JPH01123024A - Manufacture of seamless stainless steel tube - Google Patents

Manufacture of seamless stainless steel tube

Info

Publication number
JPH01123024A
JPH01123024A JP27998387A JP27998387A JPH01123024A JP H01123024 A JPH01123024 A JP H01123024A JP 27998387 A JP27998387 A JP 27998387A JP 27998387 A JP27998387 A JP 27998387A JP H01123024 A JPH01123024 A JP H01123024A
Authority
JP
Japan
Prior art keywords
less
stainless steel
temp
temperature
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27998387A
Other languages
Japanese (ja)
Inventor
Kunio Kondo
邦夫 近藤
Tamotsu Hashimoto
保 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27998387A priority Critical patent/JPH01123024A/en
Publication of JPH01123024A publication Critical patent/JPH01123024A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a seamless stainless steel tube having superior toughness and resistance to stress corrosion cracking as rolled by successively subjecting a martensitic stainless steel billet to heating up to a specified temp., piercing, rolling, cooling under specified conditions, reheating in two steps, finish rolling and cooling. CONSTITUTION:A martensitic stainless steel billet is heated up to 1,050-1,250 deg.C, pierced, rolled and cooled to a temp. below the martensitic transformation start temp. at >=30 deg.C/min cooling rate in a temp. range to at least 500 deg.C to form a structure contg. >=80vol.% martensite. The resulting tube is reheated in a temp. range below the Ac1 transformation point in which austenite is not practically formed under conditions satisfying an inequality (273+T)X(20-logt)<2,000 [where T is temp. ( deg.C) and t is time (hr)] and the tube is further heated to a temp. above the reheating temp. in the temp. range of the Ac1 transformation point - the Ac1 transformation point - 200 deg.C. The heated tube is immediately finish-rolled at >=5% reduction of area and air-cooled or forced to be cooled to obtain a seamless tube having superior characteristics as rolled as compared with the conventional product.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、圧延のままで、従来の焼入れ、焼戻し処理
を施したものと同等の強度をもち、しかも靭性と耐応力
腐食割れ性においては従来のものに勝るマルテンサイト
系ステンレス鋼継目無し管の製造方法に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention has the same strength as rolled products that have been subjected to conventional quenching and tempering treatments, and has superior toughness and stress corrosion cracking resistance. This invention relates to a method of manufacturing martensitic stainless steel seamless pipes that is superior to conventional ones.

(従来の技術とその問題点) 一般に、マルテンサイト系ステンレス鋼の継目無し管は
強度、靭性および耐食性が要求される油井管や輸送管な
どに広く用いられ、特に耐応力腐食割に優れていること
はよく知られている。
(Conventional technology and its problems) In general, martensitic stainless steel seamless pipes are widely used for oil country tubular goods, transportation pipes, etc. that require strength, toughness, and corrosion resistance, and are particularly excellent in stress corrosion resistance. This is well known.

従来この種の継目無し管は、第1図に例示するとおり、
鋼片(ビレット)を穿孔可能な温度に加熱し、例えばピ
アサ−とマンドレルを用いて穿孔と圧延を行った後、オ
ーステナイト結晶粒の温度に再加熱し、例えばストレッ
チレデューサ−で仕上げ圧延を行って製造される。仕上
げ圧延の後は空冷されて管はマルテンサイト組織になる
が、必要な強度と靭性を付与するために940〜105
0℃からの焼入れと600〜750℃での焼戻しの熱処
理が施され最終的には焼戻しマルテンサイト組繊となる
Conventionally, this type of seamless pipe is as illustrated in Fig. 1.
A billet is heated to a temperature that allows perforation, for example, is perforated and rolled using a piercer and a mandrel, then reheated to the temperature of austenite grains, and finished rolled using, for example, a stretch reducer. Manufactured. After finish rolling, the tube is air-cooled to become a martensitic structure, but in order to give it the necessary strength and toughness, it is
A heat treatment of quenching from 0°C and tempering at 600 to 750°C is performed, and the final result is a tempered martensitic composite fiber.

製管法としては、上にあげたマンネスマンマンドレルミ
ル方式の外に、マンネスマンプラグミル方式、マンネス
マンアラセルミル方式等、様々の方法があるが、いずれ
の方式でもマルテンサイト系ステンレス鋼継目無し管の
製造には、製管後の焼入れ、焼戻し処理が必須とされて
いる。
In addition to the Mannesmann mandrel mill method mentioned above, there are various methods for making pipes, such as the Mannesmann plug mill method and the Mannesmann aracel mill method. For manufacturing, quenching and tempering treatments are essential after pipe making.

上記の従来方法によって製造されたマルテンサイト系ス
テンレス鋼継目無し管は、高強度ではあるものの近年−
段と苛酷さを増しつつある使用環境では、靭性と耐応力
腐食割れ性が不十分な場合がある。即ち、C08を含む
環境は同時にH,Sを含むことが多く、従来法で製造さ
れたマルテンサイト系ステンレス鋼の継目無し管は硫化
物応力腐食割れ感受性が高いため、現状ではその使用が
制約されHas濃度の高い環境では通常のマルテンサイ
ト系ステンレス鋼よりもCr、 Ni、 Mo等の合金
元素を大幅に高めたコストの、高い高合金を用いなけれ
ばならない。
Martensitic stainless steel seamless pipes manufactured by the above conventional method have high strength, but in recent years
In increasingly harsh usage environments, toughness and stress corrosion cracking resistance may be insufficient. In other words, an environment containing C08 often also contains H and S, and seamless martensitic stainless steel pipes manufactured by conventional methods are highly susceptible to sulfide stress corrosion cracking, so their use is currently restricted. In an environment with a high Has concentration, it is necessary to use a high-cost, high-cost alloy with significantly higher alloying elements such as Cr, Ni, and Mo than ordinary martensitic stainless steel.

