JPH01117849A - Production of 2,6-dihaloaniline derivative - Google Patents

Production of 2,6-dihaloaniline derivative

Info

Publication number
JPH01117849A
JPH01117849A JP62277205A JP27720587A JPH01117849A JP H01117849 A JPH01117849 A JP H01117849A JP 62277205 A JP62277205 A JP 62277205A JP 27720587 A JP27720587 A JP 27720587A JP H01117849 A JPH01117849 A JP H01117849A
Authority
JP
Japan
Prior art keywords
derivative
dihaloaniline
producing
atom
tetrahalocyclohexanimine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62277205A
Other languages
Japanese (ja)
Other versions
JPH0751539B2 (en
Inventor
Takeaki Saeki
佐伯 毅明
Hideo Ishikawa
石川 英男
Tsunebee Oki
沖 恒平衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Organic Chemical Industry Co Ltd
Original Assignee
Osaka Organic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Organic Chemical Industry Co Ltd filed Critical Osaka Organic Chemical Industry Co Ltd
Priority to JP62277205A priority Critical patent/JPH0751539B2/en
Priority to EP88112590A priority patent/EP0313740B1/en
Priority to US07/228,134 priority patent/US4908479A/en
Priority to DE8888112590T priority patent/DE3880072T2/en
Priority to KR1019880010235A priority patent/KR950005770B1/en
Publication of JPH01117849A publication Critical patent/JPH01117849A/en
Priority to US07/427,390 priority patent/US5001264A/en
Publication of JPH0751539B2 publication Critical patent/JPH0751539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the above compound useful as an intermediate for medicines or agricultural chemicals in high yield and purity in a short process using an inexpensive raw material, by dehydrohalogenating 2,2,6,6- tetrahalocyclohexanimine derivative as a raw material. CONSTITUTION:A 2,2,6,6-tetrahalocyclohexanimine derivative expressed by formula I [R is H, alkyl or (substituted) aromatic group; X is halogen: is dehydrohalogenated in the presence or absence of a basic catalyst, such as NaOH, or by thermal decomposition to afford the aimed compound expressed by formula III useful as a medicine or agricultural chemical, especially as an intermediate for substituted phenylacetic acids expressed by formula II (R<1> and R<4> are lower alkyl, lower alkoxy or halogen having an atomic number of up to 35 or CF3; R<2> and R<3> are H or groups except CF3 in R<1> and R<4>; R<5> and R<6> are H, lower alkyl or benzyl). Furthermore, a solvent, such as chlorobenzene, is used to efficiently advance the dehydrohalogenating reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般式(1): (式中、Rは水素原子、直鎖もしくは分枝したアルキル
基または置換もしくは無置換芳香族基、およびXはハロ
ゲン原子を表わす)で示される2、8−ジハロアニリン
誘導体の製造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to the general formula (1): (wherein R is a hydrogen atom, a linear or branched alkyl group, or a substituted or unsubstituted aromatic group, and The present invention relates to a method for producing a 2,8-dihaloaniline derivative represented by (X represents a halogen atom).

さらに詳しくは、2 、.2 、 [1、8−テトラハ
ロシクロヘキサンイミン誘導体を脱ハロゲン化水素せし
めて2.6−ジハロアニリン誘導体を製造する新規な方
法に関する。
For more details, see 2. 2, [Regarding a novel method for producing 2,6-dihaloaniline derivatives by dehydrohalogenating 1,8-tetrahalocyclohexanimine derivatives.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

2.6−ジハロアニリン誘導体は医薬品や農薬としてを
用であり、とくに一般式(■):(式中、R1は低級ア
ルキル基、低級アルコキシ基、原子番号35までのハロ
ゲン原子、あるいはトリフルオロメチル基を表わし、R
2とR3とはそれぞれ水素原子、低級アルキル基、低級
アルコキシ基、あるいは原子番号35までのハロゲン原
子を表わし、R4は水素原子、低級アル゛キル基、低級
アルコキシ基、原子番号35までのハロゲン原子あるい
はトリフルオロメチル基を表わし、R5とR6とはそれ
ぞれ水素原子、低級アルキル基またはベンジン基を表わ
す)で示される置換フェニル酢酸の中間体として有用で
ある(特公昭42−23418号公報参照)。
2.6-Dihaloaniline derivatives are used as pharmaceuticals and agricultural chemicals, especially those with the general formula (■): (wherein R1 is a lower alkyl group, a lower alkoxy group, a halogen atom with an atomic number of up to 35, or a trifluoromethyl group. , R
2 and R3 each represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a halogen atom with an atomic number of up to 35, and R4 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a halogen atom with an atomic number of up to 35. Alternatively, it is useful as an intermediate for substituted phenylacetic acid represented by a trifluoromethyl group, and R5 and R6 each represent a hydrogen atom, a lower alkyl group, or a benzine group (see Japanese Patent Publication No. 42-23418).

