JPH01123092A - Method for controlling amount of alloy in tin plating layer - Google Patents

Method for controlling amount of alloy in tin plating layer

Info

Publication number
JPH01123092A
JPH01123092A JP27824587A JP27824587A JPH01123092A JP H01123092 A JPH01123092 A JP H01123092A JP 27824587 A JP27824587 A JP 27824587A JP 27824587 A JP27824587 A JP 27824587A JP H01123092 A JPH01123092 A JP H01123092A
Authority
JP
Japan
Prior art keywords
alloy
tin
plating layer
melting
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27824587A
Other languages
Japanese (ja)
Inventor
Satoru Sato
覚 佐藤
Takeo Onishi
大西 建男
Katsuharu Fukushima
福島 克治
Takashi Sekida
関田 貴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27824587A priority Critical patent/JPH01123092A/en
Publication of JPH01123092A publication Critical patent/JPH01123092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To accurately control the amt. of alloy in a wide range, by taking a function contg. the time from the beginning of melting of plating layer to that of quenching and melting temp. as parameter, when a tin-plated sheet is treated by reflowing. CONSTITUTION:The steel sheet is plated with tin by electroplating, etc., and then the plating layer is remelted by heating the plated steel sheet to form alloy layer of iron and tin, and thereafter, cooled with water in a quenching tank. In a reflowing process of the production line of the tin-plated steel sheet above-mentioned, the amt. of alloy is controlled by taking {DELTAtXeXp[-Q/R(T +273)]}<1/2> (where, R is a gas constant and Q is activation energy) as parameter, denoting the time from the beginning of melting of the plating layer to that of quenching by DELTAt(sec) and melting temp. by T( deg.C). Thereby, the amt. of alloy is accurately controlled in the range from small to large amts. of thin in the alloy.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は錫メッキ鋼板製造ラインのリフロー工程におい
て、メンキ層の合金量を制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for controlling the amount of alloy in a coating layer in a reflow process of a tin-plated steel sheet manufacturing line.

〈従来の技術〉 錫メッキ鋼板の製造においては、一般に電気メッキによ
り錫を鋼板にメッキし、ついでメッキ鋼板を加熱して表
面のメッキ層を再度溶融させて鉄と錫の合金層を形成さ
せ、ついでクエンチタンクで水冷を行っている。このよ
うなメッキ後のリフロー工程における加熱方法には、電
磁誘導を利用したインダクションタイプ、抵抗加熱を利
用したコンダクシッンタイプがある。
<Prior art> In the production of tin-plated steel sheets, generally tin is plated on the steel sheet by electroplating, and then the plated steel sheet is heated to melt the surface plating layer again to form an alloy layer of iron and tin. Next, water cooling is performed in a quench tank. Heating methods in the reflow process after plating include an induction type that uses electromagnetic induction and a conduction type that uses resistance heating.

ところでこのリフロー工程において、合金量を制御する
方法には大きく分けて次の3種類がある。
By the way, in this reflow process, there are roughly three types of methods for controlling the amount of alloy as follows.

まず、特開昭52−95542号公報、特開昭55−7
6090号公報に記載のように、加熱によるメッキ鋼板
の最高到達温度即ちクエンチタンク突入時の温度を制御
することにより合金量を制御する方法がある。
First, JP-A-52-95542, JP-A-55-7
As described in Japanese Patent No. 6090, there is a method of controlling the amount of alloy by controlling the maximum temperature reached by a plated steel plate by heating, that is, the temperature at the time of entry into a quench tank.

第2は特開昭49−133229号公報、同50−13
4933号公報に記載のように錫溶融時の投入電力量で
合金量を制御する方法である。即ち、第5図に示すよう
に、錫の溶融温度とクエンチ開始温度T。、(°C)と
の温度差ΔTと溶融時間Δt (sea) で定まる斜
線部の面積(=□ΔT・Δt)を制御をすることにより
合金量を制御するものである。
The second is JP-A-49-133229 and JP-A-50-13.
As described in Japanese Patent No. 4933, the amount of alloy is controlled by the amount of electric power input when melting tin. That is, as shown in FIG. 5, the melting temperature of tin and the quench start temperature T. , (°C) and the melting time Δt (sea). The alloy amount is controlled by controlling the area (=□ΔT·Δt) of the shaded area, which is determined by the temperature difference ΔT between , (°C) and the melting time Δt (sea).

更に特開昭50−68930号公報に記載のように錫の
溶融時間を制御する方法もある。
Furthermore, there is also a method of controlling the melting time of tin, as described in Japanese Patent Application Laid-Open No. 50-68930.

〈発明が解決しようとする問題点〉 しかしながら、前記従来の方法では、合金量を精度よ(
制御するには未だ不充分である。以下具体的に述べる。
<Problems to be solved by the invention> However, in the conventional method, the amount of alloy is determined with accuracy (
It is still insufficient to control. The details will be explained below.

第6図はクエンチ突入時の鋼板温度と合金量との関係を
調査したものである0図中O印は鋼板サイズが0.25
m X’ 730閣であり、Δ印は、0.20mmx8
19 mであり、各プロットは15サンプルの平均値で
ある。これよりクエンチ突入温度と合金量との間には殆
ど相関がなく、更にラインスピードの変化により合金量
が大きくバラツクことがわかる。
Figure 6 shows the investigation of the relationship between the steel plate temperature and alloy content at the time of quench entry.
m
19 m, and each plot is the average value of 15 samples. It can be seen from this that there is almost no correlation between the quench entry temperature and the amount of alloy, and furthermore, the amount of alloy varies greatly due to changes in line speed.

第7図は、Δt(溶融時間5ec) XΔT(クエンチ
突入温度−5Qの溶融温度)と合金量との関係を同様に
調査した結果である。これによれば、これらの間には、
高い相関で、1対lの対応関係が得られるが、実際には
次のような矛盾を含んでいる。即ち、Δt×ΔT−0の
場合において、換言すれば溶融処理を行わなくとも0.
31 g / rdの合金が得られることになってしま
うが、現実には、溶融処理を施さなければ合金は殆ど生
成しない。
FIG. 7 shows the results of a similar investigation of the relationship between Δt (melting time 5 ec) XΔT (quench rush temperature - 5Q melting temperature) and alloy content. According to this, between these
Although a 1:1 correspondence can be obtained with a high correlation, in reality it contains the following contradiction. That is, in the case of Δt×ΔT-0, in other words, 0.
Although an alloy of 31 g/rd would be obtained, in reality, almost no alloy would be produced without melting.

従ってこの方法を低合金量を得る場合に適用することは
できず、更に高次の制御式が必要となる。
Therefore, this method cannot be applied to obtain a low alloy content, and a higher-order control equation is required.

また、このΔt×ΔTの物理的或いは化学的意味も不明
である。
Furthermore, the physical or chemical meaning of this Δt×ΔT is also unclear.

第8図は、同じく溶融時間と、合金量の関係を調査した
ものである。これより、溶融時間と合金量との間には殆
ど1対1の対応は見られないことがわかる。
FIG. 8 similarly shows the investigation of the relationship between the melting time and the amount of alloy. This shows that there is almost no one-to-one correspondence between the melting time and the amount of alloy.

以上、従来の技術では、合金量を広い範囲にわたって精
密に制御することは困難であり、本発明は、これらの従
来技術の問題点に鑑みてなされたもので、錫メッキ鋼板
をリフロー処理するに当り合金景色正確に制御すること
のできる制御方法を提供することを目的とする。
As described above, it is difficult to precisely control the amount of alloy over a wide range with the conventional techniques.The present invention was made in view of these problems of the conventional techniques. The object of the present invention is to provide a control method that can accurately control the appearance of a hit alloy.

く問題点を解決するための手段〉 本発明は、錫メッキ鋼板製造ラインのリフロー工程にお
いてメッキ層溶融開始からクエンチ突入までの時間をt
Δ(sec) 、溶融温度をT(℃)とした時、 をパラメータとして、合金量を制御することを特徴とす
る錫メッキ層合金、量の制御方法であ゛る。
Means for Solving the Problems> The present invention reduces the time from the start of melting of the plating layer to the start of quenching in the reflow process of a tin-plated steel plate manufacturing line.
This is a tin plating layer alloy and a method for controlling the amount thereof, characterized in that the amount of the alloy is controlled using the following parameters, where Δ(sec) and the melting temperature are T (° C.).

但し R:気体定数 Q:活性化エネルギ く作  用〉 錫メッキ鋼板のリフロー処理に半無限体における非定常
拡散をあてはめる。即ち、第2図に示すように溶融処理
前の母材及び錫メッキ層中における初期鉄濃度をCs、
 Goとすると、溶融開始後、Δを後には第3図のよう
な濃度分布になる。今、溶融温度がT(℃)とすると、
時間Δtで拡散する溶質の量Sは次式で与えられる。
However, R: Gas constant Q: Activation energy action〉 Unsteady diffusion in a semi-infinite body is applied to the reflow treatment of tin-plated steel sheets. That is, as shown in FIG. 2, the initial iron concentration in the base material and tin plating layer before melting treatment is Cs,
Assuming Go, after the start of melting and after Δ, the concentration distribution will be as shown in FIG. Now, if the melting temperature is T (℃),
The amount S of solute that diffuses in time Δt is given by the following equation.

x (Cs −Co ) ここで、Do:拡散定数 Q:活性化エネルギ R:気体定数 従って、合金量をWとすれば、 ここで、k:比例定数 の関係が成立する。x (Cs-Co) Here, Do: diffusion constant Q: Activation energy R: gas constant Therefore, if the alloy amount is W, Here, k: constant of proportionality The relationship holds true.

即ち、0式に基づいて制御すれば合金量を正確に制御す
ることができる。
That is, the alloy amount can be accurately controlled by controlling based on Equation 0.

〈実施例〉 以下、コンダクションタイプを例にとって本発明による
実施例を説明する。コンダクションタイプの場合、鋼板
温度は第5図のように変化するので、0式中の溶融温度
Tを次のTaνに置換える。
<Embodiments> Hereinafter, embodiments of the present invention will be described using a conduction type as an example. In the case of the conduction type, the steel plate temperature changes as shown in FIG. 5, so the melting temperature T in equation 0 is replaced with the following Tav.

232 +Tsax Tav=□         ■ 結果が得られた。232 +Tsax Tav=□    ■ The results were obtained.

各測定点は直線上に良くのり、しかもこの直線は原点付
近を通ることがわかる。即ち、前記0式と良く一致する
ことがわかる。これを直線回帰して次式を得る。
It can be seen that each measurement point lies well on a straight line, and that this straight line passes near the origin. In other words, it can be seen that it matches well with the above equation 0. This is linearly regressed to obtain the following equation.

そこで0式に基づいて合金量をコントロールすることに
なるがこの場合、0式中のΔtとTmaxを常時把握し
、これを投入電力に反映させる必要がある。Δt、Tm
axを把握するにはの板温を直接測定する方法@投入電
力から板温を算出する方法の2種類があるが、以下、@
について述べる。
Therefore, the alloy amount is controlled based on the 0 formula, but in this case, it is necessary to constantly grasp Δt and Tmax in the 0 formula and reflect this in the input power. Δt, Tm
There are two ways to determine ax: directly measuring the plate temperature @ calculating the plate temperature from input power, below:
Let's talk about.

投入電力Pと実際に板温を上げるための有効電力Pi 
との間には次式の関係がある。
Input power P and effective power Pi to actually raise the plate temperature
There is a relationship between the following equation.

P −P t + P t + P wここで、 PL
 :リフローにおける電力ロスP@ :クエンチタンク
ル出側コンダ クタ−ロール間の電力 電力ロスPLとしてリフロー処理中での放熱、放射を考
慮して有効電力PEを算出し、これにより、上昇する板
温を算出し、これに、リフロー入側板温を考慮して、ク
エンチ投入次の板温T waxと、溶融時間Δtの関係
式を次のように得ることができた。
P - P t + P t + P w where, PL
: Power loss P in reflow @ : Power loss PL between the quench tank outlet conductor and the roll. Calculate the effective power PE by considering heat dissipation and radiation during the reflow process. Taking into account the temperature of the plate at the entrance of the reflow process, we were able to obtain the following relational expression between the plate temperature T wax after quenching and the melting time Δt.