本発明の目的は、高価な合金元素をいたずらに増加させ
ることなく、即ち、−膜内なマルテンサイト系ステンレ
ス鋼或いはその改良ステンレス鋼を用い、しかも、製管
後に熱処理を別途行うことなく、圧延のままで従来の製
造方法によるものに勝るマルテンサイト系ステンレス鋼
継目無し管を製造する方法を提供すること、にある。
The object of the present invention is to use rolling martensitic stainless steel or its improved stainless steel without unnecessarily increasing the amount of expensive alloying elements, and without additional heat treatment after tube manufacturing. It is an object of the present invention to provide a method for manufacturing a martensitic stainless steel seamless tube which is superior to that by conventional manufacturing methods.

(問題点を解決するための手段) 一般に、マルテンサイト組織を持つ鋼の靭性、耐応力腐
食割れ性を支配しているのは、マルテンサイト組織の下
部構造であるブロック、パケットの大きさであり、旧オ
ーステナイト粒径を小さくするとこのブロック、パケッ
トのサイズが小さくなって靭性、耐応力腐食割れ性をは
じめとする諸性質が向上する。しかしながら、マルテン
サイト系ステンレス鋼は析出炭化物の固溶温度が割合高
く、従来の方法では焼入れ温度を高くしなければならな
いためオーステナイト結晶粒の粗大化が避けられず、製
管後の焼入れ処理で旧オーステナイト粒径を小さくする
には限界がある。
(Means for solving the problem) In general, what controls the toughness and stress corrosion cracking resistance of steel with a martensitic structure is the size of the blocks and packets that are the substructures of the martensitic structure. When the particle size of prior austenite is reduced, the size of this block or packet becomes smaller, improving various properties such as toughness and stress corrosion cracking resistance. However, in martensitic stainless steel, the solid solution temperature of precipitated carbides is relatively high, and the conventional method requires a high quenching temperature, which inevitably coarsens the austenite crystal grains. There is a limit to reducing the austenite grain size.

本発明者は、マルテンサイト系ステンレス鋼の加工熱処
理とその組織について詳細に検討を重ねた結果、−旦焼
入れされた鋼を焼戻しした後に温間で加工すると、ブロ
ック、パケットの単位より著しく微細なフェライト組織
が得られることを知見した。そして、この知見に基づい
て、継目無し管の製造にあたり、製管後に別途焼入れ、
焼戻しの処理を行うことなく、即ち、圧延のままで従来
の製造方法によるものと同等の強度を有し、しかも靭性
と耐応力腐食割れ性においてはそれをはるかに凌ぐマル
テンサイト系ステンレス鋼継目無し管が製造できること
を確認した。
As a result of detailed studies on the processing heat treatment of martensitic stainless steel and its structure, the present inventor found that - when pre-quenched steel is tempered and then warm-processed, it becomes significantly finer than the units of blocks and packets. It was found that a ferrite structure could be obtained. Based on this knowledge, when manufacturing seamless pipes, we separately quenched and
Seamless martensitic stainless steel with no tempering treatment, i.e., as rolled, with the same strength as conventional manufacturing methods, but far superior in toughness and stress corrosion cracking resistance. It was confirmed that the tube could be manufactured.

ここに、本発明の要旨は、マルテンサイト系ステンレス
鋼片を下記の工程で順次加工熱処理することを特徴とす
る靭性と耐応力腐食割れ性に優れたマルテンサイト系ス
テンレス鋼継目無し管の製造方法、にある。
Here, the gist of the present invention is to provide a method for manufacturing a martensitic stainless steel seamless pipe with excellent toughness and stress corrosion cracking resistance, which is characterized by sequentially processing and heat treating a martensitic stainless steel piece through the following steps. ,It is in.

[1]片を1050〜1250℃に加熱し、穿孔と圧延
を行う工程、 ■少なくとも500℃までを30℃7分以上の冷却速度
としてマルテンサイト変態開始温度以下の温度まで冷却
して80容量%以上がマルテンサイトで占められる組織
とする工程、 ■実質的にオーステナイトの生成がないAc、変態点以
下の温度域で、かつ下記の式を満足する条件で再加熱す
る工程、 (273+T) X (20+ log t )< 2
0000ただし、Tは温度(℃)、tは時間(時)であ
る。
[1] A step of heating the piece to 1050-1250°C, perforating and rolling it, and cooling it to at least 500°C at a cooling rate of 30°C for 7 minutes or more to a temperature below the martensitic transformation start temperature to 80% by volume. A process of forming a structure in which the above is dominated by martensite, ■ A process of reheating in Ac where substantially no austenite is generated, in a temperature range below the transformation point, and under conditions that satisfy the following formula, (273+T) 20+logt)<2
0000, where T is temperature (°C) and t is time (hours).

