JPH01122966A - Production of carbon material - Google Patents

Production of carbon material

Info

Publication number
JPH01122966A
JPH01122966A JP62281668A JP28166887A JPH01122966A JP H01122966 A JPH01122966 A JP H01122966A JP 62281668 A JP62281668 A JP 62281668A JP 28166887 A JP28166887 A JP 28166887A JP H01122966 A JPH01122966 A JP H01122966A
Authority
JP
Japan
Prior art keywords
carbon
carbonaceous material
component
surfactant
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281668A
Other languages
Japanese (ja)
Inventor
Kazuo Muramatsu
一生 村松
Kazuo Inoue
和生 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62281668A priority Critical patent/JPH01122966A/en
Priority to DE3837724A priority patent/DE3837724A1/en
Publication of JPH01122966A publication Critical patent/JPH01122966A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates

Abstract

PURPOSE:To obtain a carbon material having excellent surface precision, heat resistance, etc., by mixing a carbonaceous material and a thermosetting resin giving the 2nd glassy carbonaceous material after carbonization at a specific ratio, dispersing the mixture in a solvent containing a surfactant, spray-drying the dispersion and compression molding in cold and hot state. CONSTITUTION:(A) The 1st carbonaceous material selected from powdery or granular graphite and carbon black and (B) a thermosetting resin (e.g., phenolic resin) forming a glassy 2nd carbonaceous material after carbonization are prepared beforehand. The component A and the component B are mixed with each other at a ratio to give a carbonized product containing 5-50vol.% of the component A and having a spherical region of the component B accounting for 3-10 times the area of the component A and the non-spherical region filling the circumference of the spherical region. The mixture is dispersed in a solvent containing a surfactant, granulated by spray-drying and pressed in cold and hot state to obtain a carbon material suitable as a base for magnetic disk for high-density recording.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高密度記録用磁気ディスクに使用される磁気
ディスク用基板に好適の炭素材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a carbon material suitable for a magnetic disk substrate used in a magnetic disk for high-density recording.

[従来の技術] 近年、磁気ディスク装置の飛躍的な進歩と、磁気記録媒
体としての磁気ディスクの高記録密度化により、下記■
乃至■に示すように、磁気ディスク用基板の特性向上が
要望されている。
[Prior Art] In recent years, with the rapid progress of magnetic disk devices and the increase in the recording density of magnetic disks as magnetic recording media, the following
As shown in (2) to (3), there is a demand for improved characteristics of magnetic disk substrates.

■先ず、磁気ディスクを高記録密度化するなめに、基板
の表面性状として、表面精度が優れ、欠陥が少ないこと
、 ■磁気ヘッドの追従性を良好にするために、磁気ディス
ク用基板は表面平滑性及び表面平坦度を劣化させるよう
な微小なピッチのうねりが小さく、且つ微小突起がない
表面形状を有すること、■磁気媒体が担持される基板と
して、表面処理性が良好な化学的性質を有すると共に、
非磁性であること、 ■耐食性及び耐候性が優れていると共に、高強度且つ高
硬度であること、そして、 ■良好な浮上特性を有すると共に、耐C3s(コンタク
ト、スタート、ストップ)性を高めるために軽量である
こと、 が要求される。
■First of all, in order to increase the recording density of magnetic disks, the surface quality of the substrate must have excellent surface precision and few defects.■In order to improve the tracking ability of the magnetic head, the surface of the magnetic disk substrate must be smooth. (1) It has a surface shape with small pitch waviness that would deteriorate the surface flatness and no minute protrusions, and (2) has chemical properties that allow for good surface treatment as a substrate on which a magnetic medium is supported. With,
It is non-magnetic; ■ It has excellent corrosion resistance and weather resistance, as well as high strength and hardness; ■ It has good flying characteristics and improves C3s (contact, start, stop) resistance. It is required to be lightweight.

このような背景の下で、従来のアルミニウム合金製磁気
ディスク用基板に替り、近時、高密度記録用磁気ディス
ク基板として、セラミックスにガラスコーティングした
もの、又はガラス板によるものが開発されている。これ
らの基板は、耐熱性及び耐食性が優れており、高剛性で
あると共に、表面研磨により優れた表面精度が得られる
ために、高密度記録が可能である。
Under these circumstances, instead of conventional aluminum alloy magnetic disk substrates, ceramics coated with glass or glass plates have recently been developed as magnetic disk substrates for high-density recording. These substrates have excellent heat resistance and corrosion resistance, high rigidity, and excellent surface precision can be obtained by surface polishing, so that high-density recording is possible.

しかしながら、これらの材料は脆性破壊しやすいという
欠点を有する。このため、回転、衝撃、加傷及びヒート
ショック等により破損しやすいので信頼性が低い。
However, these materials have the disadvantage of being susceptible to brittle fracture. Therefore, reliability is low because it is easily damaged by rotation, impact, damage, heat shock, etc.

なお、結晶粒界に安定化層を形成し、破壊靭性を高める
手段も考えられるが、脆性破壊を十分に防止することは
できない。
Although it is possible to form a stabilizing layer at grain boundaries to improve fracture toughness, this method cannot sufficiently prevent brittle fracture.

また、セラミックス系の材料は、比重が高いため、アル
ミニウム合金基板に比して、ディスクドライブ駆動系に
大きな負荷がかかり、駆動装置の小型化が困難である。
Furthermore, since ceramic materials have a high specific gravity, they place a greater load on the disk drive drive system than aluminum alloy substrates, making it difficult to downsize the drive device.

