JPS5985854A - Temperature control device for electric furnace - Google Patents

Temperature control device for electric furnace

Info

Publication number
JPS5985854A
JPS5985854A JP57197211A JP19721182A JPS5985854A JP S5985854 A JPS5985854 A JP S5985854A JP 57197211 A JP57197211 A JP 57197211A JP 19721182 A JP19721182 A JP 19721182A JP S5985854 A JPS5985854 A JP S5985854A
Authority
JP
Japan
Prior art keywords
electric furnace
temperature
plated
temp
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57197211A
Other languages
Japanese (ja)
Inventor
Masahisa Asaoka
正久 浅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57197211A priority Critical patent/JPS5985854A/en
Publication of JPS5985854A publication Critical patent/JPS5985854A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/522Temperature of the bath

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To control exactly the temp. of an electric furnace by calculating the electric power required to be supplied to an electric furnace for a material to be plated in accordance with the speed and temp. at which the material enters the electric furnace and selecting a top according to the result of the calculation and the temp. of the electric furnace. CONSTITUTION:The electric power to be supplied to an electric furnace 1 which melts a plating metal 3 by heating is controlled by a tap type voltage regulator 12 to control the temp. in the furnace 1 to a prescribed value. A material 4 to be plated is dipped in the molten plating metal 3 and is continuously plated thereon. The speed at which the material 4 enters the furnace 1 is measured with a speedometer 17 and the temp. at which the material enters the furnace is measured with a thermometer 18. Both temps. are inputted to a temp. control device 16. The temp. of the metal 3 measured with a thermocouple 14 is also inputted to the device 16. The tap of the regulator 12 is selected according to both measured values and the temp. of the furnace 1.

Description

【発明の詳細な説明】 この発明は電気炉の温度制御装置、特に連続メッキ用電
気炉の温度制御装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control device for an electric furnace, particularly to an improvement in a temperature control device for an electric furnace for continuous plating.

従来のこの種装置の構成を第1図に示す。この図におい
て、(1)は電気炉、(2)は電気炉に設けられた加熱
コイル、(3)は電気炉内で加熱溶融された亜鉛等のメ
ッキ金属、(4)は鉄板等の被メッキ材で、長尺材とし
て連続的に供給され数個のローラ(5) 、 (6) 
、 (7)を適宜配置することにより溶融したメッキ金
属(3)中に順次渋面されるようになっている。(8)
は上記加熱コイルへの電力供給系統で、電源(9)、主
回路コンタクタ(io)。
The configuration of a conventional device of this type is shown in FIG. In this figure, (1) is an electric furnace, (2) is a heating coil installed in the electric furnace, (3) is a plated metal such as zinc that is heated and melted in the electric furnace, and (4) is a covering such as an iron plate. A plated material that is continuously supplied as a long material to several rollers (5), (6)
, (7) are arranged appropriately so that they are sequentially deposited in the molten plating metal (3). (8)
is the power supply system to the heating coil, which includes a power source (9) and a main circuit contactor (io).

変圧器(11)および電圧調整装置(12)を有する。It has a transformer (11) and a voltage regulator (12).

(13)は上記電気炉の制御系統で、溶融メッキ金属の
温度を検出する熱電対(14)、この熱電対の出力にも
とづいて温度制御信号を発生する温度調節器(15)お
よび温度調節器からの信号にもとづいて上記電圧調整装
置(12)を制御するための制御信、号を発生する温度
制御装置(16)を有する。
(13) is a control system for the electric furnace, which includes a thermocouple (14) that detects the temperature of the molten plated metal, a temperature controller (15) that generates a temperature control signal based on the output of this thermocouple, and a temperature controller. The temperature control device (16) generates a control signal for controlling the voltage regulator (12) based on a signal from the temperature control device (16).

このような装置において被メッキ材(4)へのメッキ付
着組は電気炉内の溶融メッキ金属(3)の温度により決
定される。従ってメッキ付着替を一定とするためには溶
融メッキ金川の温度を所定の値に制御する必要がある。
In such an apparatus, the amount of plating to be applied to the material to be plated (4) is determined by the temperature of the molten plated metal (3) in the electric furnace. Therefore, in order to keep the plating change constant, it is necessary to control the temperature of the hot-dip plating to a predetermined value.