■Ac+変態点〜(Ac、変態点−200℃)の温度域
で[3]の再加熱温度以上に加熱した後、直ちに断面減
少率で5%以上の仕上圧延を行い、空冷または強制冷却
する工程。
■After heating to above the reheating temperature in [3] in the temperature range of Ac+transformation point to (Ac, transformation point -200℃), immediately perform finish rolling with an area reduction rate of 5% or more, and then air cool or forced cooling. Process.

本発明は、先に掲げたマンネスマン製管法の各種の方式
をはじめ、鋼片を熱間で穿孔、圧延するあらゆる継目無
し管の製造方法に適用できる。
The present invention can be applied to all methods of manufacturing seamless pipes in which a steel billet is hot-pierced and rolled, including the various Mannesmann pipe manufacturing methods listed above.

また、本発明の対象となるマルテンサイト系ステンレス
鋼とは、当業者間で周知のもの、および成る種の元素を
添加したり不純物を低下して改良したもの等、本発明の
製造方法で実質的に微細組織の焼戻しマルテンサイト組
織となる全てのステンレス鋼である。以下、本発明の対
象として望ましいマルテンサイト系ステンレス鋼の標準
的な組成を例示し、含有量の選定理由を説明する。なお
、元素の含有量についての%は、全て重量%である。
Furthermore, the martensitic stainless steel that is the object of the present invention includes those that are well known to those skilled in the art, and those that have been improved by adding certain elements or reducing impurities. All stainless steels have a tempered martensitic microstructure. Hereinafter, the standard composition of martensitic stainless steel desirable as a subject of the present invention will be illustrated, and the reason for selecting the content will be explained. Note that all percentages regarding the content of elements are percentages by weight.

Cr: 8〜15% Crば、ステンレス鋼としての耐食性を維持するために
8%以上の含有量が必要である。しかし、15%を超え
ると高温においてフエライH5域が拡大し、その後の冷
却によるマルテンサイト変態が困難になる。
Cr: 8-15% Cr content is required to be 8% or more in order to maintain corrosion resistance as stainless steel. However, if it exceeds 15%, the Ferrai H5 region expands at high temperatures, making martensitic transformation difficult during subsequent cooling.

C:0.4%以下 Cは、マルテンサイト系ステンレス鋼の強度に関係する
元素であるが、含有量が0.4%を超えると粗大炭化物
が多くなり靭性を著しく損なう。
C: 0.4% or less C is an element related to the strength of martensitic stainless steel, but if the content exceeds 0.4%, coarse carbides increase and the toughness is significantly impaired.

Si: 0.01〜1% Siは、脱酸剤および強化元素として添加される。Si: 0.01-1% Si is added as a deoxidizer and a reinforcing element.

0.01%未満の含有量ではこれらの効果がない、−方
、含有量が1%を超えると粒界炭化物の生成を助長し、
靭性、耐食性を劣化させる。特に靭性と耐食性を向上さ
せるには、上限を0.2%に抑えるのがよい。
If the content is less than 0.01%, there will be no such effect; if the content exceeds 1%, it will promote the formation of grain boundary carbides,
Deteriorates toughness and corrosion resistance. In particular, in order to improve toughness and corrosion resistance, it is preferable to suppress the upper limit to 0.2%.

阿n: 0.05〜2% Mnは、強度および靭性を向上させるが0.05%未満
ではその効果がなく、2%を超えると逆に靭性を劣化さ
せる。
An: 0.05-2% Mn improves strength and toughness, but if it is less than 0.05%, it has no effect, and if it exceeds 2%, it deteriorates the toughness.

s:o、o3%以下 Sは不純物元素であって、含を量は低いほど望ましい、
高すぎると硫化物の量が増加し、靭性と耐応力腐食割れ
性を害する。 0.03%が許容上限値であるが、特に
0.001%以下に抑えれば耐応力腐食割れ性の向上が
著しい。
s: o, o3% or less S is an impurity element, and the lower the content, the more desirable it is.
If it is too high, the amount of sulfides increases, impairing toughness and stress corrosion cracking resistance. Although 0.03% is the permissible upper limit, if it is suppressed to 0.001% or less, the stress corrosion cracking resistance is significantly improved.

p:o、x%以下 PもSと同様に不純物元素であり低いほど望ましい、高
すぎると靭性、耐食性が劣化する。0.1%が許容上限
値であるが、0.01%以下に抑えれば靭性、耐食性の
向上に効果があり、またこれらの性質の異方性も少なく
なる。
p: o, x% or less P is also an impurity element like S, and the lower the content, the more desirable it is; if it is too high, the toughness and corrosion resistance will deteriorate. Although 0.1% is the allowable upper limit, suppressing it to 0.01% or less is effective in improving toughness and corrosion resistance, and also reduces the anisotropy of these properties.

最も望ましいのは、Pを0.01%以下とするとともに
Sを0.001%以下に抑えることである。
The most desirable thing is to suppress P to 0.01% or less and S to 0.001% or less.