これに対し、炭素材料は、比重が1.5乃至2.0と小
さいと共に、熱膨張係数が小さく熱安定性が優れている
。そこで、前述のアルミニウム合金又はセラミックス系
材料に替り、高密度記録用磁気ディスク基板として炭素
材料の実用化が期待されている。
On the other hand, carbon materials have a small specific gravity of 1.5 to 2.0, a small coefficient of thermal expansion, and excellent thermal stability. Therefore, it is expected that carbon materials will be put into practical use as magnetic disk substrates for high-density recording instead of the aforementioned aluminum alloys or ceramic materials.

また、この炭素材料の中でもガラス質炭素は北路的緻密
であり、気体を透過しにくいという特長を有する。
Furthermore, among these carbon materials, vitreous carbon has the characteristic of being dense and difficult for gas to pass through.

一方、ガラス質炭素中に黒鉛を分散させたガラス質炭素
/炭素複合材が、燃料電池等のセパレータ材として使用
されている。この複合材は熱硬化性樹脂に黒鉛粉を添加
したものであるが、後工程の乾燥、硬化及び炭素化の際
に、水分及び揮発成分の散逸が容易になるため、例えば
、10乃至20″C/時という高昇温速度で焼成するこ
とができる。また、黒鉛粉の添加により、破壊靭性が向
上する。
On the other hand, a vitreous carbon/carbon composite material in which graphite is dispersed in vitreous carbon is used as a separator material for fuel cells and the like. This composite material is made by adding graphite powder to a thermosetting resin, but it is easy to dissipate moisture and volatile components during drying, curing, and carbonization in the post-process. It can be fired at a high temperature increase rate of C/hour.Furthermore, the fracture toughness is improved by adding graphite powder.

このような炭素材は、従来、人造黒鉛粉及び熱硬化性樹
脂粉を熱硬化性樹脂液及び増粘剤と共に混練したフラッ
クスを押出し、次いで圧延の工程で板状に成形した後、
円板状に切り出し、これを乾燥、硬化及び焼成すること
により製造している。
Conventionally, such carbon materials are produced by extruding a flux made by kneading artificial graphite powder and thermosetting resin powder with a thermosetting resin liquid and a thickener, and then forming it into a plate shape in a rolling process.
It is manufactured by cutting out a disc shape, drying it, hardening it, and firing it.

[発明が解決しようとする問題点] しかしながら、従来のガラス質炭素は表面研磨により優
れた表面精度が得られるものの、炭素材料の中では脆性
破壊を起こしやすい材料であり、クラックの伝播に対す
る抵抗性が小さい、このため、ガラス質炭素は、セラミ
ックス材料と同様に衝撃により破損しやすいので、信頼
性が低いという問題点を有する。
[Problems to be solved by the invention] However, although conventional vitreous carbon can obtain excellent surface precision by surface polishing, it is a carbon material that is prone to brittle fracture and has poor resistance to crack propagation. Therefore, like ceramic materials, vitreous carbon is easily damaged by impact and has a problem of low reliability.

一方、ガラス質炭素/炭素複合材は黒鉛粉の添加により
、破壊靭性が向上しているものの、このガラス質炭素/
炭素複合材においても、内部には1μm以上の閉気孔が
存在するのに加え、粒径が30μm以上の大きな黒鉛粒
子が含まれているために、表面研磨によって高密度記録
に必要な優れた表面精度を得ることは困難である9 而して、表面精度を向上させるためには、添加する炭素
粉の粒度を小さくする必要があるので、粒径が1μm以
下の人造黒鉛粉又はカーボンブラック粉等を使用する必
要がある。
On the other hand, although the fracture toughness of vitreous carbon/carbon composites has been improved by adding graphite powder,
Even in carbon composite materials, in addition to the presence of closed pores of 1 μm or more inside, it also contains large graphite particles with a particle size of 30 μm or more, so surface polishing creates the excellent surface necessary for high-density recording. Therefore, in order to improve the surface precision, it is necessary to reduce the particle size of the carbon powder added, so artificial graphite powder or carbon black powder with a particle size of 1 μm or less is used. need to be used.

しかし、カーボンブラック等の微粉状炭素材料は熱硬化
性樹脂と混合されると2次凝集を生じるため、均一に分
散させることが困難である。このような2次凝集は炭化
焼成後に表面を研磨する際に、研磨ムラの原因となる。
However, fine powder carbon materials such as carbon black cause secondary aggregation when mixed with thermosetting resins, making it difficult to uniformly disperse them. Such secondary aggregation causes uneven polishing when the surface is polished after carbonization firing.

微粉状炭素材料の分散性を高めるために、低粘度の熱硬
化性樹脂に溶媒及び界面活性剤を加えてスラリーとし、
次いで、これを型に注型した後屹燥させる方法も考えら
れるが、この方法は成形後の乾燥工程に長時間を要する
という欠点を有する。
In order to improve the dispersibility of the finely divided carbon material, a solvent and a surfactant are added to a low-viscosity thermosetting resin to form a slurry.
Next, a method may be considered in which this is poured into a mold and then dried, but this method has the disadvantage that the drying process after molding requires a long time.

