JPH01118450A - Thermal head substrate and its manufacture - Google Patents

Thermal head substrate and its manufacture

Info

Publication number
JPH01118450A
JPH01118450A JP27654387A JP27654387A JPH01118450A JP H01118450 A JPH01118450 A JP H01118450A JP 27654387 A JP27654387 A JP 27654387A JP 27654387 A JP27654387 A JP 27654387A JP H01118450 A JPH01118450 A JP H01118450A
Authority
JP
Japan
Prior art keywords
substrate
particulate
layer
thermal head
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27654387A
Other languages
Japanese (ja)
Inventor
Tomohiro Nakamori
仲森 智博
Taiji Tsuruoka
鶴岡 泰治
Kenji Kuroki
賢二 黒木
Takashi Kanamori
孝史 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP27654387A priority Critical patent/JPH01118450A/en
Publication of JPH01118450A publication Critical patent/JPH01118450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To obtain a thermal head substrate at a low cost which enable high speed printing of high precision to be executed at small power consumption, by providing an insulating substrate and a glaze layer which is a porous SiO2 particulate layer formed on the insulating substrate. CONSTITUTION:At first, a mixed particulate layer 12 of a line state is formed on an alumina substrate 11. In this case Au particulate 12a and SiO2 particulate 12b are generated in an aerosol state by heating objective matter in an inert gas atmosphere, and a mixed particulate layer 12 is formed by a gas deposition method in which those particulates of an aerosol state are sprayed at a high speed onto the alumina substrate 11 from a nozzle or the like to deposit the Au particulate 12a and SiO2 particulate 12b abovementioned on the alumina substrate 11. Then, the alumina substrate 11 having the particulate layer 12 is dipped into a mixed aqueous solution of, for instance, KI (100g/l) and I2(10g/l), and the Au particulate 12a is removed by etching to form a porous SiO2 particulate layer 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサーマルヘッド用基板及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a substrate for a thermal head and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来のサーマルヘッド用基板としては、例えは第2図に
示すように、アルミナセラミクス基板1上に保温層とし
てのグレーズ層2を直接設けたものであって、このグレ
ーズ層2をガラスで構成したものがある。
For example, as shown in FIG. 2, a conventional thermal head substrate is one in which a glaze layer 2 as a heat insulating layer is directly provided on an alumina ceramic substrate 1, and this glaze layer 2 is made of glass. There is something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、最近通信システムとしての基本要件であ
る確実性、即時性、省力性等が一層強く求められてきた
ことに伴い、サーマルヘッドに対してもより高精細で、
より高速な印字を、より小さな電力で可能とするような
性能か求められている。このような性能を達成するため
には、発熱部に通電した時に基板に十分熱が蓄えられ、
その後通電をオフにした時に十分速やかに基板に熱が吸
収されるサーマルヘッドの構造が必要となる。
However, as the basic requirements for communication systems, such as reliability, immediacy, and labor-saving, have recently become more and more demanded, thermal heads are also required to have higher definition,
There is a demand for performance that enables faster printing with less power. In order to achieve this kind of performance, sufficient heat must be stored in the board when electricity is applied to the heat generating part, and
There is a need for a thermal head structure that allows heat to be absorbed into the substrate sufficiently quickly when the current is turned off.

ここで、従来のサーマルヘッド用基板にあってはグレー
ズ層の厚さを十分に大きく設定することによって、十分
な保温性を持たせ、−旦基板に熱が蓄えられた後は小さ
な電力によって印字を可能とするものが案出されている
か、この場合には発熱部の通電をオフにした後、温度が
十分速やかに減少しないので熱分離性が悪化し、各画素
間ににじみが生じなり、高速印字において尾びきが発生
ずる等高精細印字、高速印字の点で問題があった。
In conventional thermal head substrates, the thickness of the glaze layer is set sufficiently large to provide sufficient heat retention, and once heat is stored in the substrate, printing is performed using a small amount of electric power. In this case, after the power to the heat generating part is turned off, the temperature does not decrease quickly enough, resulting in poor thermal isolation and smearing between each pixel. There were problems with high-definition printing and high-speed printing, such as tailing during high-speed printing.