2.8−ジハロアニリン誘導体は、従来から知られてい
る種々の手順にしたがって合成される。
2.8-dihaloaniline derivatives are synthesized according to various conventionally known procedures.

たとえば、N−アセチルスルファニルクロリドをハロゲ
ン化して2,6−シハローN−アセチルスルフ7ニルク
ロリドをえ、えられた2、6−ジハロ−N−アセチルス
ルファニルクロリドを加水分解により、脱スルホン酸お
よび脱酢酸して2.8−ジハロアニリンへ誘導し、さら
にえられた2、6−ジハロアニリンとヨードベンゼン、
ブロモベンゼンなどのハロゲン化物とを銅粉末および炭
酸カリウムの存在下に高温でウルマン反応により縮合さ
せて、2,6−ジハロアニリン誘導体をうる方法が開示
されている(特公昭42−23418号公報参照)。
For example, N-acetylsulfanyl chloride is halogenated to yield 2,6-cycloN-acetylsulfanyl chloride, and the resulting 2,6-dihalo-N-acetylsulfanyl chloride is hydrolyzed to desulfonate and deacetate. 2,6-dihaloaniline and iodobenzene obtained by deriving 2,8-dihaloaniline,
A method has been disclosed in which a 2,6-dihaloaniline derivative is obtained by condensing a halide such as bromobenzene in the presence of copper powder and potassium carbonate at high temperature by Ullmann reaction (see Japanese Patent Publication No. 42-23418). .

この方法においては、2.6−ジハロアニリンをうるの
に数工程を必要とするので収率低下、廃棄物が多くなる
という問題点、また2、6−ジハロアニリン誘導体をう
るためには高価なヨード化合物を必要とするので製品の
コストが高くなるとい′う問題点、ブロモ化合物を用い
たばあいには2−ハロー6−ブロモアニリン誘導体が副
生ずるので、その分離および精製に多大の労力を要する
という問題点などがある。
This method requires several steps to obtain 2,6-dihaloaniline, resulting in lower yields and increased amounts of waste.Also, in order to obtain 2,6-dihaloaniline derivatives, expensive iodo compounds are required. The problem is that the cost of the product increases because of the need for There are some problems.

本発明は、医薬や農薬の中間体として非常に有用な2.
6−ジハロアニリン誘導体を安価な原料を用いて短い工
程でしかも高収率かっ高純度で製造する非常にすぐれた
方法を提供することを目的とする。
2. The present invention is very useful as an intermediate for pharmaceuticals and agricultural chemicals.
The object of the present invention is to provide an excellent method for producing 6-dihaloaniline derivatives using inexpensive raw materials in short steps and with high yield and high purity.

〔問題点を解決するための手段〕[Means for solving problems]

しかして本発明者らは、従来技術の問題点に鑑み鋭意検
討した結果、2,2.6.8−テトラハロシクロヘキサ
ンイミン誘導体を脱ハロゲン化水素せしめると2,6−
ジハロアニリン誘導体かえられ、とくに溶媒としてN、
N−ジメチルホルムアミド、N、N−ジメチルアセトア
ミドなどのアミド類、クロロベンゼン、ニトロベンゼン
、シアノベンゼン、アセトニトリル、プロピオニトリル
などの脂肪族ニトリル化合物、ジメチルスルホキシドな
どのアブロティツク極性溶媒を用いたばあいには、効率
よく脱ハロゲン化水素反応が進むことを見出し本発明を
完成するに至った。
However, as a result of intensive studies in view of the problems of the prior art, the present inventors found that when 2,2.6.8-tetrahalocyclohexanimine derivatives are dehydrohalogenated, 2,6-
Dihaloaniline derivatives can be used, especially when N is used as a solvent.
When using amides such as N-dimethylformamide and N,N-dimethylacetamide, aliphatic nitrile compounds such as chlorobenzene, nitrobenzene, cyanobenzene, acetonitrile and propionitrile, and abrotic polar solvents such as dimethyl sulfoxide, The present invention was completed by discovering that the dehydrohalogenation reaction proceeds efficiently.