また、この方法においては、多量の揮発分の散逸により
割れ及び膨れ等の欠陥の発生率が高まり、歩留が低下す
るため、製造コストが上昇する。
Furthermore, in this method, the rate of occurrence of defects such as cracks and blisters increases due to the dissipation of a large amount of volatile matter, and the yield decreases, resulting in an increase in manufacturing costs.

また、炭素粉と熱硬化性樹脂粉末とをボールミル等で混
合し、熱間プレスにより成形することもできるが、炭素
粉末は偏平ですべりが悪い上、微粉末であるため、取扱
いにくいので、作業性が著しく悪い。
Alternatively, carbon powder and thermosetting resin powder can be mixed in a ball mill or the like and molded by hot pressing, but carbon powder is flat and slippery, and is a fine powder that makes it difficult to handle. The sex is extremely bad.

本発明はかかる問題点に鑑みてなされたものであって、
高密度記録用の磁気ディスク用基板として必要な諸特性
(軽量、高強度、低熱膨張係数等)を具備する炭素材を
製造することができ、黒鉛又はカーボンブラックを均一
に分散させて研磨ムラを防止すると共に、成形及び乾燥
工程を短縮し、更に割れ及び膨れの発生を防止すること
ができる炭素材の製造方法を提供することを目的とする
The present invention has been made in view of such problems, and includes:
It is possible to manufacture a carbon material that has various properties (light weight, high strength, low coefficient of thermal expansion, etc.) required as a substrate for magnetic disks for high-density recording, and by uniformly dispersing graphite or carbon black, uneven polishing can be avoided. It is an object of the present invention to provide a method for manufacturing a carbon material that can prevent the occurrence of cracks and blisters, shorten the molding and drying steps, and further prevent the occurrence of cracks and blisters.

[問題点を解決するための手段] 本発明方法により製造する炭素材は、粉粒状又は塊状の
黒鉛及びカーボンブラックから選択された少なくとも1
種の第1の炭素質と、熱硬化性樹脂の炭化焼成により形
成されたガラス質の第2の炭素質と、を有し、炭化焼成
後に、前記第1の炭素質は容積比で5乃至50%含有さ
れ、前記第2の炭素質は球状の領域と、この球状の領域
の周囲を充填する非球状領域とを有し、球状の領域は面
積比で第1の炭素質及び非球状領域の3乃至10倍であ
る。
[Means for Solving the Problems] The carbon material produced by the method of the present invention contains at least one selected from powdery or lumpy graphite and carbon black.
a first carbonaceous material and a glassy second carbonaceous material formed by carbonizing and firing a thermosetting resin, and after carbonizing and firing, the first carbonaceous material has a volume ratio of 5 to 5. 50%, the second carbonaceous material has a spherical region and a non-spherical region filling the periphery of the spherical region, and the spherical region has an area ratio that is larger than that of the first carbonaceous material and the non-spherical region. It is 3 to 10 times that of

このような炭素材は以下のようにして製造される。先ず
、粉粒状又は塊状の黒鉛及びカーボンブラックから選択
された少なくとも1種の炭素質と、炭化焼成後にガラス
質炭素となる熱硬化性樹脂とを、陰イオン系等の界面活
性剤を添加した溶媒中に分散させて混合し、低粘度のス
ラリーとする。
Such carbon material is manufactured as follows. First, at least one type of carbonaceous material selected from powdery or lumpy graphite and carbon black, and a thermosetting resin that becomes glassy carbon after carbonization firing are mixed in a solvent containing an anionic surfactant or the like. to form a low-viscosity slurry.

次いで、スプレィドライヤを使用して乾燥造粒し、得ら
れた造粒粒子を金型を使用して冷間及び熱間にてプレス
により予備成形する。その後、例えば、この予備成形体
を1000乃至1500℃で予備焼成した後、この予備
焼成品に2050乃至2600℃の温度で等方的に10
00乃至3000気圧の圧力を印加してこれを焼成する
Next, dry granulation is performed using a spray dryer, and the obtained granulated particles are preformed by cold and hot pressing using a mold. Thereafter, for example, after pre-firing this pre-formed body at a temperature of 1000 to 1500°C, the pre-fired product is isotropically
This is fired by applying a pressure of 0.000 to 3000 atm.

[作用] 本発明においては、第1の炭素質と熱硬化性樹脂とを、
溶媒中に分散させて低粘度のスラリーとし、これをスプ
レィドライヤにより乾燥造粒した後、冷間及び熱間でプ
レス成形する。
[Function] In the present invention, the first carbonaceous material and the thermosetting resin are
It is dispersed in a solvent to form a low-viscosity slurry, dried and granulated using a spray dryer, and then cold and hot press-molded.

この場合に、溶媒中に陰イオン系界面活性剤を添加しで
あるから、原料は溶媒中に極めて良好に分散する。
In this case, since an anionic surfactant is added to the solvent, the raw materials are very well dispersed in the solvent.

また、スプレィドライにより造粒した粒子は球状であり
、50乃至100μmの粒径を有するため、金型への充
填が容易であり、プレス性も良好である。
Further, since the particles granulated by spray drying are spherical and have a particle size of 50 to 100 μm, they can be easily filled into a mold and have good pressability.

更に、従来長時間を要していた熱硬化性樹脂の混合、成
形、乾燥及び硬化の工程を短時間で行えることから、製
造コストを低下させることができる。
Furthermore, since the steps of mixing, molding, drying and curing of the thermosetting resin, which conventionally required a long time, can be performed in a short time, manufacturing costs can be reduced.