また、逆にグレーズ層を薄くして熱応答性を良くし、高
精細且つ高速な印字を可能にしようとすると、印字に際
して大きな電力が必要になるという問題点が生じていた
。即ち、グレーズ層は、熱効率を良くする観点からは、
厚い方が好ましく、熱応答性を良くする観点からは薄い
方が好ましいという、互いに相反する要求があった。
On the other hand, if an attempt was made to make the glaze layer thinner to improve its thermal response and enable high-definition and high-speed printing, a problem arose in that a large amount of electric power would be required for printing. In other words, from the viewpoint of improving thermal efficiency, the glaze layer has the following properties:
There were mutually contradictory demands: a thicker one is preferable, and a thinner one is preferable from the viewpoint of improving thermal response.

そこで、上記した問題点を解消するための対策が実開昭
61−148640号公報に提案されている。この提案
は多孔質カラス体を基板に被着したものであり、保温性
に優れ、且つ熱分離性にも優れたサーマルヘッドを提供
するものであるが、多孔質ガラス体を薄くすることの製
造上の困誼性によって製造コストが高くなるという別の
問題点があった。
Therefore, a countermeasure for solving the above-mentioned problems is proposed in Japanese Utility Model Application Publication No. 148640/1983. This proposal involves attaching a porous glass body to a substrate, and provides a thermal head with excellent heat retention and heat separation properties, but manufacturing requires a thin porous glass body. Another problem is that the above difficulty increases manufacturing costs.

そこで、本発明は従来技術の上記した問題点を解決する
ためになされたもので、その目的とするところは、高精
細且つ高速な印字を小電力で実行可能とするサーマルヘ
ッド用基板を安価に提供することにある。
Therefore, the present invention was made to solve the above-mentioned problems of the prior art, and its purpose is to inexpensively produce a thermal head substrate that enables high-definition and high-speed printing with low power consumption. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明に係るサーマルヘ
ッド用基板は、絶縁基板と、該絶縁基板上に形成された
クレーズ層とを有し、上記グレーズ層が多孔質5i02
徹粒子層であることを特徴としている。
In order to achieve the above object, a thermal head substrate according to the present invention includes an insulating substrate and a craze layer formed on the insulating substrate, and the glaze layer has a porous 5i02
It is characterized by a particle-through layer.

また、本発明に係るサーマルヘッド用基板の製造方法は
、絶縁基板上に金属微粒子とSiO2微粒子とを含む混
合微粒子層を形成する工程と、上記混合微粒子層中の金
属微粒子をエツチングにより除去する工程とを含むこと
を特徴としている。
Further, the method for manufacturing a thermal head substrate according to the present invention includes a step of forming a mixed fine particle layer containing metal fine particles and SiO2 fine particles on an insulating substrate, and a step of removing the metal fine particles in the mixed fine particle layer by etching. It is characterized by including.

〔作 用〕[For production]

上記の構成を有する本発明においては、グレーズ層は、
多孔質5i02微粒子層より成るため、耐熱性に優れ、
しかも熱電導率の小さい性質を有する。熱伝導率が小さ
いことによりクレーズ層は= 3− 大きな保温性を有し、このため、小さな電力を発熱部に
印加するだけで、クレーズ層の表面温度を印字に必要な
所定の温度に到達させることができ熱効率が良好となる
。一方、グレーズ層の熱伝導率が小さい分だけクレーズ
層を薄くしても十分良好な保温性を確保できるので、グ
レーズ層自体の熱容量を小さくでき、依って印字接子分
速やかに基板に熱を吸収させることができ、表面温度を
速やかに低下させる機能を有する。
In the present invention having the above configuration, the glaze layer is
Composed of a porous 5i02 fine particle layer, it has excellent heat resistance,
Moreover, it has a property of having low thermal conductivity. Due to its low thermal conductivity, the craze layer has = 3- large heat retention properties, and therefore, by simply applying a small amount of electric power to the heat generating part, the surface temperature of the craze layer can reach the predetermined temperature required for printing. This results in better thermal efficiency. On the other hand, even if the craze layer is thinned to the extent that the thermal conductivity of the glaze layer is low, sufficient heat retention can be ensured, so the heat capacity of the glaze layer itself can be reduced, and therefore heat can be quickly transferred to the board by the printed adhesive. It has the function of quickly lowering the surface temperature.

また、本発明の製造方法においては、金属微粒子とSi
O2微粒子とを、エアロゾル状にして、例えはノズル等
より絶縁基板上に噴射して堆積させているため、均一な
混合微粒子層を容易に形成することができる。この後エ
ツチングにより、上記混合微粒子層中の金属微粒子のみ
を溶出除去することによって、空孔を均一に分布させた
多孔質SiO2微粒子層を形成できる。
Furthermore, in the manufacturing method of the present invention, metal fine particles and Si
Since the O2 fine particles are made into an aerosol and deposited by spraying them onto the insulating substrate from, for example, a nozzle, it is possible to easily form a uniform mixed fine particle layer. Thereafter, by etching, only the metal fine particles in the mixed fine particle layer are eluted and removed, thereby forming a porous SiO2 fine particle layer in which pores are uniformly distributed.

〔実施例〕〔Example〕

以下に本発明を図示の実施例に基づいて説明する。第1
図(a)、(b)は本発明に係るサーマルヘッド用基板
の製造方法を示す工程説明図である。同図において、1
1は絶縁基板としてのアルミナ基板、12はアルミナ基
板11上に直接形成された混合微粒子層、12a及び1
2bは混合微粒子層12を構成するAu微粒子とSiO
2微粒子、13は混合微粒子層12からAu黴粗粒子1
2a除去して形成されたクレーズ層としての多孔質Si
O2微粒子層である。
The present invention will be explained below based on illustrated embodiments. 1st
Figures (a) and (b) are process explanatory diagrams showing a method for manufacturing a thermal head substrate according to the present invention. In the same figure, 1
1 is an alumina substrate as an insulating substrate, 12 is a mixed fine particle layer formed directly on the alumina substrate 11, 12a and 1
2b is Au fine particles and SiO constituting the mixed fine particle layer 12.
2 fine particles, 13 is Au coarse particles 1 from the mixed fine particle layer 12
Porous Si as a craze layer formed by removing 2a
This is an O2 fine particle layer.

次に、本発明のサーマルヘッド用基板のIJ!i!遣方
法について説明する。先ず、最初の工程では第1図(a
)に示すように、アルミナ基板11上にカスデポジショ
ン装置(真情冶金社製、型式G−D−RA−2)を用い
て巾1n+m、厚さ2μm、長さ50fflInのライ
ン状の混合微粒子層12を形成する。
Next, IJ! of the thermal head substrate of the present invention! i! I will explain how to send it. First, in the first step, the process shown in Figure 1 (a
), a line-shaped mixed fine particle layer with a width of 1n+m, a thickness of 2μm, and a length of 50fflIn is formed on an alumina substrate 11 using a cast deposition device (manufactured by Shinjo Yakin Co., Ltd., model G-D-RA-2). form 12.

この、ガスデポジション装置は、不活性ガス雰囲気下で
目的物を加熱してAuli粒子12aとSiO2微粒子
12bとをエアロゾル状に生成し、これらエアロゾル状
の微粒子をノズル等よりアルミナ基板11上に高速で噴
射させてアルミナ基板11上に上記Au微粒子12aと
SiO2微粒子12bとを堆積させるカスデポジション
法により、混合微粒子層12を形成する。また、本実施
例においては、Au微粒子12a及びSiO2徽粒子1
2bのいずれの平均粒径をも5001程度とした。
This gas deposition device heats a target object in an inert gas atmosphere to generate Auli particles 12a and SiO2 fine particles 12b in the form of an aerosol, and these aerosol-like fine particles are deposited onto the alumina substrate 11 at high speed through a nozzle or the like. A mixed fine particle layer 12 is formed by a cass deposition method in which the Au fine particles 12a and the SiO2 fine particles 12b are deposited on the alumina substrate 11 by spraying. In addition, in this example, Au fine particles 12a and SiO2 particles 1
The average particle size of all of 2b was about 5001.

またAu微粒子12aとSiO2微粒子12bの混合比
は、AIJ微粒子12aを20〜bとした。尚、このよ
うに粒径がサブミクロンオーターの粒子の場合には、単
に微粒子と称するのではなく、超微粒子と称することも
ある。
Further, the mixing ratio of the Au fine particles 12a and the SiO2 fine particles 12b was set to 20-b for the AIJ fine particles 12a. In addition, in the case of particles having a particle size of submicron size, they are sometimes called not only fine particles but also ultrafine particles.

次の工程では、上記工程により形成された混合微粒子層
12を有するアルミナ基板11を例えばKI (100
g/、Q ) 、I2 (10g/、Q )の混合水溶
液に浸漬させ、Au微粒子12aをエツチングにより除
去することで第1図(b)に示すような多孔質5I02
微粒子層13を形成した。
In the next step, the alumina substrate 11 having the mixed fine particle layer 12 formed in the above step is, for example, KI (100
By immersing it in a mixed aqueous solution of g/, Q ), I2 (10 g/, Q ) and removing the Au fine particles 12a by etching, a porous 5I02 as shown in FIG. 1(b) is obtained.
A fine particle layer 13 was formed.

尚、上記実施例においては、絶縁基板としてアルミナ基
板11を用いた場合について説明しか、本発明はこれに
は限定されず、強度、耐熱性を保つ材質のもの、例えば
AIN、Si C等のセラミクス基板、表面を絶縁処理
した金属基板、或いは石英基板等を用いてもよい。
Incidentally, in the above embodiment, only the case where the alumina substrate 11 is used as the insulating substrate is explained; however, the present invention is not limited thereto, and materials that maintain strength and heat resistance, such as ceramics such as AIN and SiC, may be used. A substrate, a metal substrate whose surface is insulated, a quartz substrate, or the like may be used.

また、上記実施例では金属微粒子としてAu微粒子を用
いた場合について説明したが、本発明はこれには限定さ
れず、例えばCu 、Fe 、Ni、AU 、Aj等他
の金属を用いてもよい。
Further, in the above embodiment, a case was explained in which Au fine particles were used as the metal fine particles, but the present invention is not limited thereto, and other metals such as Cu, Fe, Ni, AU, and Aj may be used.

さらにまた、SiO2微粒子、金属微粒子の粒径も上記
した500Aに限らず、要求される基板の保温特性や機
械的強度等に応じて適当な粒径のものを用いればよい。
Furthermore, the particle size of the SiO2 fine particles and metal fine particles is not limited to the above-mentioned 500A, but any suitable particle size may be used depending on the required heat retention properties, mechanical strength, etc. of the substrate.

また、上記実施例においてはALI徹粒子粒子いるとき
のエツチング液としてKI十■2溶液を用いた場合につ
いて説明したが、本発明はこれには限定されず、シアン
系の他のエツチング液を用いてもよい。さらに、他の金
属を用いるときには、それに応じたエツチング液を用い
ればよい。
Furthermore, in the above example, a case was explained in which the KI 10-2 solution was used as the etching liquid when there were ALI particles, but the present invention is not limited to this, and other cyan-based etching liquids may be used. You can. Furthermore, when using other metals, an appropriate etching solution may be used.

さらに、本実施例では、混合微粒子層12におけるAu
微粒子12aの混合比を20〜80mo1%とした場合
について説明したが、Au微粒子12aの混合比が多い
ものはど空孔が多くなるため、多孔質SiO2微粒子層
13の機械的強度が弱くなる傾向がある。一方、Au微
粒子12a混合比が少ないものは SiO2微粒子12
bが多いため、Au微粒子12aか完全にエツチングさ
れないことがある。従って、AuR粒子12aの混合比
は用いる金属の種類、グレーズ層に求められる機械的強
度等を考慮して、適正な比率に設定すれはよい。
Furthermore, in this example, Au in the mixed fine particle layer 12
The case where the mixing ratio of the fine particles 12a is 20 to 80 mo1% has been described, but when the mixing ratio of the Au fine particles 12a is large, the number of pores increases, so the mechanical strength of the porous SiO2 fine particle layer 13 tends to weaken. There is. On the other hand, those with a small mixing ratio of Au fine particles 12a have SiO2 fine particles 12
Since there is a large amount of b, the Au fine particles 12a may not be completely etched. Therefore, the mixing ratio of the AuR particles 12a should be set to an appropriate ratio in consideration of the type of metal used, the mechanical strength required of the glaze layer, etc.

次に、本実施例の製造方法により形成されたサーマルヘ
ッド用基板の性能について説明する。ここでは、従来の
基板と比較するため、Au微粒子の混合比が1′!IO
1%で、30,40,50,60゜701′lOI%の
混合微粒子から作製された上記実施例の多孔質5i02
グレースアルミナ基板と、従来のガラスグレーズ層をも
つグレーズアルミナ基板(日本特殊陶業社製)を用い、
それぞれにサーマルヘッドを構成して、その入力パワー
と発熱ピーク温度との関係を測定した。この結果を第3
図に示す。ここでは、グレーズ層はすべて1關巾、20
μm厚としサーマルヘッドの発熱体サイズは50X75
μmの矩形とし、発熱体の駆動はバルス中0.8+11
SeC(り返し周期、511secのパルスでおこない
、ピーク温度は赤外線温度計により測定した。
Next, the performance of the thermal head substrate formed by the manufacturing method of this example will be explained. Here, in order to compare with a conventional substrate, the mixing ratio of Au fine particles is 1'! IO
Porous 5i02 of the above example made from mixed microparticles of 30, 40, 50, 60°701′lOI% at 1%
Using a glazed alumina substrate and a glazed alumina substrate with a conventional glass glaze layer (manufactured by Nippon Tokushu Tokugyo Co., Ltd.),
A thermal head was constructed for each, and the relationship between its input power and peak temperature of heat generation was measured. This result is the third
As shown in the figure. Here, the glaze layers are all 1 width, 20
The heating element size of the thermal head is 50 x 75 mm thick.
It is a rectangle of μm, and the driving of the heating element is 0.8 + 11 during the pulse.
SeC (pulse cycle: 511 seconds), and the peak temperature was measured with an infrared thermometer.

同図から分かるように、本発明による基板を用いたサー
マルベツドは、同じ厚さの保温層を有する従来の構成の
ものより、小さい電力で高い温度に到達させることがで
き、この傾向はAUFI!1粒子12aの混合率が大き
い場合はど顕著となる。さらに、本実施例において製造
されたグレーズ層は従来のガラスよりなるグレーズ層に
比べて熱伝導率が低いため、グレーズ層を従来のものよ
り薄形にしても同等の保温性を持たせることが可能であ
る。また、本発明によるサーマルヘッド用基板はグレー
ズ層の薄形化を可能としたのであるから、グレーズ層自
体の熱容量を小さくでき、依って基板に速かに熱を吸収
させて表面温度の低下を早め熱分離性能を向上させるこ
とができる。
As can be seen from the figure, the thermal bed using the substrate according to the present invention can reach a higher temperature with less power than that of the conventional configuration with the same thickness of heat insulation layer, and this tendency is observed in AUFI! This becomes noticeable when the mixing ratio of one particle 12a is large. Furthermore, since the glaze layer manufactured in this example has lower thermal conductivity than conventional glaze layers made of glass, it is possible to make the glaze layer thinner than conventional glaze layers and still have the same heat retention properties. It is possible. Furthermore, since the thermal head substrate according to the present invention allows the glaze layer to be made thinner, the heat capacity of the glaze layer itself can be reduced, which allows the substrate to quickly absorb heat and reduce the surface temperature. Thermal separation performance can be improved quickly.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のサーマルヘッド用基板を
用いれは従来の基板に比べ少い電力で印字が可能となる
。また、本発明によればグレーズ層の薄形化が可能とな
るため、同一の電力で印字するためには、より薄いグレ
ーズ層を形成すればよく、これによって、熱分離性が向
上し、熱的な尾引きは減少するので高速且つ高精細な印
字が可能となるという効果を有する。
As explained above, by using the thermal head substrate of the present invention, printing can be performed using less power than conventional substrates. Furthermore, according to the present invention, it is possible to make the glaze layer thinner, so in order to print with the same power, it is only necessary to form a thinner glaze layer. This has the effect that high-speed and high-definition printing is possible because the trailing is reduced.

また、本発明の製造方法によれは、ごく薄いグレーズ層
を形成することも可能となり、例えは超薄厚の多孔質ガ
ラスを絶縁基板上に被着させるような困雛な工程を経る
ことはなく、簡単な工程で基板の作製が可能であり、さ
らに基板上に直接クレーズ層を形成するので、信頼性を
向上させることができる。
Furthermore, according to the manufacturing method of the present invention, it is possible to form an extremely thin glaze layer, for example, without going through a difficult process such as depositing ultra-thin porous glass on an insulating substrate. The substrate can be manufactured through a simple process, and since the craze layer is directly formed on the substrate, reliability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a>、(b)は本発明に係るサーマルヘッド用
基板の製造方法の一実施例を示す工程説明図、第2図は
従来のサーマルヘッド用基板の側断面図、第3図はAu
微粒子の混合比を30.40.50.60.701Il
o 1%としてクレーズ層を形成した本実施例のサーマ
ルヘッド用基板を用いて構成したサーマルヘッドの印加
電力とピーク温度の関係を示すグラフである。 11・・・アルミナ基板、  12・・・混合微粒子層
、12a・−AIJ微粒子、 12b−SiO2微粒子
、13・・・多孔質SiO2微粒子層。 特許出願人  沖電気工業株式会社 代理人 弁理士  前 1)   実
1(a) and 1(b) are process explanatory diagrams showing an embodiment of the method for manufacturing a thermal head substrate according to the present invention, FIG. 2 is a side sectional view of a conventional thermal head substrate, and FIG. 3 is Au
The mixing ratio of fine particles is 30.40.50.60.701Il
1 is a graph showing the relationship between applied power and peak temperature of a thermal head constructed using the thermal head substrate of this example in which a craze layer was formed with a craze layer of 1%. 11...Alumina substrate, 12...Mixed fine particle layer, 12a--AIJ fine particles, 12b-SiO2 fine particles, 13...Porous SiO2 fine particle layer. Patent applicant Oki Electric Industry Co., Ltd. Agent Patent attorney Former 1) Actual

Claims (1)

【特許請求の範囲】 1、絶縁基板と、 該絶縁基板上に形成されたグレーズ層とを有し、上記グ
レーズ層が多孔質SiO_2微粒子層であることを特徴
とするサーマルヘッド用基板。 2、絶縁基板上に金属微粒子とSiO_2微粒子とを含
む混合微粒子層を形成する工程と、 上記混合微粒子層中の金属微粒子をエッチングにより除
去する工程と を含むことを特徴とするサーマルヘッド用基板の製造方
法。
[Claims] 1. A substrate for a thermal head, comprising: an insulating substrate; and a glaze layer formed on the insulating substrate, the glaze layer being a porous SiO_2 fine particle layer. 2. A thermal head substrate comprising the steps of forming a mixed fine particle layer containing metal fine particles and SiO_2 fine particles on an insulating substrate, and removing the metal fine particles in the mixed fine particle layer by etching. Production method.
JP27654387A 1987-10-30 1987-10-30 Thermal head substrate and its manufacture Pending JPH01118450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27654387A JPH01118450A (en) 1987-10-30 1987-10-30 Thermal head substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27654387A JPH01118450A (en) 1987-10-30 1987-10-30 Thermal head substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH01118450A true JPH01118450A (en) 1989-05-10

Family

ID=17570942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27654387A Pending JPH01118450A (en) 1987-10-30 1987-10-30 Thermal head substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH01118450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746868A (en) * 1994-07-21 1998-05-05 Fujitsu Limited Method of manufacturing multilayer circuit substrate
CN103633195A (en) * 2012-08-27 2014-03-12 鹤山丽得电子实业有限公司 Method for processing excess-gold abnormity of LED chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746868A (en) * 1994-07-21 1998-05-05 Fujitsu Limited Method of manufacturing multilayer circuit substrate
US5976393A (en) * 1994-07-21 1999-11-02 Fujitsu Limited Method of manufacturing multilayer circuit substrate
CN103633195A (en) * 2012-08-27 2014-03-12 鹤山丽得电子实业有限公司 Method for processing excess-gold abnormity of LED chip

Similar Documents

Publication Publication Date Title
EP1132448A3 (en) Article with antifogging film and process for producing same
WO2002092872A3 (en) Honeycomb structure thermal barrier coating
JP2009504547A (en) Metal ceramic substrate
EP0798781A3 (en) Silicon nitride circuit board and producing method therefor
CA2284075A1 (en) Nickel composite particle and production process therefor
JPH01118450A (en) Thermal head substrate and its manufacture
JP2005164570A (en) Gas sensor and method for manufacturing the same
WO2021056195A1 (en) Electronic cigarette atomization assembly and preparation method therefor
JPS62216979A (en) Aluminum nitride sintered body with glass layer and manufacture
JPH01118451A (en) Thermal head substrate and its manufacture
US11626218B2 (en) Laminated alumina board for electronic device, electronic device, and chip resistor
JPH09100183A (en) Thick film grazed substrate and its production
JPS62216983A (en) Aluminum nitride sintered body with metallization layer and manufacture
JPH01118448A (en) Thermal head substrate and its manufacture
US5458911A (en) Method of producing a self-suporting thick-film structure
JPS63202465A (en) Thermal head with cavity
JPH0674194B2 (en) Surface-modified A-N sintered body
JPH01103456A (en) Thermal head substrate and production thereof
JPH03187120A (en) Manufacture of electron emitting device
CN115606876A (en) Atomizing core preparation method and electronic cigarette atomizer
CN114468387A (en) Silicon-based atomizing core and manufacturing method thereof
JPS6384124A (en) Semiconductor device
JPH01103457A (en) Production of thermal head substrate
JPS5825971A (en) Thermal head
JPS6242858A (en) Preparation of thermal head