すなわち本発明は、2,2.I3.6−テトラハロシク
ロヘキサンイミン誘導体を触媒の存在下または不存在下
で脱ハロゲン化水素せしめることを特徴とする一般式(
I): (式中、Rは水素原子、直鎖もしくは分枝したアルキル
基または置換もしくは無置換芳香族基、およびXはハロ
ゲン原子を表わす)で示される2、6−シハロアニリン
誘導体の製造方法に関する。
That is, the present invention provides 2.2. I3.6-Tetrahalocyclohexanimine derivative is dehydrohalogenated in the presence or absence of a catalyst (
I): (wherein R represents a hydrogen atom, a linear or branched alkyl group, or a substituted or unsubstituted aromatic group, and X represents a halogen atom) .

〔実施例〕〔Example〕

本発明の出発原料として用いられる2、2.8.6−テ
トラハロシクロヘキサンイミン誘導体は、いずれも安価
な原料で容易に入手可能であるシクロヘキサノンのハロ
ゲン化により容易にえられる2、2.8.6−チトラハ
ロシクロヘキサノンと第1アミンまたはアンモニアとの
脱水縮合により容易にえられる。また、2.2.8.6
−チトラハロシクロヘキサノンのハロゲン原子は、フッ
素原子、塩素原子、臭素原子またはヨウ素原子などであ
る。
The 2,2.8.6-tetrahalocyclohexanimine derivatives used as starting materials in the present invention are easily obtained by halogenation of cyclohexanone, which is an inexpensive raw material and easily available. It can be easily obtained by dehydration condensation of 6-titrahalocyclohexanone and a primary amine or ammonia. Also, 2.2.8.6
The halogen atom of -titrahalocyclohexanone is a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or the like.

本発明の目的化合物である2、6−シハロアニリン誘導
体は、出発原料である2、2,6,6−テトラハロシク
ロヘキサンイミン誘導体を触媒、とくに塩基触媒または
熱分解により反応式: (式中、Rは水素原子、直鎖もしくは分枝したアルキル
基または置換もしくは無置換芳香族基、およびXはハロ
ゲン原子を表わす)で示されるように脱ハロゲン化水素
せしめることによりえられる。
The 2,6-cyhaloaniline derivative, which is the target compound of the present invention, can be produced by the reaction formula: (wherein, R is a hydrogen atom, a linear or branched alkyl group, or a substituted or unsubstituted aromatic group, and X represents a halogen atom).

前記塩基触媒としては、水酸化ナトリウム、水酸化カリ
ウム、水酸化リチウムなどのアルカリ金属水酸化物;水
酸化マグネシウム、水酸化カルシウムなどのアルカリ土
類金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸
マグネシウム、炭酸カルシウムなどのアノ−カリ金属ま
たはアルカリ土類金属の炭酸塩;酸化マグネシウム、酸
化カルシウムなどのアルカリ金属またはアルカリ土類金
属の酸化物;トリエチルアミン、ピリジン、ジメチルア
ニリン、アニリンなどの有機塩基であるアミン類を例示
することができる。適当な塩基触媒を用いたばあいには
反応はより一層温和な条件で高選択性で進行する。用い
る触媒の添加量は2.2.6.6−チトラハロシクロヘ
キサンイミンに1モルに対して1.0〜2.4モルであ
るのが好ましく、また反応時間は2〜8時間の範囲内で
あるのが好ましい。このときの反応温度は50〜120
℃であるのが好ましい。
Examples of the base catalyst include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide; sodium carbonate, potassium carbonate, and magnesium carbonate. , anodic or alkaline earth metal carbonates such as calcium carbonate; alkali metal or alkaline earth metal oxides such as magnesium oxide or calcium oxide; organic bases such as triethylamine, pyridine, dimethylaniline, aniline, etc. Examples include amines. When a suitable base catalyst is used, the reaction proceeds under milder conditions and with high selectivity. The amount of the catalyst used is preferably 1.0 to 2.4 mol per 1 mol of 2.2.6.6-titrahalocyclohexanimine, and the reaction time is within the range of 2 to 8 hours. It is preferable to have one. The reaction temperature at this time is 50 to 120
Preferably it is ℃.