このようにして得られた炭素材の組織は、球状のガラス
質炭素(第2の炭素質)の周囲に粉粒状又は塊状の黒鉛
及び/又はカーボンブラック(第1の炭素質)が、非球
状のガラス質炭素(第2の炭素質)中に均一に分散した
状態で充填されている。本発明方法により製造された炭
素材は、この第1の炭素質の含有量が容積比で5乃至5
0%であり、また球状のガラス質炭素領域は、面積比で
、第1の炭素質及び非球状領域の3乃至10倍であるか
ら、かさ比重が1.70以上と高密度であり、閉気孔率
が2%以下と、残存気孔が極めて少なく、更に微粒状の
炭素フィラーが均一に分散しているため、曲げ強度が1
500 kgf/cot以上と高い。
The structure of the carbon material obtained in this way is such that powdery or lumpy graphite and/or carbon black (first carbon material) is surrounded by spherical vitreous carbon (second carbon material), and non-spherical The vitreous carbon (second carbonaceous material) is uniformly dispersed in the vitreous carbon (second carbonaceous material). The carbon material produced by the method of the present invention has a content of the first carbonaceous material in a volume ratio of 5 to 5.
0%, and since the area ratio of the spherical vitreous carbon region is 3 to 10 times that of the first carbonaceous and non-spherical region, the bulk specific gravity is 1.70 or more, which is high density, and the closed With a porosity of 2% or less, there are very few remaining pores, and the fine carbon filler is evenly distributed, so the bending strength is 1.
It is high at over 500 kgf/cot.

前述の高温且つ高圧で炭化焼成処理することにより、内
在していた閉気孔が消滅し、高密度且つ高強度の炭素材
が得られる。従って、表面研磨により優れた表面精度の
炭素材が得られ、この炭素材を使用した磁気ディスクに
おいては、磁気ヘッドが安定して浮上し、安定した記録
特性が得られる。また、基板表面には、磁性薄膜の欠陥
の要因となる突起及び凹所が存在しないので磁気特性が
安定していると共に、軽量であるがら駆動系への負荷も
少ない。
By carrying out the above-mentioned carbonization firing treatment at high temperature and high pressure, the existing closed pores are eliminated, and a high-density and high-strength carbon material is obtained. Therefore, a carbon material with excellent surface precision can be obtained by surface polishing, and in a magnetic disk using this carbon material, the magnetic head can fly stably and stable recording characteristics can be obtained. In addition, since there are no protrusions or depressions on the substrate surface that can cause defects in the magnetic thin film, the magnetic properties are stable, and although the substrate is lightweight, there is little load on the drive system.

更に、この炭素材は機械加工及び研磨等の製造工程にお
いて、及び磁気ディスクとして使用された高速回転時に
おいて、十分な機械的強度を有する。従って、この炭素
材を磁気ディスク用基板に適用した場合に、この基板は
高密度記録用磁気ディスクに使用される基板として、必
要十分な特性を具備する。
Furthermore, this carbon material has sufficient mechanical strength during manufacturing processes such as machining and polishing, and during high speed rotation when used as a magnetic disk. Therefore, when this carbon material is applied to a magnetic disk substrate, this substrate has necessary and sufficient characteristics as a substrate used in a high-density recording magnetic disk.

[実施例] 以下、本発明の実施例について具体的に説明する。[Example] Examples of the present invention will be specifically described below.

炭化焼成後にガラス質炭素となる熱硬化性樹脂としては
、炭化焼成後に粒径が5乃至40μmとなる粒状のフェ
ノール系樹脂、フラン系樹脂、キシレン系樹脂、メラミ
ン系樹脂、及びアニリン系樹脂等の粉末状のものと、レ
ゾール及びノボラック型のフェノールホルムアルデヒド
系樹脂、フラン系樹脂、キシレン系樹脂、メラミン系樹
脂、及びアニリン系樹脂等の水性又は油性の液状のもの
とがある。
Thermosetting resins that become glassy carbon after carbonization and firing include granular phenol resins, furan resins, xylene resins, melamine resins, and aniline resins that have a particle size of 5 to 40 μm after carbonization and firing. There are powdered ones and aqueous or oily liquid ones such as resol and novolac type phenol formaldehyde resins, furan resins, xylene resins, melamine resins, and aniline resins.

また、第1の炭素質としては、人造黒鉛、天然黒鉛、及
びキッシュグラファイト等の黒鉛と、カーボンブラック
とがあり、この黒鉛及びカーボンブラックから選択され
た1種又は2種以上のものを使用する。この第1の炭素
質は、粉状、粒状又は塊状(りん片状等)をなしている
Further, as the first carbon material, there are graphite such as artificial graphite, natural graphite, and quiche graphite, and carbon black, and one or more types selected from these graphite and carbon black are used. . This first carbonaceous material is in the form of powder, grains, or lumps (scale-like, etc.).

この粉粒状又は塊状の第1の炭素質の粒径が大きい場合
は、成形品においてクラック発生の起点となるため、粒
径は最大で1μm以下のものを使用することが好ましい
If the particle size of the powdery or lumpy first carbonaceous material is large, it will become a starting point for cracks in the molded product, so it is preferable to use particles with a maximum particle size of 1 μm or less.