5o11.Al :0.005〜0.1%^lは溶鋼の
脱酸のため添加される。5offi、Alとして0.0
05%以上の含有量になるように添加する必要があるが
、0.1%を超える含有量になると酸化物系介在物が増
加し、靭性、耐食性を劣化させる。
5o11. Al: 0.005 to 0.1%^l is added to deoxidize molten steel. 5offi, 0.0 as Al
It is necessary to add so that the content is 0.05% or more, but if the content exceeds 0.1%, oxide inclusions will increase and the toughness and corrosion resistance will deteriorate.

以上の成分の外、残部がFeおよび不可避不純物からな
るものが標準的な組成である。これに加えて下記の第1
群および第2群の一方または両方から1種以上の元素を
選んで含有させてもよい。
In addition to the above components, the standard composition is one in which the balance consists of Fe and unavoidable impurities. In addition to this, the following
One or more elements selected from one or both of the group and the second group may be included.

第1群の元素 2.0%以下の一〇、5%以下のNi、 0.5%以下
のNb、0.5%以下の■、0.5%以下のTi、 0
.5%以下ノZr、0.01%以下のB、および0.1
5%以下のN。
Elements of the first group 2.0% or less 10, 5% or less Ni, 0.5% or less Nb, 0.5% or less ■, 0.5% or less Ti, 0
.. 5% or less Zr, 0.01% or less B, and 0.1
N less than 5%.

第2群の元素 0.001〜0.05%のCa、、0.001〜0.0
5%のLa、および0.001〜0.05%のCe。
Elements of the second group 0.001-0.05% Ca, 0.001-0.0
5% La, and 0.001-0.05% Ce.

これらの元素の作用効果は次のとおりである。The effects of these elements are as follows.

MO: 耐食性の向上に効果がある。しかし、含有量が2%を超
えると冷却時のマルテンサイト変態が困難になる。
MO: Effective in improving corrosion resistance. However, if the content exceeds 2%, martensitic transformation during cooling becomes difficult.

Ni: 耐食性を向上させるとともに、C含有量を抑える効果と
の組み合わせで強度、靭性を太き(向上させる効果があ
る。しかし、5%を超えて含有させても効果の増大はな
くなりコスト増加を招くだけである。
Ni: In addition to improving corrosion resistance, it has the effect of thickening (improving) strength and toughness in combination with the effect of suppressing C content. However, even if it is contained in excess of 5%, the effect will not increase and costs will increase. Just invite.

Nb、 V、 Ti、 Zr : これらの元素は強度や靭性の向上に効果があると同時に
、耐食性に有効な基質中のCrの減少を阻止する効果が
ある。しかし、それぞれ0.5%を超える含有量ではか
えって靭性を劣化させる。
Nb, V, Ti, Zr: These elements have the effect of improving strength and toughness, and at the same time have the effect of preventing a decrease in Cr in the matrix, which is effective for corrosion resistance. However, if each content exceeds 0.5%, the toughness will deteriorate.

B: 強度の向上に効果があるとともに組織の微細化を促し、
靭性および耐食性をも改善する効果がある。しかし、含
有量が0.01%を超えると逆に靭性、耐食性に悪影響
がでてくる。
B: It is effective in improving strength and promotes finer structure,
It also has the effect of improving toughness and corrosion resistance. However, if the content exceeds 0.01%, the toughness and corrosion resistance will be adversely affected.

N: Nは強度を向上させる安価な元素であるが、含有量が0
.15%を超えると著しい靭性の低下をもたらす。
N: N is an inexpensive element that improves strength, but the content is 0.
.. If it exceeds 15%, a significant decrease in toughness will result.

Ca、 La、 Ce : これらの元素は鋼中の硫化物の形状を改善し、耐応力腐
食割れ性を向上させる。それぞれ0.001%未満の含
有量ではその効果が得られず、0.05%を超えると靭
性、耐食性を劣化させる。
Ca, La, Ce: These elements improve the shape of sulfides in steel and improve stress corrosion cracking resistance. If the content is less than 0.001%, the effect cannot be obtained, and if it exceeds 0.05%, the toughness and corrosion resistance will deteriorate.

次に、第2図に例示する本発明方法の一つの工程図にそ
って、加工熱処理の工程を説明する。
Next, the process of heat treatment will be explained along with one process diagram of the method of the present invention illustrated in FIG.

(a)鋼片加熱温度 この加熱は鋼片の中心部まで均一に加熱して、ミクロ偏
析などを除去した状態で次工程の穿孔、圧延を行うため
に充分な温度と時間が必要である。
(a) Steel billet heating temperature This heating requires sufficient temperature and time to uniformly heat the steel billet to the center and remove micro-segregation before performing the next step of drilling and rolling.

加熱温度が1050℃よりも低いと次工程での変形抵抗
が大きくなり好ましくない。一方、1250℃よりも高
い温度で加熱するとスケールの発生が著しくなり歩留り
低下と表面肌荒れを招くだけでなく、δ−フェライトが
生成し易くなって製管性能が低下する。
If the heating temperature is lower than 1050° C., the deformation resistance in the next step will increase, which is not preferable. On the other hand, heating at a temperature higher than 1250° C. not only causes significant scale formation, resulting in a decrease in yield and rough surface, but also facilitates the formation of δ-ferrite, resulting in a decrease in pipe-making performance.