また、本発明は無触媒下であっても熱分解によって効率
よく脱ハロゲン化水素せしめることができる。このとき
の反応温度は好ましくは50〜150℃、さらに好まし
くは90〜130℃であるのがよい。たとえば、2.2
.B、B−テトラハロシクロヘキサンイミン誘導体のハ
ロゲン原子が、塩素原子であるばあい、反応温度が50
℃未満では全く反応が起こらず、150℃をこえるばあ
い急激に副反応が多くなり、1分子あたり塩素原子が3
個脱離して2−クロロアニリン誘導体が生ずる。この副
生成物は目的物との分離が困難で、分離精製するために
は大幅な収率の低下をまぬがれない。また、反応温度が
90℃未満では反応速度が遅<130℃をこえるばあい
には副反応が多くなる傾向にある。このばあい2,2,
6,6−テトラハロシクロヘキサンイミン誘導体または
生成物である2、6−シハロアニリン誘導体自身の触媒
作用、すなわち2.6−シハロアニリン誘導体自身がア
ミンであり塩基性であるため有機塩基触媒として作用す
ることによって脱ハロゲン化水素が促進されているもの
と考えられる。
Furthermore, the present invention allows efficient dehydrohalogenation by thermal decomposition even in the absence of a catalyst. The reaction temperature at this time is preferably 50 to 150°C, more preferably 90 to 130°C. For example, 2.2
.. B, When the halogen atom of the B-tetrahalocyclohexanimine derivative is a chlorine atom, the reaction temperature is 50°C.
Below 150°C, no reaction occurs at all, and when the temperature exceeds 150°C, side reactions rapidly increase, resulting in 3 chlorine atoms per molecule.
A 2-chloroaniline derivative is produced by individual elimination. This by-product is difficult to separate from the target product, and in order to separate and purify it, a significant decrease in yield is inevitable. Furthermore, if the reaction temperature is less than 90°C, the reaction rate is slow; if it exceeds 130°C, side reactions tend to increase. In this case 2, 2,
The catalytic action of the 6,6-tetrahalocyclohexanimine derivative or the product 2,6-cyhaloaniline derivative itself, that is, the 2,6-cyhaloaniline derivative itself is an amine and is basic, so it acts as an organic base catalyst. It is thought that dehydrohalogenation is promoted.

前記2.2,6,6−テトラハロシクロヘキサンイミン
誘導体は塩基または熱により脱ハロゲン化水素せしめら
れキノン構造をとったのち、プロトトロピーにより2.
6−シハロアニリン誘導体となる。2,2.8.6−チ
トラハロシクロヘキサンイミン誘導体は立体的に非常に
混み合っており、水の存在下では加水分解しやすいので
非水系で反応が行なわれるのが好ましい。しかしながら
、反応に溶媒を用いるばあい極性溶媒を用いた方が脱ハ
ロゲン化水素しやすいため、反応前に加水分解を防止す
るために溶媒を充分乾燥させておく必要がある。
The 2.2,6,6-tetrahalocyclohexanimine derivative is dehydrohalogenated with a base or heat to form a quinone structure, and then converted into 2.2 by prototropy.
It becomes a 6-cyhaloaniline derivative. The 2,2.8.6-titrahalocyclohexanimine derivative is sterically very crowded and is easily hydrolyzed in the presence of water, so it is preferable to carry out the reaction in a non-aqueous system. However, when a solvent is used in the reaction, it is easier to dehydrohalogenate if a polar solvent is used, so it is necessary to dry the solvent sufficiently before the reaction to prevent hydrolysis.

本発明において用いられる溶媒は脱ハロゲン化水素反応
に−おいて非常に重要な因子である。
The solvent used in the present invention is a very important factor in the dehydrohalogenation reaction.

溶媒の具体例としてはN、N−ジメチルホルムアミド、
N、N−ジメチルアセトアミド、ヘキサメチルホスホニ
ルアミドなどの脂肪族アミド;クロロベンゼン、ニトロ
ベンゼン、シアノベンゼン、アニソールなどの芳香族極
性溶媒;アセトニトリル、プロピオニトリルのような脂
肪族ニトリル;ジメチルスルホキシドなどのアブロティ
ツク極性溶媒を例示することができる。本発明は溶媒を
用いることなく溶融状態として反応させることができる
が、温度制御のしやすさ、反応の選択性や収率を向上さ
せるために一般には有機溶媒中で行う。
Specific examples of the solvent include N,N-dimethylformamide,
Aliphatic amides such as N,N-dimethylacetamide and hexamethylphosphonylamide; Aromatic polar solvents such as chlorobenzene, nitrobenzene, cyanobenzene, and anisole; Aliphatic nitriles such as acetonitrile and propionitrile; Abrotics such as dimethyl sulfoxide Examples include polar solvents. In the present invention, the reaction can be carried out in a molten state without using a solvent, but it is generally carried out in an organic solvent in order to facilitate temperature control and improve reaction selectivity and yield.

以下に本発明を製造例および実施例にもとづいてさらに
詳しく説明するが、本発明は何らこれらに限定されるも
のではない。
The present invention will be explained in more detail below based on production examples and examples, but the present invention is not limited thereto.