第1図に示す従来の装置においては、熱電対(14)か
らの温度信号にもとづいて温度調節器(15)において
、電気炉(1)を所定温度に維持するための条件を演算
しその条件に対応する信号を温度制御装置(16)に与
え、これによって電圧調整装置(12)を制御すること
化より加熱コイル(2)への供給電力を調節して温度を
所定値に制御していた。この場合、電気炉の温度変化に
対して比例要素、偵分要素、倣分要禦を加味して温度信
号を作り出す周知のPIDID算演算装置度調節器(1
5)として採用し、また、電圧調整装置(12)として
サイリスクを主体とする静止形制御装置を採用してPよ
り 1lilJ御を行なえば比較的良好な結果が期待出
来るが、これでは設備費が非常に高価になるため通常は
電圧調整装ft(12)として無電圧タップ切換器を採
用し、温度調節器(15)としてオン。
In the conventional device shown in FIG. 1, a temperature controller (15) calculates conditions for maintaining the electric furnace (1) at a predetermined temperature based on a temperature signal from a thermocouple (14). A signal corresponding to the temperature control device (16) is given to the temperature control device (16), which controls the voltage regulator (12), thereby adjusting the power supplied to the heating coil (2) and controlling the temperature to a predetermined value. . In this case, a well-known PIDID calculation device temperature controller (1
5), and if a static control device mainly based on Cyrisk is adopted as the voltage regulator (12) to control 1 lilJ from P, relatively good results can be expected, but this will reduce the equipment cost. Since it is very expensive, a non-voltage tap changer is normally used as the voltage regulator (12) and turned on as the temperature regulator (15).

オフ動作による三位置制御方式の装置を採用している。Adopts a three-position control system with off-action.

この場合、第2図に示すように電気炉の温度に上限と下
限とを設定し、温度が上限に達した時点(To )で無
電圧タップ切換器の低タップを選択し、温度が下限に達
した時点(TD)で高タップを選択するように制御する
。無電圧タップ切換器の出力電圧は連続的でないため電
気炉の温度は第2図に示すようにサイクリングを生じ無
電圧タップ切換器および主回路コンタクタ(10)の開
閉回数が多くなりそれぞれの寿命が短くなる欠点があっ
た。また、加熱コイル(2)に対するサイクリックな電
力急変によって電気炉の炉体1こ加わるヒートショック
も激しくなり溶湯漏水等の事故を誘発する可能性が大き
くなるという問題点もあった。
In this case, as shown in Figure 2, upper and lower limits are set for the temperature of the electric furnace, and when the temperature reaches the upper limit (To), the low tap of the non-voltage tap changer is selected, and the temperature reaches the lower limit. Control is performed to select a high tap at the time (TD) reached. Since the output voltage of the no-voltage tap changer is not continuous, the temperature of the electric furnace will cycle as shown in Figure 2, and the no-voltage tap changer and main circuit contactor (10) will have to open and close many times, shortening their respective lifespans. It had the disadvantage of being shorter. In addition, there is another problem in that the sudden cyclical power change to the heating coil (2) causes a severe heat shock to be applied to the entire furnace body of the electric furnace, increasing the possibility of inducing accidents such as molten metal leakage.

なお、低タップ、高タップ間の出力電圧変化幅を極力小
さくすべく低、筒タップをそれぞれ接近選択すれば温度
変化の傾斜をゆるく出来、従ってサイクリング周期を長
くすることが可能であるが1被メツキ材の侵入速度また
は侵入温度等のライン条件が変化した場合、設定温度範
囲から外れて制御不能になることがある。
Note that if the low and cylindrical taps are selected close to each other in order to minimize the range of output voltage change between the low and high taps, the slope of the temperature change can be made gentler, and therefore the cycling cycle can be lengthened, but it is possible to If line conditions such as the penetration speed or penetration temperature of the plating material change, the temperature may deviate from the set temperature range and become uncontrollable.

このためサイクリング周期をあまり長くとることにも問
題がある。この発明はこのような欠点を解消するために
なされたものである。
For this reason, there is also a problem in making the cycling cycle too long. This invention was made in order to eliminate such drawbacks.

先ずこの発明の基本概念について説明する。First, the basic concept of this invention will be explained.

いま、電気炉内溶湯の温度を所定の設定温度TOに保持
するための所要電力P (KW )を求めると概路次の
(1)式で示される0 P−(Pt+Pg+Pa  )/η (KW)−−−−
−(1)ただしPl:被メツキ材昇温所要電力(XW)
Pl:メッキ金槁溶融所要電力(KW )Pg:電気炉
保温電力(KW) η:電気効率 (5) また、P+、 Pg、 Pgはそれぞれ次のように表わ
される。
Now, if we calculate the power P (KW) required to maintain the temperature of the molten metal in the electric furnace at a predetermined set temperature TO, it will roughly be expressed by the following equation (1): 0 P-(Pt+Pg+Pa)/η (KW) ------
-(1) However, Pl: Required power for heating up material to be plated (XW)
Pl: Required electric power for plating and melting (KW) Pg: Electric furnace heating power (KW) η: Electrical efficiency (5) P+, Pg, and Pg are each expressed as follows.

pH=l(、+ Wl+ v ・△t  (KW)−−
−−−(2)ただしkl:定数(KWH/T0℃) Wl:被メッキ材の単位長重量(T/M)V:被メッキ
材の侵入速度(M/H) △t:To−被メツキ拐の侵入温度t(”C)Pz=k
z・wg・v  (KW)−−−−−(3)ただしに2
:定数(KWl(/T) WR:被メッキ劇単位長当りのメッキ付着iit (’
l’/M )Ps =f (To−tL)   (KW
)−−−−−(4)ただしtL:周囲温度(°C) 従って被メッキ材の幅および厚み、周囲温度が一定であ
れは、Wl + wg l Pgが一定となるため(2
)〜(4)式から(1)式は P+(kl・v・△t−4−に、・v−Hcs)/η(
K”)−−−−−(5)となる。
pH=l(,+Wl+v・△t(KW)--
---(2) where kl: Constant (KWH/T0℃) Wl: Unit length weight of plated material (T/M) V: Penetration speed of plated material (M/H) △t: To-Plated Penetration temperature t(”C)Pz=k
z・wg・v (KW)------(3) However, 2
:Constant (KWl(/T) WR: Plating adhesion per unit length of plating object ('
l'/M ) Ps = f (To-tL) (KW
)------(4) However, tL: Ambient temperature (°C) Therefore, if the width and thickness of the material to be plated and the ambient temperature are constant, Wl + wg l Pg will be constant (2
)~(4) to equation (1), P+(kl・v・Δt−4−,・v−Hcs)/η(
K”)---(5).

たたしに1+ kt + kaはそれぞれ定数即ち、被
メッキ材の侵入速度Vと侵入温度tか判明すれば所要電
力Pを求めることが出来−(6) このFIT要電力Pによって電気炉内の浴湯温度を設定
温度TOに保持出来ることになる。
Indeed, 1 + kt + ka are constants, i.e., if the penetration speed V and penetration temperature t of the material to be plated are known, the required power P can be calculated. The bath water temperature can be maintained at the set temperature TO.

第3図はこれを具体化したこの発明の一実施を示すもの
である。この図において、(17)は被メッキ材の侵入
速度を計測し、その結果を温度制御装置(16)に与え
る速度計、(18)は同じく被メッキ材の侵入温度を計
測する温度計で・その計?ill+結果を温度制御装置
(16)に与える。(19)は(2)式のWlを予め設
定する設定器、(20’)は(3)式のw2を予め設定
する設定器である。なお、設定器(19)はWlの代り
に被メッキ材の幅と厚みを設定してもよいし、設定器(
20)はw2の代りにメッキ金属の投入量(−W2・v
 (T / H) )を設定しても同様な結果を期待す
ることが出来る。
FIG. 3 shows one implementation of this invention that embodies this. In this figure, (17) is a speedometer that measures the penetration speed of the material to be plated and provides the result to the temperature control device (16), and (18) is a thermometer that also measures the penetration temperature of the material to be plated. That plan? Give the ill+ result to the temperature controller (16). (19) is a setter that presets Wl in equation (2), and (20') is a setter that presets w2 in equation (3). In addition, the setting device (19) may set the width and thickness of the material to be plated instead of Wl, or the setting device (19) may be used to set the width and thickness of the material to be plated instead of Wl.
20) is the input amount of plating metal (-W2・v) instead of w2.
Similar results can be expected even if (T/H)) is set.

その他の構成は第1図のものと同様であるため説明を省
略する。
The rest of the configuration is the same as that in FIG. 1, so a description thereof will be omitted.

ここで投入電力値p(xw)によりηが多少変化するこ
と、メッキ金属の投入がバッチ的であること、周囲温度
によるP3の変化等によって演算で求めた所要電力P 
(KW )には誤差上△P(KW)が含まれる。そこで
低タップにおける電力PLがpL≦P−△Pを満足する
ようなタップを低タップとして選択し、また高タップに
おける電力P。
Here, the required power P is calculated based on the fact that η changes somewhat depending on the input power value p(xw), that the plating metal is input in batches, and that P3 changes depending on the ambient temperature.
(KW) includes the error ΔP(KW). Therefore, a tap such that the power PL at the low tap satisfies pL≦P-ΔP is selected as the low tap, and the power P at the high tap.

がPH≧P十△Pを満足するようなタップを高タップと
して選択するようにし、温度調節器(15)からの出力
と合せて上限温度、下限温度において第2図に示す如き
三位置制御を行なえば常に温度変化傾斜のゆるやかな制
御を行なうことが出来る(PhPL=2・△Pか小さい
ほど温度変化は小となる)。その結果、無電圧タップ切
換器および主回路フンタフタの開閉同数を派1少さぜ・
炉体に対するヒートショックも緩和されて湯漏れ事故の
低減に役立つものである。また、tん(lk制御装置(
16)は扁速の演算を必要としないため市販のシーテン
サとかパソコン等で化性することが出来る点も大きな特
徴である。
A tap that satisfies PH≧P0△P is selected as the high tap, and three-position control as shown in Fig. 2 is performed at the upper limit temperature and lower limit temperature in conjunction with the output from the temperature controller (15). If this is done, the temperature change slope can always be controlled gently (the smaller PhPL=2·ΔP, the smaller the temperature change). As a result, the number of openings and closings of the non-voltage tap changer and main circuit taffeta has been reduced by 1.
Heat shock to the furnace body is also alleviated, helping to reduce accidents involving hot water leakage. In addition, t (lk control device (
Another major feature of method 16) is that it does not require computation of flat velocity, so it can be calculated using a commercially available sheet tensor or personal computer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の装置の構成を示す概略図、第2図は三位
置制御の内容を説明するための説明図、第3図はこの発
明の一実施例を示すm; l@図である。 図中(1)は電気炉、(4)は被メッキ材、(12)は
電圧調整装置、(15)は温度調節器、(16)は温度
制御装置、(17)は速度計・(18)は温度計、(1
9)および(2o)は設定器である。なお、同一符号は
同一または相当部分を示す。 代理人 弁理士  葛  野  信  −→時間 第3図 特許庁長官殿 1、事件の表示    特願昭57−197211号2
、発明の名称 電気炉の温度制御装置 3、補正をする者 (1) 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書中第4頁第20行の「溶湯漏水」を「溶湯
漏れ」と訂正する。 (2)同第6頁第16行0’) r P y (Kg 
” V ” △t+ x、 ”V + Ks) / r
) (KW) Jを「P中(K、@V@Δを十に4s 
V+Ks  )/η(KW) J ト訂正tル。 (3)同第6頁第18行の[Ks t Kg + Ka
 Jを「K、。 K、、 K、Jと訂正する。 以  上 (2)
Fig. 1 is a schematic diagram showing the configuration of a conventional device, Fig. 2 is an explanatory diagram for explaining the contents of three-position control, and Fig. 3 is an illustration showing an embodiment of the present invention. . In the figure, (1) is an electric furnace, (4) is the material to be plated, (12) is a voltage regulator, (15) is a temperature regulator, (16) is a temperature control device, (17) is a speedometer, (18) is a ) is a thermometer, (1
9) and (2o) are setters. Note that the same reference numerals indicate the same or equivalent parts. Agent: Patent Attorney Shin Kuzuno -→Time Figure 3: Mr. Commissioner of the Japan Patent Office 1, Indication of the case: Patent Application No. 197211-1982 2
, Name of the invention Temperature control device for electric furnace 3, Person making the amendment (1) 5. Column 6 for detailed explanation of the invention in the specification to be amended, Contents of the amendment (1) Page 4, No. 20 of the specification Correct "molten metal leakage" in the row to "molten metal leakage". (2) Page 6, line 16 0') r P y (Kg
"V" △t+ x, "V + Ks) / r
) (KW) J to "P (K, @V@Δ to 10 4s
V+Ks)/η(KW) J correction. (3) [Ks t Kg + Ka on page 6, line 18]
Correct J as "K,. K,, K, J. Above (2)

Claims (1)