各原料を混合した後、この粉粒状又は塊状の第1の炭素
質は、粒状フェノールホルムアルデヒド樹脂等の熱硬化
性樹脂の周囲に分散し、炭化焼成後には、球状ガラス質
炭素との界面に第1の炭素質の領域が存在して、3次元
的な連続体組織が形成される。
After mixing each raw material, this powdery or lumpy first carbon material is dispersed around the thermosetting resin such as granular phenol formaldehyde resin, and after carbonization firing, the first carbonaceous material is dispersed at the interface with the spherical vitreous carbon. One carbonaceous region is present, forming a three-dimensional continuum structure.

球状ガラス質炭素の周囲に分散した第1の炭素質は、ガ
ラス質炭素領域から発生するクラックの伝播を阻止し、
組織上、靭性を高める作用を有する。このなめ、成形品
の耐衝撃性が向上し、研磨等の製造工程において、又は
磁気ディスクの使用中において、割れの発生頻度が著し
く低下する。
The first carbonaceous material dispersed around the spherical vitreous carbon blocks the propagation of cracks generated from the vitreous carbon region,
Tissue-wise, it has the effect of increasing toughness. This licking improves the impact resistance of the molded product, and significantly reduces the frequency of cracks occurring during manufacturing processes such as polishing or during use of the magnetic disk.

また、この第1の炭素質は、炭化焼成後に容積比で5乃
至50%となるように添加する。添加量が5容積%未溝
であると、前述の靭性向上効果が得られず、耐衝撃性が
極めて低くなる。逆に、添加量が50容積%を超えると
、ガラス質炭素組織の連続性がなくなり、機械的強度が
低下するのに加え、表面研磨後の表面精度が低下する。
Further, the first carbonaceous substance is added in a volume ratio of 5 to 50% after carbonization and firing. If the amount added is 5% by volume without grooves, the above-mentioned effect of improving toughness cannot be obtained, and impact resistance becomes extremely low. On the other hand, if the amount added exceeds 50% by volume, the continuity of the vitreous carbon structure is lost, and not only the mechanical strength decreases, but also the surface precision after surface polishing decreases.

このため、第1の炭素質の添加量は5乃至50容積%に
する。
Therefore, the amount of the first carbonaceous substance added is 5 to 50% by volume.

更に、球状のガラス質炭素の割合は、焼成後面積比でこ
の球状のガラス質炭素が粉粒状又は塊状の第1の炭素質
及び非球状のガラス質炭素の3〜10倍になるように、
各原料を選定配合する。
Furthermore, the proportion of the spherical vitreous carbon is such that the area ratio after firing is 3 to 10 times that of the granular or lump-like first carbon and non-spherical vitreous carbon.
Select and mix each raw material.

球状のガラス質炭素が占める割合がこれより大きい場合
は、成形体の剛性は大きくなるが、脆性破壊を起こしや
すくなり、結果的に機械的強度が小さい材料となってし
まう。
If the proportion of spherical vitreous carbon is larger than this, the molded body will have a high rigidity, but will be susceptible to brittle fracture, resulting in a material with low mechanical strength.

球状のガラス質炭素の占める割合がこれより小さい場合
は、HIP処理によっても消失しない微細な気孔が多く
なり、成形体の機械的強度が低下するのに加え、成形体
の表面精度が低下して、磁気ディスク用基板に好適の炭
素材が得られない。
If the proportion of spherical vitreous carbon is smaller than this, there will be many fine pores that do not disappear even with HIP treatment, which will reduce the mechanical strength of the molded product and reduce the surface precision of the molded product. , a carbon material suitable for a magnetic disk substrate cannot be obtained.

このように、球状のガラス質炭素の占める割合は、原料
に用いる粉粒状又は塊状の炭素質の容積比とも関係する
ために、初期原料配合の際には、使用する各原料の配合
比及び粒子径を充分に選定する必要がある。
In this way, the proportion of spherical vitreous carbon is also related to the volume ratio of powdery or lumpy carbon used as raw materials, so when blending the initial raw materials, the proportion of each raw material used and the particles It is necessary to select the diameter sufficiently.

次に、このように構成される炭素材の製造方法について
説明する。
Next, a method for manufacturing the carbon material configured as described above will be explained.

先ず、第1の炭素質と粒状又は液状の熱硬化性樹脂とを
所定量配合し、界面活性剤及び有機結合剤と共に溶媒中
に添加し、ホモミキサー等の高速攪拌器により混合して
低粘度のスラリーとする。
First, a predetermined amount of the first carbonaceous material and a granular or liquid thermosetting resin are blended, added to a solvent together with a surfactant and an organic binder, and mixed with a high-speed stirrer such as a homomixer to obtain a low viscosity. slurry.

界面活性剤としては、アルキルベンゼンスルフォン酸塩
、アルキルナフタレンスルフォン酸塩、アルキルスルホ
コハク酸塩、ナフタレンスルフオン酸ホルマリン縮合物
等の陰イオン性界面活性剤を使用する。有機結合剤は造
粒性を高めるために加えられ、一般的にセラミックス原
料の造粒に使用されているでん粉又はポリビニルアルコ
ール等を使用する。溶媒としては、水及び水アルコール
を使用する。
As the surfactant, anionic surfactants such as alkylbenzene sulfonate, alkylnaphthalene sulfonate, alkyl sulfosuccinate, and naphthalene sulfonate formalin condensate are used. The organic binder is added to improve granulation properties, and starch, polyvinyl alcohol, etc., which are generally used for granulation of ceramic raw materials, are used. Water and hydroalcohol are used as solvents.

適当な粘度に調整したスラリーを回転円板方式又は圧力
ノズル方式等のスプレィドライヤを使用して乾燥及び造
粒を行う。
The slurry adjusted to an appropriate viscosity is dried and granulated using a spray dryer such as a rotating disk type or a pressure nozzle type.

造粒粒子の乾燥度及び粒子系は、スラリーの粘度、スラ
リーの入口及び出口の温度、円盤の回転数並びに噴出圧
力等の条件により調整することができる。適当な条件を
選ぶことにより、球状の熱硬化性樹脂粉の表面に炭素微
粉と熱硬化性樹脂との均一混合物がコーティングされた
粒径が50乃至100μmの造粒粒子を得ることができ
る。
The degree of dryness and particle system of the granulated particles can be adjusted by conditions such as the viscosity of the slurry, the temperature at the inlet and outlet of the slurry, the rotation speed of the disk, and the ejection pressure. By selecting appropriate conditions, it is possible to obtain granulated particles having a particle size of 50 to 100 μm, in which the surface of spherical thermosetting resin powder is coated with a uniform mixture of fine carbon powder and thermosetting resin.

造粒した粒子は金型に充填した後、冷間加工の場合は5
00乃至1500 Kgf/co!の圧力でプレス成形
し、また熱間加工の場合は120乃至300℃の温度で
約10乃至50 Kgf/cotの面圧を印加してプレ
ス成形する。造粒粒子はすべり性が良く乾燥しているた
め、特に熱間プレス時に発生する攪拌成分が著しく少な
く、プレス作業性が良好である上、欠陥の発生率も著し
く低い。
After filling the granulated particles into a mold, in the case of cold processing,
00~1500 Kgf/co! In the case of hot working, press forming is performed at a temperature of 120 to 300° C. and a surface pressure of about 10 to 50 Kgf/cot. Since the granulated particles have good slipperiness and are dry, the amount of stirring components generated especially during hot pressing is extremely small, and the press workability is good, and the incidence of defects is also extremely low.

次いで、この予備成形体を1000乃至1500℃の温
度に加熱して予備焼成した後、2050乃至2600℃
の温度域で1000乃至3000気圧の等方的圧力を印
加して焼成する。これにより、材料内部の閉気孔が消滅
した緻密な組織が得られる。
Next, this preformed body is heated to a temperature of 1,000 to 1,500°C for pre-baking, and then heated to a temperature of 2,050 to 2,600°C.
It is fired by applying an isotropic pressure of 1,000 to 3,000 atmospheres in a temperature range of . As a result, a dense structure in which closed pores inside the material have disappeared can be obtained.

上述の熱間静水圧加圧(1−I I P ’)処理によ
り、成形体の微細構造において、HIP処理前に存在し
ていた気孔が完全に消失する。また、熱硬化性球状樹脂
粒子の炭化焼成により生成した球状のガラス質炭素の周
辺部及び各球状ガラス質炭素間には、黒鉛及び/又はカ
ーボンブラック等の粉粒状又はりン片状炭素が、液状の
熱硬化性樹脂の炭化焼成により生成した非球状ガラス質
炭素中に均一に分散した状態で緻密に充填されている。
By the hot isostatic pressing (1-I I P') treatment described above, the pores that existed before the HIP treatment completely disappear in the microstructure of the molded article. In addition, powdery or scale-like carbon such as graphite and/or carbon black is present in the periphery of the spherical vitreous carbon produced by carbonization firing of thermosetting spherical resin particles and between each spherical vitreous carbon. It is densely packed in a uniformly dispersed state in non-spherical vitreous carbon produced by carbonizing and firing a liquid thermosetting resin.

このようにして得られた高密度炭素材を表面研磨するこ
とにより、表面精度が優れ、軽量で熱膨張係数が小さい
高密度記録用磁気ディスク基板を得ることができる 丸11L 平均粒径が20μmのフェノールホルムアルデヒド樹脂
粉末と平均粒径が0.01μm以下であるカーボンブラ
ック粉末とを、炭化焼成によって熱硬化性樹脂から形成
されるガラス質炭素とカーボンブラックからなる炭素質
とのうちカーボンブラックが20体積%を占めるように
配合した。
By surface polishing the high-density carbon material obtained in this way, it is possible to obtain a magnetic disk substrate for high-density recording with excellent surface precision, light weight, and a small coefficient of thermal expansion. Phenol-formaldehyde resin powder and carbon black powder having an average particle size of 0.01 μm or less are combined by carbonization firing to form vitreous carbon formed from a thermosetting resin and carbonaceous material consisting of carbon black. %.

この配合物を、配合物に対して2重量部のポリビニルア
ルコール、50重量部の水溶性フェノール樹脂液、及び
1重量部のシアルスルホコハク酸ナトリウム系界面活性
剤と共に水に加え、粘度が100 cpsになるように
調整した0次いで、これらをホモミキサーにより約1時
間攪拌してスラリーを得た。得られたスラリーを、円板
回転数5000rpm、スラリー供給量20fl1時、
入口温度200℃に設定した回転円板方式のスプレィド
ライヤにより乾燥し、平均粒径が100μmの造粒粒子
を得た。得られた造粒粒子は金型に充填し、180℃に
加熱し、10 Kgf/eraの面圧を20分間印加し
て熱間プレス成形した後、150乃至1000℃までの
温度域を15℃/時の昇温速度で昇温させて予備焼成し
た。
This formulation was added to water along with 2 parts by weight of polyvinyl alcohol, 50 parts by weight of a water-soluble phenolic resin liquid, and 1 part by weight of a sodium sialsulfosuccinate surfactant, and the viscosity was adjusted to 100 cps. Then, these were stirred for about 1 hour using a homomixer to obtain a slurry. The obtained slurry was heated at a disc rotation speed of 5000 rpm and a slurry supply amount of 20 fl 1 hour.
It was dried using a rotating disk spray dryer set at an inlet temperature of 200° C. to obtain granulated particles with an average particle size of 100 μm. The obtained granulated particles were filled into a mold, heated to 180°C, and subjected to hot press molding by applying a surface pressure of 10 Kgf/era for 20 minutes. Preliminary firing was carried out by raising the temperature at a heating rate of /hour.

この予備焼成品を熱間静水圧加圧装置を使用して200
0気圧の下で2600℃まで650℃/時の昇温速度で
昇温させて炭化焼成処理し、厚さが2II11、直径が
90龍の円板状成形体を得た。
This pre-fired product was heated to 200% using a hot isostatic presser.
The carbonization process was carried out by raising the temperature to 2,600° C. at a rate of 650° C./hour under 0 atmospheric pressure to obtain a disc-shaped compact having a thickness of 2II11 and a diameter of 90 mm.

丸艷λL 前記配合物に対し、シアルスルホコハク酸ナトリウム系
界面活性剤1重量部と粘度200 cpsの水溶性フェ
ノール樹脂液を加えて粘度500 cpsのスラリーを
得た。このスラリーを枠型に流し込み乾燥及び硬化処理
した後、150乃至1000℃までの温度域を2℃/時
の昇温速度で加熱して予備焼成した0次いで、実施例1
と同様に、HIP処理し、厚さが2韻、直径が90m+
aの円板状成形体を得た。
Round λL 1 part by weight of a sodium sialsulfosuccinate surfactant and a water-soluble phenol resin liquid with a viscosity of 200 cps were added to the above mixture to obtain a slurry with a viscosity of 500 cps. This slurry was poured into a frame mold, dried and hardened, and then pre-baked by heating in a temperature range of 150 to 1000°C at a heating rate of 2°C/hour.Next, Example 1
Same as , HIP treated, thickness is 2 rhymes, diameter is 90m +
A disc-shaped molded product of a was obtained.

L1鰺工 前記配合物を、スラリー状にせずに直ちに金型を用いて
実施例1と同様に熱間プレス成形し、予備焼成後、HI
P処理して厚さが2 mm、直径が90111!+の円
板状成形体を得た。
L1 Mackerel The above-mentioned mixture was immediately hot press-molded using a mold in the same manner as in Example 1 without being made into a slurry, and after pre-baking, HI
P treated, thickness is 2 mm, diameter is 90111! A disk-shaped molded body with a rating of + was obtained.

実施例1及び比較例1.2の各方法について、製造に要
した日数、焼成時の割れ等による歩留の高低及び精密ラ
ップ研磨盤により研磨した表面の状況を調査した。下記
第1表はその結果を示す。
For each method of Example 1 and Comparative Example 1.2, the number of days required for production, the yield due to cracks during firing, and the condition of the surface polished by a precision lap polishing machine were investigated. Table 1 below shows the results.

第1表 実施例1においては比較例1,2に比して工程が単純で
あるため、短時間で製造が可能であり、歩留も高く、ま
た炭素フィラーが均一に分散しているので表面研磨後に
研磨ムラによるうねりを生じることがなく、優れた表面
精度が得られた。
In Example 1 of Table 1, the process is simpler than Comparative Examples 1 and 2, so it can be manufactured in a short time, the yield is high, and the carbon filler is uniformly dispersed, so the surface After polishing, there was no waviness due to uneven polishing, and excellent surface precision was obtained.

[発明の効果] 本発明によれば、表面精度が優れ、軽量で熱膨張係数が
小さく、耐熱性及び耐食性が優れた高強度の炭素材が得
られ、高密度記録磁気ディスク用基板として好適の炭素
材を得ることができる。また、本発明によれば、このよ
うに優れた特性を有する炭素材を迅速に製造することが
できる。
[Effects of the Invention] According to the present invention, a high-strength carbon material with excellent surface precision, light weight, low coefficient of thermal expansion, and excellent heat resistance and corrosion resistance can be obtained, and is suitable as a substrate for high-density recording magnetic disks. Carbon material can be obtained. Further, according to the present invention, a carbon material having such excellent properties can be rapidly produced.