製造例1 1g容ガラス製反応器に2.2.8.6−チトラクロロ
シクロへキサノン90g (0,39モル)、トルエン
200gおよび四塩化チタン81g (0,43モル)
を入れ、水浴中で5℃に冷却し、撹拌しながら、この溶
液にアニリン145g (1,58モル)を徐々に滴下
した。その際反応温度が5〜20℃になるようにアニリ
ンの滴下速度を調節した。アニリンの滴下終了後、室温
で2時間熟成を行なった。
Production Example 1 90 g (0.39 mol) of 2.2.8.6-titrachlorocyclohexanone, 200 g of toluene and 81 g (0.43 mol) of titanium tetrachloride were placed in a 1 g glass reactor.
was cooled to 5° C. in a water bath, and 145 g (1.58 mol) of aniline was gradually added dropwise to this solution while stirring. At that time, the dropping rate of aniline was adjusted so that the reaction temperature was 5 to 20°C. After the addition of aniline was completed, aging was carried out at room temperature for 2 hours.

反応終了後、反応液を300gの冷水(10℃)中に撹
拌しながら移し、四塩化チタンを加水分解した。トルエ
ン層と水層とに分離した反応液のうちトルエン層を減圧
下で濃縮して黒色固形物120 gをえた。この固形物
をメタノール中で再結晶させることにより黄色針状晶の
N−フェニル−2,2,8,8−テトラクロロシクロヘ
キサンイミン108gをえた(収率: 89.8%、會
p: 71.8〜72.8℃)。’H−NMR,IRお
よび元素分析による分析結果を以下に示す。
After the reaction was completed, the reaction solution was transferred into 300 g of cold water (10° C.) with stirring to hydrolyze titanium tetrachloride. Of the reaction mixture separated into a toluene layer and an aqueous layer, the toluene layer was concentrated under reduced pressure to obtain 120 g of a black solid. This solid was recrystallized in methanol to obtain 108 g of N-phenyl-2,2,8,8-tetrachlorocyclohexaneimine in the form of yellow needles (yield: 89.8%, p: 71. 8-72.8°C). The analysis results by 'H-NMR, IR and elemental analysis are shown below.

’+1−N0R(溶媒=CDCI3、内部標準: TM
S)δ ppm    :    7.27(511,
−、N@    )   、2.85(411%t−,
3,5位cu2)、2.10 (211、q 、 4位
CI+2 )IR(KBr錠剤) νN、c: 1885 (ell−1)元素分析 C(%)   H(%)   N(%)CI(%)実測
値 4B、29  3.47  4.51 45.38
理論値 4B、34  3.57  4.50 45.
59実施例1 1g容ガラス製反応器に製造例1でえられたN−フェニ
ル−2,2,8,8−テトラクロロシクロヘキサンイミ
ン100sr (0,32モル)およびクロロベンゼン
500gを入れ、撹拌しなから油浴中で加熱した。その
際反応温度が100℃になるように制御しながら5時間
反応させた。反応後、25℃まで冷却し、10%水酸化
ナトリトリム水溶液300gを用いて洗浄したのち有機
層を無水硫酸ナトリウムで乾燥し、減圧下でクロロベン
ゼンを留去して黒色固形状のN−フエモルー2.6−ジ
クロロアニリン84.7gをえた(収率:85%、mp
: 49.5〜50.7℃)。また、えられたN−フェ
ニル−2,B−ジクロロアニリンの純度は、ガスクロマ
トグラフィーによって測定したところ92.1%であり
、以下に述べる実施例においても同様の方法でn1定し
た。
'+1-N0R (solvent = CDCI3, internal standard: TM
S) δ ppm: 7.27 (511,
-, N@), 2.85 (411%t-,
3rd and 5th positions cu2), 2.10 (211, q, 4th position CI+2) IR (KBr tablet) νN, c: 1885 (ell-1) Elemental analysis C (%) H (%) N (%) CI ( %) Actual value 4B, 29 3.47 4.51 45.38
Theoretical value 4B, 34 3.57 4.50 45.
59 Example 1 100 sr (0.32 mol) of N-phenyl-2,2,8,8-tetrachlorocyclohexaneimine obtained in Production Example 1 and 500 g of chlorobenzene were placed in a 1 g glass reactor, without stirring. and heated in an oil bath. At that time, the reaction was carried out for 5 hours while controlling the reaction temperature to be 100°C. After the reaction, the organic layer was cooled to 25° C. and washed with 300 g of 10% sodium hydroxide aqueous solution, dried over anhydrous sodium sulfate, and chlorobenzene was distilled off under reduced pressure to obtain a black solid N-femol. 84.7 g of 6-dichloroaniline was obtained (yield: 85%, mp
: 49.5-50.7°C). The purity of the obtained N-phenyl-2,B-dichloroaniline was 92.1% as measured by gas chromatography, and n1 was determined in the same manner in the examples described below.

