が生成する6第1ゲート電極6.第2ゲー
ト電極7に電圧を印加し。
When the optical fiber 8 is placed on the source superconducting electrode 1 and irradiated with light, since the source superconducting electrode 1 is thin, the light passes through the electrode and reaches the tunnel insulating film 4, where electrons are generated in the insulating film. 6 first gate electrode where hole pairs are generated 6. A voltage is applied to the second gate electrode 7.

ソース超電導電極1とドレイン超電導電極2間に流れる
超電導電流の方向と直交する方向に電場をかけることに
より、本発明の第1の実施例と同様、電場効果は最大と
なり、光応答性の大きい光制御超電導素子が実現できた
る。尚、本実施例においてはドレイン超電導電極2とし
てY B a2Cu3Ot−x(z2o)を用いたが、
これに代えて、pbあるいはその合金、Nbあるいはそ
の金属間化合物e  (L a 1−X Mx)2c 
u 04−y (但しM = B a 。
By applying an electric field in a direction perpendicular to the direction of the superconducting current flowing between the source superconducting electrode 1 and the drain superconducting electrode 2, the electric field effect is maximized and light with high photoresponsivity is generated, as in the first embodiment of the present invention. A controlled superconducting device has been realized. In this example, YBa2Cu3Ot-x (z2o) was used as the drain superconducting electrode 2, but
Instead of this, pb or its alloy, Nb or its intermetallic compound e (L a 1-X Mx)2c
u 04-y (However, M = Ba.

Sr、Ca、0.05≦xく0.10.O<yく1)。Sr, Ca, 0.05≦x0.10. O<yku1).

A B a 2Cu3O7−x (但しA = L a
 、 E u 、 G d 。
A B a 2Cu3O7-x (However, A = L a
, Eu, Gd.

Tb、Dyt Ho、Er、Tm、Yb、Lu、0<z
<1)等を用い、かつまたトンネル絶縁膜4として用い
たCdSに代えて、Sie GetGaAs、Gat−
xAQxAs (0<xく1)。
Tb, Dyt Ho, Er, Tm, Yb, Lu, 0<z
<1) etc., and in place of CdS used as the tunnel insulating film 4, Sie GetGaAs, Gat-
xAQxAs (0<x×1).

Garb、InP、InSb、Cd’s、PbS。Garb, InP, InSb, Cd's, PbS.

Pb5a、ZnS、Zn5e等を用いても、或いはまた
、ソース超電導電極1として用いたpbに代えて(L 
a z−x Mx)zc u 04−F (但しM =
 B a 。
Even if Pb5a, ZnS, Zn5e, etc. are used, or instead of Pb used as the source superconducting electrode 1 (L
a z-x Mx)zc u 04-F (However, M =
B a.

Sr、Ca、0.05≦x:0.10,0<yくl)。Sr, Ca, 0.05≦x:0.10, 0<ycl).

A B arc usC)t−x (但しA ” Y 
g L a g E u eGd、Tb、Dy、Ho、
Er、Tm、Yb、Lu0≦zく1)等を用い、かつま
たドレイン超電導電極2として用いたY B arc 
u3Ot−z (z 20)に代えて、  (L a 
1−X Mx)sc u 0s−y (但し阿=Ba、
Sr、Ca、0.05<xく0.10t O<’j り
1 ) + A B arc u3Oy−2(但しA 
= L a 。
A B arc usC) t-x (However, A ” Y
g L a g E u eGd, Tb, Dy, Ho,
Y B arc using Er, Tm, Yb, Lu0≦z 1), etc., and also used as the drain superconducting electrode 2
Instead of u3Ot-z (z 20), (La
1-X Mx) sc u 0s-y (However, A=Ba,
Sr, Ca, 0.05<x 0.10t O<'j ri1) + A Barc u3Oy-2 (However
= La.

En、Gd、Tb、Dy、Ho、Er、Tm。En, Gd, Tb, Dy, Ho, Er, Tm.

Yb、Lu、0≦z≦1)等を用い、かつまた。Yb, Lu, 0≦z≦1), and also.

トンネル絶縁膜4として用いたCdSに代えて、MgO
または5rTiOsまたは不純物1例えばに、Naをド
ープしたMgO,5rTiO,等を用いても本発明の目
的を達し、光応答性の大きい光制御超電導素子を実現で
きることは言までもない。
Instead of CdS used as the tunnel insulating film 4, MgO
It goes without saying that the object of the present invention can also be achieved by using 5rTiOs or the impurity 1, such as MgO doped with Na, 5rTiO, etc., and a photocontrolled superconducting element with high photoresponsivity can be realized.