Claims (3)

【特許請求の範囲】[Claims] (1)粉粒状又は塊状の黒鉛及びカーボンブラックから
選択された少なくとも1種の第1の炭素質と、炭化焼成
後にガラス質の第2の炭素質となる熱硬化性樹脂とを、
炭化焼成後に、前記第1の炭素質が容積比で5乃至50
%含有され、前記第2の炭素質の球状の領域がこの球状
の領域の周囲を充填する非球状領域及び第1の炭素質に
対して面積比で3乃至10倍となるように配合し、これ
らの原料を界面活性剤を添加した溶媒中に分散させて低
粘度のスラリーとした後、スプレイドライヤにより乾燥
造粒し、冷間及び熱間にてプレス成形することを特徴と
する炭素材の製造方法。
(1) At least one type of first carbonaceous material selected from powdery or lumpy graphite and carbon black, and a thermosetting resin that becomes a glassy second carbonaceous material after carbonization firing,
After carbonization firing, the first carbonaceous substance has a volume ratio of 5 to 50
%, and the second carbonaceous spherical region is blended so that the area ratio is 3 to 10 times that of the non-spherical region filling the periphery of this spherical region and the first carbonaceous material, These raw materials are dispersed in a solvent containing a surfactant to form a low-viscosity slurry, which is then dried and granulated using a spray dryer, followed by cold and hot press molding. Production method.
(2)前記界面活性剤は陰イオン系界面活性剤であるこ
とを特徴とする特許請求の範囲第1項に記載の炭素材の
製造方法。
(2) The method for producing a carbon material according to claim 1, wherein the surfactant is an anionic surfactant.
(3)前記スラリーの粘度が1000cps以下である
ことを特徴とする特許請求の範囲第1項又は第2項に記
載の炭素材の製造方法。
(3) The method for producing a carbon material according to claim 1 or 2, wherein the viscosity of the slurry is 1000 cps or less.
JP62281668A 1987-11-07 1987-11-07 Production of carbon material Pending JPH01122966A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62281668A JPH01122966A (en) 1987-11-07 1987-11-07 Production of carbon material
DE3837724A DE3837724A1 (en) 1987-11-07 1988-11-07 Carbon material and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281668A JPH01122966A (en) 1987-11-07 1987-11-07 Production of carbon material

Publications (1)

Publication Number Publication Date
JPH01122966A true JPH01122966A (en) 1989-05-16

Family

ID=17642310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281668A Pending JPH01122966A (en) 1987-11-07 1987-11-07 Production of carbon material

Country Status (2)

Country Link
JP (1) JPH01122966A (en)
DE (1) DE3837724A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140001171A (en) * 2012-06-27 2014-01-06 삼성전자주식회사 Method and apparatus for sending and receiving harq-ack feedback information

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006948A1 (en) * 1989-10-27 1991-05-16 Kabushiki Kaisha Kobe Seiko Sho Method of producing magnetic recording medium
DE4109939C2 (en) * 1990-03-29 1994-10-06 Kobe Steel Ltd An amorphous carbon substrate for a magnetic disk and method of making the same
JPH05282668A (en) * 1992-04-01 1993-10-29 Kobe Steel Ltd Substrate for perpendicular magnetic recording, magnetic disk and its production
US6787029B2 (en) 2001-08-31 2004-09-07 Cabot Corporation Material for chromatography

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544895A (en) * 1977-06-14 1979-01-13 Kanebo Ltd Production of impermeable carbon molded element
JPS55109214A (en) * 1979-02-09 1980-08-22 Maruzen Sekiyu Kagaku Kk Preparing high-density, high-strength carbonaceous material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140001171A (en) * 2012-06-27 2014-01-06 삼성전자주식회사 Method and apparatus for sending and receiving harq-ack feedback information

Also Published As

Publication number Publication date
DE3837724A1 (en) 1989-06-01
DE3837724C2 (en) 1992-03-05

Similar Documents

Publication Publication Date Title
US3932568A (en) High-energy brake and brake components
JP2704044B2 (en) Shrinkage reducing composition for bonded abrasive articles
WO2013108715A1 (en) Ceramic cylindrical sputtering target and method for producing same
JP4116333B2 (en) Super finishing whetstone
CN112123223A (en) Method for preparing high-precision polishing ceramic bond grinding tool by gel casting process
CA1125316A (en) Sinterable powders and methods of producing sintered ceramic products using such powders
US20130109788A1 (en) Spherical alpha silicon carbide, the method for manufacturing the same, and a sintered body as well as an organic resin-based composite made from the silicon carbide
JPH01122966A (en) Production of carbon material
JPS6212666A (en) Manufacture of oven core pipe for semiconductor
KR20170006002A (en) Manufacturing method of alumina-graphene composites with excellent wear resistance
CN110757352A (en) Drying-free preparation formula and process of ceramic bond abrasive product
JP2001158680A (en) Silicon carbide-metal complex, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
JPS6212667A (en) Manufacture of member for semiconductor
EP0146399A2 (en) Nuclear graphite articles and their production
CN111592276A (en) Wear-resisting antibiotic abrasive disc
JPH0647495B2 (en) Carbon material and manufacturing method thereof
JP2000169213A (en) Ceramic granule molding method
JP4047956B2 (en) Method for forming silicon carbide powder
JP3250670B2 (en) Method for producing spherical glassy carbon powder
JP2000040272A (en) Sputtering target for forming protective film of optical recording medium free from sputtering crack
JPH0253388B2 (en)
CN113024158B (en) Sintering-free small-size silicon carbide resistor particles and preparation method thereof
JPS6350313B2 (en)
CN116460756A (en) Ceramic-based diamond grinding wheel for wafer thinning and preparation method and application
CN116535216A (en) Integral silicon carbide bulletproof plate blank and preparation method thereof