また、えられたN−フェニル−2,8−ジクロロアニリ
ンをメタノール中で再結晶により精製したのち’II−
NMR、IRおよび元素分析した結果を以下に示す。
In addition, after purifying the obtained N-phenyl-2,8-dichloroaniline by recrystallization in methanol, 'II-
The results of NMR, IR and elemental analysis are shown below.

1H−NMR(溶媒:CDCl!s、内部標準: TM
S)δ ppl   :   7.53 〜6.55(
8H,■ 、 核) 、5.83(LHlS 、 NH
) IR(KBr錠剤) νNH3380(cm ’ ) 元素分析 C(%)   H(%)N(%)C#(%)実測値  
80.53  3.81 5.88 29.78理論値
  80.48  3.89 5.92 29.70以
下の実施例2〜29でえられたN−フェニル−2,6−
ジクロロアニリンについても実施例1と同様の分析結果
かえられた。
1H-NMR (solvent: CDCl!s, internal standard: TM
S) δ ppl: 7.53 ~ 6.55 (
8H, ■, Nucleus), 5.83 (LHLS, NH
) IR (KBr tablet) νNH3380 (cm') Elemental analysis C (%) H (%) N (%) C# (%) Actual value
80.53 3.81 5.88 29.78 Theoretical value 80.48 3.89 5.92 29.70 N-phenyl-2,6- obtained in Examples 2 to 29 below
Regarding dichloroaniline, the same analysis results as in Example 1 were obtained.

実施例2 実施例1において、触媒として炭酸ナトリウム40g 
(0,Hモル)を用い反応温度を95℃に制御したほか
は、実施例1と同様にして反応を行ない、N−フェニル
−2,8−ジクロロアニリン6B、3gをえた(収率:
87%、純度:  95.1%)。
Example 2 In Example 1, 40 g of sodium carbonate was used as a catalyst.
The reaction was carried out in the same manner as in Example 1, except that (0, H mol) was used and the reaction temperature was controlled at 95°C, and 3 g of N-phenyl-2,8-dichloroaniline 6B was obtained (yield:
87%, purity: 95.1%).

実施例3〜lO 実施例2においてクロロベンゼンのかわりに第1表に示
す溶媒を500g用いたほかは実施例2と同様にして反
応を行ない、N−フェニル−2゜6−ジクロロアニリン
をえた。それぞれの収率および純度の測定結果を第1表
に示す。
Examples 3 to 1O The reaction was carried out in the same manner as in Example 2 except that 500 g of the solvent shown in Table 1 was used instead of chlorobenzene in Example 2 to obtain N-phenyl-2°6-dichloroaniline. The measurement results of each yield and purity are shown in Table 1.

第  1  表 実施例U〜24 実施例6において炭酸ナトリウムのかわりに第2表に示
す触媒を同表に示す袋用いたほかは実施例6と同様にし
て反応を行ないN−フェニル2.6−ジクロロアニリン
をえた。それぞれの収率および純度の測定結果を第2表
に示す。
Table 1 Examples U to 24 The reaction was carried out in the same manner as in Example 6 except that the catalyst shown in Table 2 was used in the bag shown in Table 2 instead of sodium carbonate. I got dichloroaniline. The measurement results of each yield and purity are shown in Table 2.

〔以下余白〕[Margin below]

第  2  表 実施例25〜29 実施例1において反応温度を100°Cとするかわりに
第3表に示す反応温度としたほかは実施例1と同様にし
て反応を行ない、N−フェニル−2,6−ジクロロアニ
リンをえた。それぞれの収率および純度の測定結果を第
3表に示す。
Table 2 Examples 25 to 29 The reaction was carried out in the same manner as in Example 1 except that the reaction temperature shown in Table 3 was used instead of 100°C in Example 1, and N-phenyl-2, 6-dichloroaniline was obtained. The measurement results of each yield and purity are shown in Table 3.