【特許請求の範囲】 1、 メッキ金属を加熱溶融する電気炉への供給電力を
タップ式電圧調整装置を介して制御することにより電気
炉の温度を所定値に制御すると共に被メッキ材を溶融メ
ッキ金属中に浸漬して連続的にメッキするようにしたも
のにおいて、上記被メッキ材の上記電気炉への侵入速度
と侵入温度にもとづいて上記電気炉への所要供給電力を
演算し、この演算結果と上記電気炉の温度に応じて上記
タップ式電圧調整装置のタップを選択するようにしたこ
とを特徴とする電気炉の温度制御装置。 2、 電気炉の上限温度および下限温度を設定し、上記
電気炉の温度が上記上限温度に達した時、タップ式電圧
調整装置の低タップを選択し、上記電気炉の温度が上記
下限温度に達した時1高タツプを選択するようにしたこ
とを特徴とする特許請求の範囲第1項記載の電気炉の温
度制御装置0
[Claims] 1. The temperature of the electric furnace is controlled to a predetermined value by controlling the power supplied to the electric furnace that heats and melts the plated metal through a tap-type voltage regulator, and the material to be plated is melt-plated. In a device that is immersed in metal for continuous plating, the required power to be supplied to the electric furnace is calculated based on the penetration speed and penetration temperature of the material to be plated into the electric furnace, and the calculation result is A temperature control device for an electric furnace, characterized in that a tap of the tap type voltage regulator is selected according to the temperature of the electric furnace. 2. Set the upper limit temperature and lower limit temperature of the electric furnace, and when the temperature of the electric furnace reaches the upper limit temperature, select the low tap of the tap type voltage regulator to bring the temperature of the electric furnace to the lower limit temperature. Temperature control device 0 for an electric furnace according to claim 1, characterized in that the temperature control device 0 for an electric furnace according to claim 1 is characterized in that when the temperature reaches 1, a high tap is selected.
JP57197211A 1982-11-08 1982-11-08 Temperature control device for electric furnace Pending JPS5985854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197211A JPS5985854A (en) 1982-11-08 1982-11-08 Temperature control device for electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197211A JPS5985854A (en) 1982-11-08 1982-11-08 Temperature control device for electric furnace

Publications (1)

Publication Number Publication Date
JPS5985854A true JPS5985854A (en) 1984-05-17

Family

ID=16370669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197211A Pending JPS5985854A (en) 1982-11-08 1982-11-08 Temperature control device for electric furnace

Country Status (1)

Country Link
JP (1) JPS5985854A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029890A (en) * 2003-06-19 2005-02-03 Jfe Steel Kk Method for controlling temperature of plating bath for hot dip galvanized steel sheet, and hot dip galvanized steel sheet
JP2017002361A (en) * 2015-06-11 2017-01-05 Jfeスチール株式会社 Production method of molten metal plated steel strip, and production line of molten metal plated steel strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029890A (en) * 2003-06-19 2005-02-03 Jfe Steel Kk Method for controlling temperature of plating bath for hot dip galvanized steel sheet, and hot dip galvanized steel sheet
JP4507681B2 (en) * 2003-06-19 2010-07-21 Jfeスチール株式会社 Temperature control method for plating bath for hot dip galvanized steel sheet
JP2017002361A (en) * 2015-06-11 2017-01-05 Jfeスチール株式会社 Production method of molten metal plated steel strip, and production line of molten metal plated steel strip

Similar Documents

Publication Publication Date Title
CA1197301A (en) Controller for resistive heating element
US3585267A (en) Electronic circuits for temperature control
US3266725A (en) Systems for controlling furnace temperatures without overshoot
US3398252A (en) Heat treatment apparatus
CA1143418A (en) Electrically heated glass forehearth
US2902524A (en) Method and apparatus for producing molten silicates
JPS5985854A (en) Temperature control device for electric furnace
JPS572843A (en) Control method for heating in continuous type heating furnace
US3370120A (en) Diffusion furnace and method utilizing high speed recovery
JP2688628B2 (en) Heating equipment
CN104531978B (en) Non-orientation silicon steel heating means and modelling control method thereof
Kuvaldin et al. Development of relay control systems of power and temperature mode of induction crucible furnaces with use of physical modeling
US3739132A (en) Power control circuit for resistance heating moving conductors
JPH0773074B2 (en) Electric heating device
JPS6338531A (en) Method for controlling induction heating of weld zone of seam welded steel pipe
US3524918A (en) Electrically-heated glass-melting apparatus
US3191918A (en) Apparatus for flow brightening electrolytic tinplate
JPH0565883B2 (en)
JP4239419B2 (en) Heat treatment furnace and its heating control device
JPS634607B2 (en)
JPS63307223A (en) Method for changing speed in sheet temperature control in continuous annealing furnace
JP2007217754A (en) Method and device for controlling temperature of molten zinc pot
JPS5589464A (en) Diffusion furnace temperature controller
JPH0380848B2 (en)
SU753793A1 (en) Thermal conditions control system of glass-smelting furnace