加熱の時間は、鋼片のサイズによって決定されるが、上
記のように中心部まで均一に加熱されるのに必要かつ充
分な時間とする。
The heating time is determined by the size of the steel piece, but it is set to be a time necessary and sufficient to uniformly heat the steel piece to the center as described above.

(b)穿孔と圧延 ピアサ−による穿孔とマンドレルミルまたはプラグミル
による圧延は通常の方法で行われる。ピアサ−は、傾斜
圧延方式でもプレスピアシング方式でもよい。
(b) Perforation and rolling The perforation with a piercer and rolling with a mandrel mill or plug mill are carried out in a conventional manner. The piercer may be of an inclined rolling type or a press piercing type.

この工程では、圧延終了温度が低くなりすぎないように
注意する必要がある。圧延が低温の未再結晶域で行われ
ると粒界に残留する歪が多(なり、冷却途上での粗大粒
界炭化物の析出が促進される。
In this step, care must be taken to ensure that the rolling end temperature does not become too low. When rolling is performed in a low-temperature non-recrystallized region, a large amount of strain remains at the grain boundaries, which promotes the precipitation of coarse grain boundary carbides during cooling.

粒界炭化物は製品継目無し管の性質、特に靭性に悪影響
を及ぼす、かかる理由で、圧延は900℃以上、好まし
くは940℃以上の温度域で終了させるのが望ましい。
Grain boundary carbides have a negative effect on the properties of the seamless pipe product, particularly on the toughness.For this reason, it is desirable to finish rolling at a temperature of 900°C or higher, preferably 940°C or higher.

(c)冷却条件 圧延終了後の冷却条件は極めて重要である。この冷却は
、マルテンサイト変態を起こさせて80容量%以上、靭
性と耐応力腐食割れ性の向上のためには望ましくは95
容量%以上がマルテンサイトで占められる均一な組織(
残りはフェライトおよび/または残留オーステナイト)
になるように選定する。即ち、冷却終了温度はMs点以
下、80容量%以上、望ましくは95容量%以上のマル
テンサイトに変態する温度とする。しかしながら、炭化
物の析出しやすい500℃まではできるだけ早く冷却す
る必要がある。即ち、少なくとも500℃までを30℃
/分以上の冷却速度とする。30℃/分より遅い冷却速
度では靭性低下の原因となる粗大粒界炭化物が析出する
ようになる。冷却が大きいほど靭性は向上するから例え
ば水冷などの急冷を行う。
(c) Cooling conditions Cooling conditions after rolling are extremely important. This cooling causes martensitic transformation of 80% by volume or more, preferably 95% to improve toughness and stress corrosion cracking resistance.
A homogeneous structure in which more than % of the volume is occupied by martensite (
The rest is ferrite and/or retained austenite)
Select so that That is, the cooling end temperature is set to be below the Ms point and at a temperature at which martensite is transformed to 80% by volume or more, preferably 95% by volume or more. However, it is necessary to cool the steel as quickly as possible to 500° C., where carbides tend to precipitate. i.e. at least 30°C up to 500°C
The cooling rate shall be at least 1/min. If the cooling rate is slower than 30° C./min, coarse grain boundary carbides will precipitate, which will cause a decrease in toughness. The greater the cooling, the better the toughness, so rapid cooling, such as water cooling, is performed.

(d)再加熱温度 前述した焼戻しマルテンサイトの温間加工は、Ae+変
態点以下の温度であれば特に制約はない。
(d) Reheating temperature There are no particular restrictions on the above-mentioned warm working of tempered martensite as long as the temperature is below the Ae+ transformation point.

しかし、工業的にはミルパワーの問題もあって、^c1
変態点以下でできるだけ高い温度での加工が望ましい。
However, from an industrial perspective, there is also the problem of mill power, so ^c1
It is desirable to process at a temperature as high as possible below the transformation point.

ところが、高温で焼戻すとその後の加工時の変形抵抗は
小さくなるものの、析出炭化物が粗大化して靭性、耐応
力腐食割れ性の向上効果が減殺される。従って、本発明
では、焼戻しに相当する再加熱を二段階とし、−段目で
は再加熱温度を低めに抑えて微細な析出炭化物を分散さ
せ、次いで炭化物が粗大化しないように短時間のうちに
へc1変態点近くまで昇温し、変形抵抗を下げた状態で
圧延を行う。
However, although tempering at a high temperature reduces the deformation resistance during subsequent processing, the precipitated carbides become coarser and the effect of improving toughness and stress corrosion cracking resistance is diminished. Therefore, in the present invention, the reheating equivalent to tempering is performed in two stages, and in the -th stage, the reheating temperature is kept low to disperse fine precipitated carbides, and then the reheating is performed in a short period of time to prevent the carbides from becoming coarse. The temperature is raised to near the c1 transformation point, and rolling is performed with the deformation resistance lowered.

再加熱の第一段階は、前記のとおり微細な炭化物を析出
させるのが目的であるから、その温度と時間を適切に選
ぶことが重要である。多数の実験結果に基づいて、本発
明者は温度T(℃)と時間も(時)が、下記の式を満た
す関係にあれば、望ましい炭化物の微細分散状態が得ら
れることを確認した。
Since the purpose of the first stage of reheating is to precipitate fine carbides as described above, it is important to appropriately select the temperature and time. Based on numerous experimental results, the present inventors have confirmed that a desired finely dispersed state of carbides can be obtained if the temperature T (° C.) and time (hours) satisfy the following equation.

(273+T) X (20+ log t) < 2
0000この式を満足しない場合には、炭化物が粗大化
して良好な靭性が得られない。
(273+T) X (20+ log t) < 2
0000 If this formula is not satisfied, the carbide becomes coarse and good toughness cannot be obtained.

再加熱の第二段階は、析出炭化物を粗大化させずに後に
つづく仕上げ圧延の変形抵抗を小さくするために行う、
従って、原則的には第一段階の加熱温度よりも高い温度
に加熱して直ちに仕上げ圧延を行うが、ミルのパワーが
十分で第一段階より高温に加熱する必要のない一場合に
は、第一段階の温度と同じであってもよい、ただし、A
c+変態点−200℃よりも低い温度では変形抵抗が大
きすぎるので、第二段階の加熱温度の下限はAe、変態
点−200℃とする。また、第一段階、第二段階とも、
その加熱温度がAc+変態点を超えるとオーステナイト
が生成して所望の靭性、耐応力腐食割れ性が確保できな
いから、いずれも、上限はへC1変態点までとする。
The second stage of reheating is performed in order to reduce the deformation resistance of the subsequent finish rolling without coarsening the precipitated carbides.
Therefore, in principle, finish rolling is carried out immediately after heating to a higher temperature than the first stage, but in some cases where the power of the mill is sufficient and there is no need to heat to a higher temperature than the first stage. May be the same as the temperature of one step, provided that A
Since the deformation resistance is too large at a temperature lower than c+transformation point -200°C, the lower limit of the heating temperature in the second stage is Ae, which is the transformation point -200°C. In addition, both the first and second stages
If the heating temperature exceeds the Ac+ transformation point, austenite will form and the desired toughness and stress corrosion cracking resistance cannot be ensured, so the upper limit for both is set to the C1 transformation point.

(e)仕上げ圧延 前記再加熱の第二段階の後、直ちに仕上げ圧延を行う、
仕上げ圧延は、例えばストレッチレデエーサーで行うが
、サイザー、リーラ−等による加工でもよい。
(e) finish rolling Immediately after the second stage of reheating, finish rolling is performed;
Finish rolling is performed, for example, with a stretch reducer, but may also be performed with a sizer, reeler, or the like.

仕上げ圧延での加工率も重要である。ここでの圧延によ
って微視的なフェライトの再結晶と析出炭化物の微細分
散化が進み上記の優れた諸性質が得られるのであるが、
そのためには断面減少率で5%以上の加工が必要である
。なお、断面減少率K(%)は、次の(イ)式で定義さ
れる。
The processing rate in finish rolling is also important. The rolling process advances microscopic recrystallization of ferrite and fine dispersion of precipitated carbides, resulting in the above-mentioned excellent properties.
For this purpose, processing with a reduction in area of 5% or more is required. Note that the area reduction rate K (%) is defined by the following equation (a).

K” (1−(r!z−r+”)/(R1! −R+”
)) X100・・・・ (イ) ここで、R1、R2は仕上げ圧延前の内半径と外半径r
1、r、は仕上げ圧延後の内半径と外半径である。
K"(1-(r!z-r+")/(R1!-R+")
)) X100... (a) Here, R1 and R2 are the inner radius and outer radius r before finish rolling.
1 and r are the inner radius and outer radius after finish rolling.

仕上げ圧延後の冷却は空冷でもよいが、水冷などの強制
冷却を行えば上記の特性が一層向上する。
Cooling after finish rolling may be performed by air cooling, but the above characteristics are further improved if forced cooling such as water cooling is performed.

このようにして製造されたマルテンサイト系ステンレス
鋼継目無し管は、マクロ的には焼戻しマルテンサイト組
織であり、ミクロ的にはフェライト結晶粒が極めて微細
でかつ析出炭化物が微細分散した組織を有し、圧延のま
まで靭性、耐応力腐食割れ性、特に耐硫化物応力腐食割
れ性に優れたものとなる。
The martensitic stainless steel seamless tube manufactured in this way has a tempered martensitic structure macroscopically, and microscopically has a structure in which ferrite crystal grains are extremely fine and precipitated carbides are finely dispersed. As rolled, it has excellent toughness, stress corrosion cracking resistance, and especially sulfide stress corrosion cracking resistance.

以下、実施例によって本発明を更に具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 第1表に示す組成の鋼から通常の溶解、鋳造法で100
閣麟φX300++nj!の鋼片を製造した。これらの
鋼片を用いて、第2表に示す条件でマルテンサイト系ス
テンレス鋼継目無し管を製造した。
(Example) From steel with the composition shown in Table 1, 100
KakurinφX300++nj! of steel billets were manufactured. Using these steel pieces, martensitic stainless steel seamless pipes were manufactured under the conditions shown in Table 2.

これらの鋼管について0.2%耐力と引張り強さとを測
定し、また靭性を評価する目的で5mmX10mg+ 
X 55鵬−の2mm Vノツチ試験片を用いてシャル
ピー衝撃試験を行ってシャルピー破面遷移温度を測定し
た。
For the purpose of measuring the 0.2% yield strength and tensile strength of these steel pipes, and evaluating the toughness, 5 mm x 10 mg +
A Charpy impact test was conducted using a 2 mm V-notch test piece of X55 to measure the Charpy fracture surface transition temperature.

更に、耐応力腐食割れ性を評価する目的で、シェルタイ
ブ試験、即ち、水平3点曲げ試験片の中央点に異なった
荷重を付加した状態で、温度:20℃1気圧:1気圧の
H2Sで飽和した0、5%酢酸水溶液中に500時間浸
漬して割れ発生を観察し、耐硫化物応力腐食割れ性の指
標となるSc値を求めた。
Furthermore, for the purpose of evaluating the stress corrosion cracking resistance, a shell type test was performed, that is, a horizontal three-point bending test piece was saturated with H2S at a temperature of 20°C, 1 atm, and 1 atm, with different loads applied to the center point. The specimens were immersed in a 0.5% acetic acid aqueous solution for 500 hours to observe the occurrence of cracks, and the Sc value, which is an index of resistance to sulfide stress corrosion cracking, was determined.

上記の各測定結果を第2表にまとめて示す。The above measurement results are summarized in Table 2.

まず、第2表の本発明法のN[11〜43の試験結果と
従来法(製管後に焼入れ一焼戻し処理を施したもの)の
阻1〜21の試験結果を比較すると、0.2%耐力と引
張り強さにおいてはほぼ同等であるが、破面遷移温度と
Sc値では本発明法のものがはるかに勝っている。なお
、比較法のNal〜4は、別途焼入れ一焼戻し処理をし
ないことにおいては本発明方法と類似するが、穿孔、圧
延後の冷却条件、再加熱条件、仕上げ圧延の条件のいず
れかが本発明の条件を満たさない例である。この場合、
靭性と耐応力腐食割れ性が著しく悪い。
First, when comparing the test results of N [11 to 43 of the present invention method in Table 2 with the test results of N [1 to 21] of the conventional method (quenching and tempering treatment after pipe manufacturing), it is found that 0.2% The yield strength and tensile strength are almost the same, but the fracture surface transition temperature and Sc value are far superior to those obtained by the method of the present invention. Note that the comparative method Nal~4 is similar to the method of the present invention in that no separate quenching and tempering treatment is performed, but any of the drilling, cooling conditions after rolling, reheating conditions, and finish rolling conditions are the same as the present invention. This is an example where the condition is not satisfied. in this case,
Toughness and stress corrosion cracking resistance are extremely poor.

(発明の効果) 本発明は、マルテンサイト系ステンレス鋼の冶金学的な
特性を生かし、加工と冷却の条件を精密に調整して、圧
延のままで従来の製品をはるかに凌ぐ特性の継目無し管
を製造することを可能とした。
(Effects of the Invention) The present invention takes advantage of the metallurgical properties of martensitic stainless steel, precisely adjusts the processing and cooling conditions, and creates a seamless product that far exceeds that of conventional products even when rolled. This made it possible to manufacture pipes.

本発明方法によって製造される鋼管は、圧延のままで焼
戻しマルテンサイト組織となり、その結晶粒および分散
炭化物が極めて微細であるから、特に靭性と耐硫化物応
力腐食割れ性において従来の製品に勝り、マルテンサイ
ト系ステンレス鋼継目無し管の使用分野の拡大に寄与す
るところが大きい。
The steel pipe manufactured by the method of the present invention has a tempered martensitic structure as rolled, and its crystal grains and dispersed carbides are extremely fine, so it is superior to conventional products, especially in terms of toughness and resistance to sulfide stress corrosion cracking. This greatly contributes to the expansion of the fields of use of martensitic stainless steel seamless pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、マルテンサイト系ステンレス鋼継目無し管を
製造する従来の工程を説明する図、第2図は、同じく本
発明の詳細な説明する図、である。
FIG. 1 is a diagram illustrating a conventional process for manufacturing a martensitic stainless steel seamless tube, and FIG. 2 is a diagram illustrating the present invention in detail.

Claims (4)

【特許請求の範囲】[Claims] (1)マルテンサイト系ステンレス鋼片を下記の工程で
順次加工熱処理することを特徴とする靭性と耐応力腐食
割れ性に優れたマルテンサイト系ステンレス鋼継目無し
管の製造方法。 [1]片を1050〜1250℃に加熱し、穿孔と圧延
を行う工程、 [2]少なくとも500℃までを30℃/分以上の冷却
速度としてマルテンサイト変態開始温度以下の温度まで
冷却して80容量%以上がマルテンサイトで占められる
組織とする工程、 [3]実質的にオーステナイトの生成がないAc_1変
態点以下の温度域で、かつ下記の式を満足する条件で再
加熱する工程、 (273+T)×(20+logt)<20000ただ
し、Tは温度(℃)、tは時間(時)である。 [4]Ac_1変態点〜(Ac_1変態点−200℃)
の温度域で[3]の再加熱温度以上に加熱した後、直ち
に断面減少率で5%以上の仕上圧延を行い、空冷または
強制冷却する工程。
(1) A method for manufacturing a martensitic stainless steel seamless pipe with excellent toughness and stress corrosion cracking resistance, which comprises sequentially processing and heat treating a martensitic stainless steel piece in the following steps. [1] The step of heating the piece to 1050 to 1250°C, drilling and rolling, [2] Cooling the piece to at least 500°C at a cooling rate of 30°C/min or more to a temperature below the martensitic transformation start temperature and 80°C. A step of forming a structure in which at least % by volume is occupied by martensite, [3] A step of reheating in a temperature range below the Ac_1 transformation point where no austenite is substantially formed, and under conditions that satisfy the following formula, (273+T )×(20+logt)<20000 where T is temperature (° C.) and t is time (hours). [4] Ac_1 transformation point ~ (Ac_1 transformation point -200℃)
After heating to the reheating temperature in [3] or above in the temperature range, immediately perform finish rolling with a reduction in area of 5% or more, and then air cooling or forced cooling.
(2)マルテンサイト系ステンレス鋼が通常の化学組成
を有するものである特許請求の範囲第1項記載の継目無
し管の製造方法。
(2) The method for manufacturing a seamless pipe according to claim 1, wherein the martensitic stainless steel has a normal chemical composition.
(3)マルテンサイト系ステンレス鋼が下記第1群およ
び/または第2群の元素の1種以上を含有するものであ
る特許請求の範囲第1項記載の継目無し管の製造方法。 第1群 重量%で、2.0%以下のMo、5%以下のNi、0.
5%以下のNb、0.5%以下のV、0.5%以下のT
i、0.5%以下のZr、0.01%以下のB、および
0.15%以下のN。 第2群 重量%で、0.001〜0.05%のCa、0.001
〜0.05%のLa、および0.001〜0.05%の
Ce。
(3) The method for manufacturing a seamless pipe according to claim 1, wherein the martensitic stainless steel contains one or more of the following first and/or second group elements. The first group weight% is 2.0% or less Mo, 5% or less Ni, 0.
5% or less Nb, 0.5% or less V, 0.5% or less T
i, 0.5% or less Zr, 0.01% or less B, and 0.15% or less N. 2nd group wt% 0.001-0.05% Ca, 0.001
~0.05% La, and 0.001-0.05% Ce.
(4)マルテンサイト系ステンレス鋼が、不純物元素の
PとSの一方または両方を下記の範囲にそれぞれ低減せ
られたものである特許請求の範囲第1項から第3項まで
に記載のいずれかの継目無し管の製造方法。 P:0.01重量%以下 S:0.001重量%以下
(4) Any one of claims 1 to 3, wherein the martensitic stainless steel has one or both of the impurity elements P and S reduced to the following ranges. A method for manufacturing seamless pipes. P: 0.01% by weight or less S: 0.001% by weight or less
JP27998387A 1987-11-05 1987-11-05 Manufacture of seamless stainless steel tube Pending JPH01123024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27998387A JPH01123024A (en) 1987-11-05 1987-11-05 Manufacture of seamless stainless steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27998387A JPH01123024A (en) 1987-11-05 1987-11-05 Manufacture of seamless stainless steel tube

Publications (1)

Publication Number Publication Date
JPH01123024A true JPH01123024A (en) 1989-05-16

Family

ID=17618673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27998387A Pending JPH01123024A (en) 1987-11-05 1987-11-05 Manufacture of seamless stainless steel tube

Country Status (1)

Country Link
JP (1) JPH01123024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813687A1 (en) * 2004-09-28 2007-08-01 Sumitomo Metal Industries, Ltd. Method for producing martensitic stainless steel pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813687A1 (en) * 2004-09-28 2007-08-01 Sumitomo Metal Industries, Ltd. Method for producing martensitic stainless steel pipe
EP1813687A4 (en) * 2004-09-28 2010-05-05 Sumitomo Metal Ind Method for producing martensitic stainless steel pipe
US8366843B2 (en) 2004-09-28 2013-02-05 Sumitomo Metal Industries, Ltd. Method of manufacturing a martensitic stainless steel pipe

Similar Documents

Publication Publication Date Title
CA2752741C (en) Method for manufacturing seamless pipes
EP0152160B1 (en) High strength low carbon steels, steel articles thereof and method for manufacturing the steels
JP3758508B2 (en) Manufacturing method of duplex stainless steel pipe
JPH07197125A (en) Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
EP4261320A1 (en) High-strength and toughness free-cutting non-quenched and tempered round steel and manufacturing method therefor
EP0523375A2 (en) Process for producing steel bar wire rod for cold working
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
KR102318036B1 (en) Non-heat treated wire rod having excellent machinability and impact toughness and method for manufacturing thereof
JP5668547B2 (en) Seamless steel pipe manufacturing method
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
WO2018008703A1 (en) Rolled wire rod
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH01123029A (en) Production of seamless stainless steel pipe
JP3589066B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe
US3945858A (en) Method of manufacturing steel for low temperature services
JPH11302785A (en) Steel for seamless steel pipe
JPH01123024A (en) Manufacture of seamless stainless steel tube
JPH05255749A (en) Production of seamless steel tube having high strength and high toughness and excellent in ssc resistance
JPS6137333B2 (en)
JP3077568B2 (en) Method of manufacturing steel for low-temperature rebar