次に、第5図を用いて本発明の第3の実施例を説明する
6本実施例は該光制御超電導素子10を低温で動作する
信号処理システム、例えばジョゼフソン接合素子、ある
いは超電導トランジスタを用いた計算機等と、室温に置
かれた別の信号処理システムとの信号伝送に利用した例
である。光ファイバ8を用いて、室温に置かれた信号処
理装置からの光信号を本発明の光制御超電導素子10に
よって検出し、第5図に示すように、ソース超電導電極
1.ドレイン超電導電極2.第1ゲート電極6第2ゲー
ト電極7を結線することにより、光入力時には低温にお
いて信号処理システムへの出力端子9は零電位に、光遮
断時には同端子は数ミリボルト程度の高電位になる。こ
れより、配線遅延の小さい高速光入力コンピュータが実
現できる。
Next, a third embodiment of the present invention will be described with reference to FIG. This is an example in which the system is used for signal transmission between a computer, etc., and another signal processing system placed at room temperature. Using the optical fiber 8, an optical signal from a signal processing device placed at room temperature is detected by the optically controlled superconducting element 10 of the present invention, and as shown in FIG. 5, the source superconducting electrode 1. Drain superconducting electrode 2. By connecting the first gate electrode 6 and the second gate electrode 7, the output terminal 9 to the signal processing system has zero potential at low temperature when light is input, and the same terminal has a high potential of several millivolts when light is cut off. As a result, a high-speed optical input computer with low wiring delay can be realized.

しかも同軸ケーブルを用いて信号伝送を行なった場合に
比べて、低温側への熱の侵入が少なくなるので、冷凍に
要する装置を小型化し、かつその消費電力を小さくする
ことができる。
Furthermore, compared to the case where signal transmission is performed using a coaxial cable, less heat enters into the low temperature side, so the equipment required for refrigeration can be downsized and its power consumption can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、2つの超電導電
極以外に2つの電極を設けることにより、半導体に任意
の電場を印加することが可能となり。
As explained above, according to the present invention, by providing two electrodes in addition to the two superconducting electrodes, it becomes possible to apply any electric field to the semiconductor.

特に超電導電流に直交するように電場をかけることによ
り、自由キャリア密度分布が成る電流経路に沿って一定
、電場の効果を最大に利用できるので、高感度で光感受
性の高い光制御超電導素子が実現可能となる。
In particular, by applying an electric field perpendicular to the superconducting current, the free carrier density distribution is constant along the current path, and the effect of the electric field can be maximized, making it possible to realize a photo-controlled superconducting device with high sensitivity and photosensitivity. It becomes possible.

電導素子の側面図、第2図は第1図の光制御超電導素子
の上面図、第3図は本発明の第2の実施例における光制
御超電導素子の側面図、第4図は第3図の光制御超電導
素子の上面図、第5図は光制御超電導素子を用いた光入
力コンピュータの概念を示す図である。
2 is a top view of the optically controlled superconducting device shown in FIG. 1, FIG. 3 is a side view of the optically controlled superconducting device according to the second embodiment of the present invention, and FIG. 4 is a top view of the optically controlled superconducting device shown in FIG. FIG. 5 is a top view of the optically controlled superconducting element shown in FIG. 5, which shows the concept of an optical input computer using the optically controlled superconducting element.

110.ソース超電導電極、2・・・ドレイン超電導電
極、3・・・半導体基板、4・・・トンネル絶縁膜、5
・・・ゲート絶縁膜、6・・・第1ゲート電極、7・・
・第2ゲート電極、8・・・光ファイバ、9・・・出力
端子、10・・・該光制御超電導素子。
110. Source superconducting electrode, 2... Drain superconducting electrode, 3... Semiconductor substrate, 4... Tunnel insulating film, 5
... Gate insulating film, 6... First gate electrode, 7...
- Second gate electrode, 8... optical fiber, 9... output terminal, 10... the optically controlled superconducting element.

第7目 第2図 第3目 茅夕目7th eye Figure 2 Third eye Kayaya eyes

Claims (1)