ここでTo :入側温度 V ニライン速度(m/+*1n) P :投入電力(K討) d :板厚(a) b :板巾(W) σ :比重(g/耐) C:比熱(J/g −K) K、〜KS :定数 K 、  : 0.02  K 、  : 3498K
 :l  : 30240 K −: 5.3178 
X 10hKs  :1309 また投入電力P (KW)とリフロー電流1(A)。
Here, To: Inlet temperature V Line speed (m/+*1n) P: Input power (K) d: Plate thickness (a) b: Plate width (W) σ: Specific gravity (g/proof) C: Specific heat (J/g −K) K, ~KS: Constant K, : 0.02 K, : 3498K
:l: 30240 K-: 5.3178
X 10hKs: 1309 Also, input power P (KW) and reflow current 1 (A).

リフロー電圧V (V)には次式の関係がある。The reflow voltage V (V) has the following relationship.

P −I −V/1000            ■
従って、リフロー電圧■、リフロー電流I及びライン速
度Vから時々刻々■、■、■、■式に基づいて、合金量
を推定してこの推定値と、目標値との偏差に基づいて電
圧のフィードバック制御を行えばよい、第4図はこれの
制御システムである。
P-I-V/1000 ■
Therefore, the alloy amount is estimated from the reflow voltage ■, reflow current I, and line speed V based on formulas ■, ■, ■, ■, and the voltage is fed back based on the deviation between this estimated value and the target value. Figure 4 shows a control system for this.

図中1.2はコンダクタ−ロール、3はクエンチタンク
であり、4はサイリスタ、5は電源、6は電圧制御器で
ある。また7は演算器であって、ここで■、■、■、■
式による演算がなされ、その結果が電圧制御器6に出力
されて電圧フィードバック制御がなされるのである。な
お、Sは錫メッキ鋼板である。このようにしてリフロー
処理を実施したところ、±0.1g/ITfの精度で合
金量の制御を行えることが可能となった。なお、上記実
施例では、コンダクションタイプにつき、説明したがイ
ンダクションタイプにも適用でき、この場合0式のTは
0式のTavではな(Tmaxがそのまま使用できる。
In the figure, 1.2 is a conductor roll, 3 is a quench tank, 4 is a thyristor, 5 is a power source, and 6 is a voltage controller. Also, 7 is a computing unit, where ■, ■, ■, ■
Calculations are performed according to the formula, and the results are output to the voltage controller 6 for voltage feedback control. Note that S is a tin-plated steel plate. When the reflow treatment was performed in this manner, it became possible to control the alloy amount with an accuracy of ±0.1 g/ITf. In the above embodiment, the explanation was given for the conduction type, but it can also be applied to the induction type, and in this case, T of the 0 type is not Tav of the 0 type (Tmax can be used as is).

〈発明の効果〉 本発明によれば、錫メッキ鋼板のリフロー処理において
、合金錫量の少ない範囲から多い範囲までのコントロー
ルを精度よく行える。
<Effects of the Invention> According to the present invention, in the reflow treatment of tin-plated steel sheets, it is possible to accurately control the amount of tin alloyed from a small range to a large range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のパラメータ す測定図、第2図、第3図は鉄のメッキ層への拡散状態
を示す説明図、第4図は本発明の制御システムの1例を
示す概念図、第5図はコンダクションタイプの加熱時の
鋼板温度を示す説明図、第6図、第7図および第8図は
夫々クエンチ突入時の板温、Δt×ΔTおよびΔ乞と合
金錫量との関係を示す測定図である。 特許出願人    川填製鉄株式会社 第1図 第2図 温 度 第3図 温 度 O工、ヵ、9(7)/y−利 第5図 9台 第6図 Tmax (℃)
FIG. 1 is a measurement diagram of the parameters of the present invention, FIGS. 2 and 3 are explanatory diagrams showing the state of diffusion of iron into the plating layer, and FIG. 4 is a conceptual diagram showing an example of the control system of the present invention. Fig. 5 is an explanatory diagram showing the steel plate temperature during heating of the conduction type, and Figs. 6, 7, and 8 respectively show the plate temperature at the time of quench entry, Δt×ΔT and ΔT, and the amount of alloyed tin. It is a measurement diagram showing the relationship. Patent Applicant: Kawasame Steel Co., Ltd. Figure 1 Figure 2 Temperature Figure 3 Temperature

Claims (1)

【特許請求の範囲】 錫メッキ鋼板製造ラインのリフロー工程において、メッ
キ層溶融開始からクエンチ突入までの時間をΔt(se
c)、溶融温度をT(℃)とした時、Δt×exp[−
Q/R(T+273)] をパラメータとして、合金量を制御することを特徴とす
る錫メッキ層合金量の制御方法。但しR:気体定数 Q:活性化エネルギ
[Claims] In the reflow process of a tin-plated steel sheet production line, the time from the start of melting of the plating layer to the start of quenching is Δt (se
c), When the melting temperature is T (℃), Δt×exp[-
Q/R(T+273)] A method for controlling the amount of alloy in a tin plating layer, the method comprising controlling the amount of alloy using Q/R(T+273) as a parameter. However, R: gas constant Q: activation energy
JP27824587A 1987-11-05 1987-11-05 Method for controlling amount of alloy in tin plating layer Pending JPH01123092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27824587A JPH01123092A (en) 1987-11-05 1987-11-05 Method for controlling amount of alloy in tin plating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27824587A JPH01123092A (en) 1987-11-05 1987-11-05 Method for controlling amount of alloy in tin plating layer

Publications (1)

Publication Number Publication Date
JPH01123092A true JPH01123092A (en) 1989-05-16

Family

ID=17594644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27824587A Pending JPH01123092A (en) 1987-11-05 1987-11-05 Method for controlling amount of alloy in tin plating layer

Country Status (1)

Country Link
JP (1) JPH01123092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110644024A (en) * 2019-09-20 2020-01-03 中江立江电子有限公司 Electronic component re-melting production system and production process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110644024A (en) * 2019-09-20 2020-01-03 中江立江电子有限公司 Electronic component re-melting production system and production process thereof

Similar Documents

Publication Publication Date Title
JPH01123092A (en) Method for controlling amount of alloy in tin plating layer
JPS642768A (en) Method for heating molten metal
Courant et al. Melting and solidification processes in a moving graphite-covered titanium surface subjected to multi-pulse laser irradiation
Zhang et al. Dilution control of broad-beam laser clad coating by powder feeding method
JP3074933B2 (en) Alloying control device
SU1548218A1 (en) Method of surface thermal strengthening of steel articles
KR20020048087A (en) edge heater auto control apparatus using Fe induction pating line
JPH0625892A (en) Method for controlling amount of alloy in highly corrosion resistant tin plate
JPS5565391A (en) Alloy amount control method of plating layer of plated metal plate
JPS57123998A (en) Treatment of molten tin of tin electroplated steel plate
JP3161653B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
JPH05306491A (en) Reflow controller for continuous tin plating equipment
SU834235A1 (en) Method of chemical and thermal treatment of metal articles in electrolytes
SU68383A1 (en) The method of heating metal products in an electric salt bath
JPS5528343A (en) Alloying method for zinc-plated steel sheet
JPS5625931A (en) Continuous softening method
JPS56127767A (en) Production of corrosion-resistant aluminum pipe
JPS60251231A (en) High-speed continuous annealing installation of stainless steel strip
JPS5985854A (en) Temperature control device for electric furnace
Ivashchenko et al. Calculation and Modelling of the Hardening of Large Billets
JPS5573831A (en) Plate temperature control method
SU76450A1 (en) Method for decarburizing metal sheets and tape
Chumanov et al. Calculation of the end form the rotating electrode in the liquid environment
JPS5638470A (en) Modification of impulse plated coating
Koren et al. The Effect of Weld Energy Input Parameters on the Crack Sensitivity of Alloy IN 713 C