第3表 実施例30〜34 実施例1においてN−フェニル2,2,6.6−テトラ
クロロシクロヘキサンイミンのかわりに第4表に示す2
.2.8.6−テトラハロシクロヘキサンイミン誘導体
を用いたほかは実施例1と同様の方法にしたがって反応
を行ない、それぞれの2.2,8゜8−テトラハロシク
ロヘキサンイミン誘導体から誘導される2、8−ジハロ
アニリン誘導体をえた。
Table 3 Examples 30 to 34 In Example 1, N-phenyl 2,2,6,6-tetrachlorocyclohexaneimine was replaced with 2 shown in Table 4.
.. The reaction was carried out in the same manner as in Example 1 except that 2.8.6-tetrahalocyclohexanimine derivatives were used, and 2, An 8-dihaloaniline derivative was obtained.

それぞれの2,6−ジハロアニリン誘導体の構造式、収
率および純度の測定結果を第4表に示す。
Table 4 shows the structural formula, yield, and purity measurement results for each 2,6-dihaloaniline derivative.

〔以下余白〕[Margin below]

第  4  表 〔発明の効果〕 本発明は医薬や農薬の中間体として非常に有用な2,6
ジハロアニリン誘導体を安価な原料を用いて短い工程で
しかも高収率かつ高純度で製造しうるという効果を奏す
る。
Table 4 [Effects of the invention] The present invention provides 2,6
The effect is that dihaloaniline derivatives can be produced in a short process using inexpensive raw materials with high yield and high purity.

Claims (1)

【特許請求の範囲】 1 2,2,6,6−テトラハロシクロヘキサンイミン
誘導体を触媒の存在下または不存在下で脱ハロゲン化水
素せしめることを特徴とする一般式( I ): ▲数式、化学式、表等があります▼( I ) (式中、Rは水素原子、直鎖もしくは分枝したアルキル
基または置換もしくは無置換芳香族基、およびXはハロ
ゲン原子を表わす)で示される2,6−ジハロアニリン
誘導体の製造方法。 2 脱ハロゲン化水素を熱分解によって行なう特許請求
の範囲第1項記載の2,6−ジハロアニリン誘導体の製
造方法。 3 触媒が塩基触媒である特許請求の範囲第1項記載の
2,6−ジハロアニリン誘導体の製造方法。 4 塩基触媒がアルカリ金属またはアルカリ土類金属の
炭酸塩、酸化物および水酸化物ならびに有機塩基からな
る群より選ばれた少なくとも1種である特許請求の範囲
第3項記載の2,6−ジハロアニリン誘導体の製造方法
。 5 2,2,6,6−テトラハロシクロヘキサンイミン
誘導体のハロゲン原子がフッ素原子、塩素原子、臭素原
子またはヨウ素原子である特許請求の範囲第1項、第2
項、第3項または第4項記載の2,6−ジハロアニリン
誘導体の製造方法。 6 溶媒としてN,N−ジメチルホルムアミド、N,N
−ジメチルアセトアミド、クロロベンゼン、ニトロベン
ゼン、シアノベンゼン、アセトニトリル、プロピオニト
リルまたはジメチルスルホキシドを用いる特許請求の範
囲第1項、第2項、第3項、第4項または第5項記載の
2,6−ジハロアニリン誘導体の製造方法。
[Claims] 1 General formula (I) characterized by dehydrohalogenating a 2,2,6,6-tetrahalocyclohexanimine derivative in the presence or absence of a catalyst: ▲Mathematical formula, chemical formula , tables, etc. ▼ (I) 2,6- (wherein R represents a hydrogen atom, a linear or branched alkyl group, or a substituted or unsubstituted aromatic group, and X represents a halogen atom) A method for producing a dihaloaniline derivative. 2. A method for producing a 2,6-dihaloaniline derivative according to claim 1, wherein the dehydrohalogenation is carried out by thermal decomposition. 3. The method for producing a 2,6-dihaloaniline derivative according to claim 1, wherein the catalyst is a base catalyst. 4. 2,6-dihaloaniline according to claim 3, wherein the base catalyst is at least one selected from the group consisting of alkali metal or alkaline earth metal carbonates, oxides and hydroxides, and organic bases. Method for producing derivatives. 5. Claims 1 and 2, wherein the halogen atom of the 2,2,6,6-tetrahalocyclohexanimine derivative is a fluorine atom, chlorine atom, bromine atom, or iodine atom.
4. A method for producing a 2,6-dihaloaniline derivative according to item 1, 3 or 4. 6 N,N-dimethylformamide, N,N as a solvent
-2,6- according to claim 1, 2, 3, 4 or 5 using dimethylacetamide, chlorobenzene, nitrobenzene, cyanobenzene, acetonitrile, propionitrile or dimethyl sulfoxide. A method for producing a dihaloaniline derivative.
JP62277205A 1987-10-30 1987-10-30 Method for producing 2,6-dihaloaniline derivative Expired - Fee Related JPH0751539B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62277205A JPH0751539B2 (en) 1987-10-30 1987-10-30 Method for producing 2,6-dihaloaniline derivative
EP88112590A EP0313740B1 (en) 1987-10-30 1988-08-03 N-phenyl-2,2,6,6-tetrahalocyclohexaneimine and processes for preparing 2,2,6,6-tetrahalocyclohexaneimine derivative and 2,6-dihaloaniline derivative
US07/228,134 US4908479A (en) 1987-10-30 1988-08-03 N-phenyl-2,2,6,6-tetrahalocyclohexaneimine
DE8888112590T DE3880072T2 (en) 1987-10-30 1988-08-03 N-PHENYL-2,2,6,6-TETRAHALOGENCYCLOHEXANIMINE AND METHOD FOR PRODUCING DERIVATIVES OF 2,2,6,6-TETRAHALOGENCYCLOHEXANIMINE AND DERIVATIVES OF 2,6-DIHALOGENANILINE.
KR1019880010235A KR950005770B1 (en) 1987-10-30 1988-08-10 N-phenyl-s,2,6,6-tetrahalocyclo hexaneimine and process for preparing 2,2,6,6-tetrahalocyclohexaneimine derivative and 2,6-dihaloaniline derivative
US07/427,390 US5001264A (en) 1987-10-30 1989-10-27 N-phenyl-2,2,6,6-tetrahalocyclohexaneimine and processes for preparing 2,2,6,6-tetrahalocyclohexaneimine derivative and 2,6-dihaloaniline derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277205A JPH0751539B2 (en) 1987-10-30 1987-10-30 Method for producing 2,6-dihaloaniline derivative