【特許請求の範囲】 1、低温において動作する光制御型の超電導素子におい
て、少なくとも1対の超電導電極とこれらを隔てかつこ
れらに接した半導体と、この半導体中に上記1対の超電
導電極間を流れる超電導電流の少なくとも一部に直交す
るように設けられた電場を生じせしめる手段と、上記半
導体に光を入射させる手段とを含んで構成されることを
特徴とする光制御超電導素子。 2、特許請求の範囲第1項において、前記電場を発生さ
せる手段は前記1対の超電導電極と異なり、かつ、前記
半導体上に設けられたMOSまたはMISまたはMES
構成の1対のゲート電極であることを特徴とする光制御
超電導素子。 3、特許請求の範囲第1項において、前記1対の超電導
電極は、Pb、Nb、(La_1_−_xM_x)_2
CuO_4_−_y(但しM=Ba、Sr、Ca、0.
05≦x≦0.10、0≦y≦1)、ABa_2Cu_
3O_7_−_z(但しA=Y、La、Eu、Gd、T
b、Dy、Ho、Er、Tm、Yb、Lu、0≦z≦1
)等の材料の群より選ばれた1つまたはそれ以上の材料
を用い、該半導体は、MgO、KまたはNaをドープし
たMgO、SrTiO_3、KまたはNaをドープした
SrTiO_3、Si、Ge、GaAs、Ga_1_−
_xAl_xAs(0≦x≦1)、GaSb、InP、
InAs、InSb、CdS、CdSe、PbS、Pb
Se、ZnS、ZnSe等の材料の群より選ばれた1つ
またはそれ以上の材料を用いたことを特徴とする光制御
超電導素子。
[Claims] 1. In an optically controlled superconducting element that operates at low temperatures, at least one pair of superconducting electrodes, a semiconductor separating them from each other and in contact with them, and a structure in which a connection between the pair of superconducting electrodes is formed in the semiconductor. A light-controlled superconducting element comprising means for generating an electric field provided perpendicular to at least a portion of a flowing superconducting current, and means for making light incident on the semiconductor. 2. In claim 1, the means for generating the electric field is a MOS, MIS, or MES different from the pair of superconducting electrodes and provided on the semiconductor.
1. A light-controlled superconducting element comprising a pair of gate electrodes. 3. In claim 1, the pair of superconducting electrodes are made of Pb, Nb, (La_1_-_xM_x)_2
CuO_4_-_y (where M=Ba, Sr, Ca, 0.
05≦x≦0.10, 0≦y≦1), ABa_2Cu_
3O_7_-_z (However, A=Y, La, Eu, Gd, T
b, Dy, Ho, Er, Tm, Yb, Lu, 0≦z≦1
), the semiconductor is MgO, MgO doped with K or Na, SrTiO_3, SrTiO_3 doped with K or Na, Si, Ge, GaAs, Ga_1_-
_xAl_xAs (0≦x≦1), GaSb, InP,
InAs, InSb, CdS, CdSe, PbS, Pb
A light-controlled superconducting element characterized in that it uses one or more materials selected from the group of materials such as Se, ZnS, and ZnSe.
JP62259672A 1987-10-16 1987-10-16 Photo-controlled superconducting device Pending JPH01102973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259672A JPH01102973A (en) 1987-10-16 1987-10-16 Photo-controlled superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259672A JPH01102973A (en) 1987-10-16 1987-10-16 Photo-controlled superconducting device

Publications (1)

Publication Number Publication Date
JPH01102973A true JPH01102973A (en) 1989-04-20

Family

ID=17337297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259672A Pending JPH01102973A (en) 1987-10-16 1987-10-16 Photo-controlled superconducting device

Country Status (1)

Country Link
JP (1) JPH01102973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244682A (en) * 1989-03-16 1990-09-28 Toshiba Corp Superconductive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244682A (en) * 1989-03-16 1990-09-28 Toshiba Corp Superconductive element

Similar Documents

Publication Publication Date Title
US5162298A (en) Grain boundary junction devices using high tc superconductors
EP0300567B1 (en) Method of applying thin layers of oxidic superconductive material
Keller et al. Niobium thin‐film Josephson junctions using a semiconductor barrier
US5057485A (en) Light detecting superconducting Josephson device
US4409262A (en) Fabrication of submicron-wide lines with shadow depositions
US3733526A (en) Lead alloy josephson junction devices
JPH01102973A (en) Photo-controlled superconducting device
US5229361A (en) Method for forming Josephson junction devices by radiation
US5338943A (en) Magnetic flux-enhanced control line for superconducting flux flow transistor
US6229154B1 (en) Photo detecting element
RU2133525C1 (en) Superconducting quantum interference transmitter and process of its manufacture
EP0491496B1 (en) Article comprising a superconductor/insulator layer structure, and method of making the article
US3558920A (en) Bistable photosensitive device utilizing tunnel currents in low resistive state
JP2969068B2 (en) Superconducting element manufacturing method
US20230015299A1 (en) Van der waals capacitor and qubit using same
JP2715321B2 (en) Photo detector
JPS5629383A (en) Manufacture of tunnel-junction type josephson element
JP2737004B2 (en) Signal detection method
JPH01205578A (en) Superconductive field effect transistor
JP2774713B2 (en) Superconducting element
JP2614940B2 (en) Superconducting element and fabrication method
JPS63310184A (en) Superconductive quantum interference device
Kabasawa et al. Electric field effect on the transport properties of ultrathin Y 0.9 Pr 0.1 Ba 2 Cu 3 O y channels in the insulating phase of superconductor-insulator transition
Granata et al. Trimming of critical current in niobium Josephson devices by laser annealing
JP2994190B2 (en) High-temperature superconducting thin film structure and method for producing the same