Publications (2)

Publication Number Publication Date
JPH01117849A true JPH01117849A (en) 1989-05-10
JPH0751539B2 JPH0751539B2 (en) 1995-06-05

Family

ID=17580272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277205A Expired - Fee Related JPH0751539B2 (en) 1987-10-30 1987-10-30 Method for producing 2,6-dihaloaniline derivative

Country Status (1)

Country Link
JP (1) JPH0751539B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389104C (en) * 2006-04-10 2008-05-21 浙江大学 Process for preparation of 2,6-dichloroaniline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100389104C (en) * 2006-04-10 2008-05-21 浙江大学 Process for preparation of 2,6-dichloroaniline

Also Published As

Publication number Publication date
JPH0751539B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
EP3812366B1 (en) A preparation method for m-diamide compounds
TWI695824B (en) Process for preparing 3-chloro-2-vinylphenylsulfonates
US4769493A (en) Process for producing tetrafluorophthalic acid
JPH01117849A (en) Production of 2,6-dihaloaniline derivative
JP3002791B2 (en) Benzyl phenyl ketone derivative
US4908479A (en) N-phenyl-2,2,6,6-tetrahalocyclohexaneimine
HU207718B (en) Process for producing 3,5,6-trichloropyridin-2-ol
JPS6147825B2 (en)
JP6915189B1 (en) High-purity 2-naphthylacetonitrile and its production method
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JPH01117853A (en) N-phenyl-2,2,6,6-tetrahalocyclohexanimine
JP3646223B2 (en) Method for producing aromatic compound by electrophilic reaction and aromatic compound
KR910003635B1 (en) Process for the preparation of 2-(2-naphthyloxy)propion anilide derivatives
KR100730766B1 (en) New method for preparing biphenylacetic acid
JPH10168051A (en) Production of 2,3-dihalogeno-6-trifluoromethylbenzonitrile
JP3961049B2 (en) 3-Amino-4- (1-hydroxyalkyl) pyrazoline compound, method for producing the same and method for producing the same
EP0596130B1 (en) Production of 2-halo-3,5-difluoroaniline, intermediate for producing the same, and production of said intermediate
JPH01117852A (en) Production of 2,2,6,6-tetrahalocyclohexanimine derivative
JPS61151165A (en) Production of polythiobisphenol
JPH0812658A (en) Production of sydnones
JPH0273044A (en) Difluoroanthranilic acid and preparation thereof
JPS6377844A (en) Production of p-bromoanilines
JP2004315444A (en) METHOD FOR PRODUCING alpha,alpha-DIFLUOROACETIC ACID ESTERS
JPS5978160A (en) Preparation of 3-chloro-4-phenylpyrrole derivative
JPS61148149A (en) Production of 2-acylamino-5-alkyl-4,6-dihalogenophenol

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees