JPH01110510A - Pretreatment of transition metal catalyst - Google Patents

Pretreatment of transition metal catalyst

Info

Publication number
JPH01110510A
JPH01110510A JP62268205A JP26820587A JPH01110510A JP H01110510 A JPH01110510 A JP H01110510A JP 62268205 A JP62268205 A JP 62268205A JP 26820587 A JP26820587 A JP 26820587A JP H01110510 A JPH01110510 A JP H01110510A
Authority
JP
Japan
Prior art keywords
transition metal
metal catalyst
hydrocarbon solvent
inert hydrocarbon
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268205A
Other languages
Japanese (ja)
Inventor
Tadashi Asanuma
正 浅沼
Mitsugi Ito
伊藤 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62268205A priority Critical patent/JPH01110510A/en
Publication of JPH01110510A publication Critical patent/JPH01110510A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To enable pretreatment of a highly active transition metal catalyst without lowering the performance, by using a hydrocarbon solvent having a content of specific chlorinated ethers lower than a specific level. CONSTITUTION:A transition metal catalyst produced by supporting a titanium compound on a magnesium compound is treated with a small amount of an olefin in an inert hydrocarbon solvent and then used in the bulk polymerization or vapor-phase polymerization of olefin essentially in the absence of the inert hydrocarbon solvent. In the above process, the transition metal catalyst is pretreated with an inert hydrocarbon solvent (e.g., heptane) containing <=10ppm of chlorinated ethers of formula (R<1> is hydrocarbon group).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遷移金属触媒の前処理方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for pretreating transition metal catalysts.

詳しくは、特定の化合物を一定量以下しか含有しない炭
化水素溶剤中で遷移金属触媒を前処理する方法に関する
Specifically, the present invention relates to a method of pretreating a transition metal catalyst in a hydrocarbon solvent containing a specific amount of a specific compound or less.

〔従来の技術〕[Conventional technology]

エチレン、プロピレン、ブテン、ヘキセン等のオレフィ
ン重合用の触媒として、近来極めて高活性の遷移金属触
媒が開発され利用されている。中でもマグネシウム化合
物にチタン化合物を担持したものは高活性であり既に多
くの種類のものが知られている(例えば、ダイヤモンド
経営開発情報公開情報レポート’ 87/2月版14〜
17)。
Recently, extremely highly active transition metal catalysts have been developed and used as catalysts for polymerizing olefins such as ethylene, propylene, butene, and hexene. Among them, those in which a titanium compound is supported on a magnesium compound are highly active, and many types are already known (for example, Diamond Management Development Information Disclosure Information Report' 1987/February Edition 14~
17).

触媒の活性が向上すると触媒そのものも重合阻害成分に
対して相対的に弱くなるうえに、触媒の使用量が減少す
るため比較的低濃度で取り扱う必要性が生じてくる。そ
のため従来より使用する分散媒体の精製は注意深く行わ
れ、水、アルコール等の含011基化合物等は厳密に管
理されている。−方近来の重合技術の進歩により、より
合理化されたプロセス、即ち、塊状重合法、気相重合法
が採用されつつあり、それらのプロセスでは重合系に送
入する遷移金属触媒は触媒の装入の際の閉塞防止とか、
触媒性能の低下の防止のため、通常不活性炭化水素化合
物中で少量のオレフィンで前処理して用いられている。
As the activity of the catalyst increases, the catalyst itself becomes relatively weak against polymerization-inhibiting components, and the amount of catalyst used decreases, making it necessary to handle the catalyst at a relatively low concentration. Therefore, conventionally used dispersion media have been carefully purified, and 011-containing compounds such as water and alcohol have been strictly controlled. - Recent advances in polymerization technology have led to the adoption of more streamlined processes, namely bulk polymerization and gas phase polymerization, in which the transition metal catalyst introduced into the polymerization system is To prevent blockage when
In order to prevent deterioration of catalyst performance, it is usually used after being pretreated with a small amount of olefin in an inert hydrocarbon compound.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

しかしながら、実際に高活性の遷移金属触媒を使用する
に際して、上記含011基化合物を厳密に除去した不活
性炭化水素化合物溶剤を用いて遷移金属触媒をオレフィ
ンで前処理して使用しても活性が劣る場合があることが
あり、その原因を除くことが望まれた。
However, when actually using highly active transition metal catalysts, even if the transition metal catalysts are pretreated with olefin using an inert hydrocarbon compound solvent from which the above-mentioned 011 group-containing compounds have been strictly removed, the activity remains. In some cases, the performance may be inferior, and it was desirable to eliminate the cause.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記問題を解決する方法について鋭意検討
した結果、特定の構造の有機ケトン化合物が遷移金属触
媒の性能を大幅に低下させることを見出し本発明を完成
した。
The inventors of the present invention conducted intensive studies on methods for solving the above problems, and as a result, they discovered that an organic ketone compound with a specific structure significantly reduces the performance of a transition metal catalyst, and completed the present invention.

即ち本発明は、マグネシウム化合物にチタン化合物を担
持して得た遷移金属触媒を不活性炭化水素溶剤中で少量
のオレフィンで処理し次いで実質的に不活性炭化水素溶
剤の存在しない塊状重合法か或いは気相重合法でオレフ
ィンを重合する方法において、該不活性炭化水素溶剤と
して一般式R1−0−CZ II s −CI (式中
R1は炭化水素残基)で表される塩素化エーテル類の含
有量が10ppm以下である不活性炭化水素溶剤を用い
ることを特徴とする遷移金属触媒の前処理方法である。
That is, the present invention involves treating a transition metal catalyst obtained by supporting a titanium compound on a magnesium compound with a small amount of olefin in an inert hydrocarbon solvent, and then using a bulk polymerization method substantially free of the inert hydrocarbon solvent, or In the method of polymerizing olefins by gas phase polymerization, the inert hydrocarbon solvent contains chlorinated ethers represented by the general formula R1-0-CZIIs-CI (wherein R1 is a hydrocarbon residue). A method for pre-treating a transition metal catalyst, characterized by using an inert hydrocarbon solvent in an amount of 10 ppm or less.

本発明において、塩素かエーテル類としては一般式R’
0−C!ll5−CI (式中R1は炭化水素残基)で
表される化合物が挙げられるがなかでも171が比較的
小さい、例えば、メチル基、エチル基、プロピル基ブチ
ル基、ヘキシル基等である化合物が活性の低下に影響を
与える為厳密に管理し10ppm以下に制御する必要が
ある。好ましくは全く存在しないことであるが、通常の
遷移金属触媒の前処理条件では10ppm以下、特に5
pp−以下とすることで活性の低下は妨げる。
In the present invention, as chlorine or ether, the general formula R'
0-C! Examples include compounds represented by ll5-CI (in the formula, R1 is a hydrocarbon residue), and among them, compounds in which 171 is relatively small, such as a methyl group, ethyl group, propyl group, butyl group, hexyl group, etc. Since it affects the reduction of activity, it is necessary to strictly control and control it to 10 ppm or less. Preferably, it is not present at all, but under normal transition metal catalyst pretreatment conditions, it is present in an amount of 10 ppm or less, especially 5
A decrease in activity is prevented by setting it below pp-.

本発明において、マグネシウム化合物にチタン化合物を
担持して得た遷移金属触媒としては特に制限は無くハロ
ゲン化マグネシウム或いはエステル、エーテル等の電子
供与性化合物で処理したハロゲン化マグネシウムにハロ
ゲン含有化合物を担持したもの、あるいは担体としてア
ルコキシマグネシウム、カルボン酸のマグネシウム塩、
或いはマグネシウム化合物以外の不活性な無機あるいは
有機の化合物を含有する、あるいは更にそれらを電子供
与性の化合物で処理したものを用いたものであってもよ
い。これらの遷移金属触媒の具体例としては、上述の文
献に特許が多数例示されている。
In the present invention, the transition metal catalyst obtained by supporting a titanium compound on a magnesium compound is not particularly limited, and a halogen-containing compound may be supported on a magnesium halide or a magnesium halide treated with an electron-donating compound such as an ester or ether. alkoxymagnesium, magnesium salts of carboxylic acids,
Alternatively, it may contain an inert inorganic or organic compound other than a magnesium compound, or may be further treated with an electron-donating compound. As specific examples of these transition metal catalysts, many patents are exemplified in the above-mentioned literature.

本発明において炭化水素溶剤としては、ペンタン、ヘキ
サン、ヘプタン、ノナン、デカン、ベンゼン、トルエン
、キシレン、エチルベンゼンなどあるいはその混合物が
挙げられる。前処理にさいし遷移金属触媒は通常1g八
以上で行うのがより安全である。
In the present invention, hydrocarbon solvents include pentane, hexane, heptane, nonane, decane, benzene, toluene, xylene, ethylbenzene, etc., or mixtures thereof. It is safer to use the transition metal catalyst in the pretreatment in an amount of 1 g or more.

〔実施例〕〔Example〕

以下に実施例を示し本発明をさらに説明する。 The present invention will be further explained with reference to Examples below.

実験例1 市販のへブタンを硫酸で処理し、ついで水洗した後、カ
ルシウムハイドライド上で還流処理し、さらに蒸留後、
シリカゲルで繰り返し処理しついでモレキエラーシーブ
ス3Aで乾燥した。このヘプタン中には塩素化エーテル
は全く含まれていなかった。
Experimental Example 1 Commercially available hebutane was treated with sulfuric acid, washed with water, refluxed over calcium hydride, and further distilled.
It was treated repeatedly with silica gel and dried with Molecule sieves 3A. This heptane contained no chlorinated ether.

無水の塩化マグネシウム20gとテトラエトキシシラン
3ml 、 2塩化エチレン4mlを40時間粉砕した
。得られた共粉砕物20gを300+*Iのフラスコに
入れ100m1のへブタン、10hlの四塩化チタンを
加え90°Cで1時間加熱処理しついで、静置し上澄み
を除去しさらに同様に100m1のへブタン、100w
1の四塩化チタンを加え90″′Cで1時間加熱処理し
た。静置し上澄みを除去したのら、固形分をヘプタンで
洗浄して遷移金属触媒とした。一部を取り出し遷移金属
触媒1g八にヘプタンで希釈し、遷移金属触媒1gあた
りジエチルアルミニウム4.2+ml 、  )ルイル
酸メチル2ml 、を加えプロピレンを4g室温で装入
して前処理した(実施例1)、また一部は2−エトキシ
−1−クロルエタンを8ppm (実施例2)、20p
pm (比較例1)含むヘプタンにIg/Lとなるよう
に希釈した、また比較のためエーテルを20pp−含む
ヘプタンにIg/Lとなるように希釈して同様の前処理
をおこなった(参考例2)。前処理直後と24時間経過
後それぞれの前処理した遷移金属触媒について性能を5
Lのオートクレーブを用い、75°Cで2時間塊状重合
して評価した。この時遷移金属触媒30a+gに対し、
トリエチルアルミニウムO,Ohl、プロピレン1.5
kg 、水素1.75Nl使用した。結果は表に示す。
20 g of anhydrous magnesium chloride, 3 ml of tetraethoxysilane, and 4 ml of ethylene dichloride were ground for 40 hours. 20 g of the obtained co-pulverized material was placed in a 300+*I flask, 100 ml of hebutane and 10 hl of titanium tetrachloride were added, and the mixture was heated at 90°C for 1 hour, left to stand, the supernatant was removed, and 100 ml of Hebutane, 100w
1 titanium tetrachloride was added and heat treated at 90'''C for 1 hour. After standing still and removing the supernatant, the solid content was washed with heptane to obtain a transition metal catalyst. A portion was taken out and 1 g of transition metal catalyst was added. 8 was diluted with heptane, 4.2+ ml of diethylaluminium and 2 ml of ) methyl rulyate were added per 1 g of transition metal catalyst, and 4 g of propylene was charged at room temperature for pretreatment (Example 1). 8 ppm of ethoxy-1-chloroethane (Example 2), 20 p
pm (Comparative Example 1) The same pretreatment was carried out by diluting it to Ig/L in heptane containing ether and for comparison, diluting it to Ig/L in heptane containing 20 pp- of ether (Reference Example 2). The performance of each pretreated transition metal catalyst immediately after pretreatment and after 24 hours was evaluated as 5.
Bulk polymerization was performed at 75° C. for 2 hours using a No. L autoclave for evaluation. At this time, for the transition metal catalyst 30a+g,
Triethyl aluminum O, Ohl, propylene 1.5
kg, and 1.75 Nl of hydrogen were used. The results are shown in the table.

実験例2 実験例1と同様の共役ビニルケトンを含有しないヘプタ
ンを用いて以下の実験を行った。
Experimental Example 2 The following experiment was conducted using the same heptane as in Experimental Example 1 that does not contain a conjugated vinyl ketone.

300m1の丸底フラスコにマグネシウム7.4g、ジ
エチルエーテル20m1入れ、エーテルの還流下に臭化
シクロヘキサン25gとジエチルエーテル50−1の混
合物を1時間かけて滴下した。ついで塩化シクロヘキサ
ンを18gを1時間かけて添加しさら2時間還流下撹拌
処理し、C61111MgBro、 5c111. S
のエチルエーテル溶液を調製した。
7.4 g of magnesium and 20 ml of diethyl ether were placed in a 300 ml round bottom flask, and a mixture of 25 g of cyclohexane bromide and 50-1 diethyl ether was added dropwise over 1 hour while the ether was refluxing. Then, 18 g of cyclohexane chloride was added over 1 hour and stirred under reflux for another 2 hours to obtain C61111MgBro, 5c111. S
An ethyl ether solution of was prepared.

次いでエチルエーテルの還流下にアリルクロライド24
g850m1のエチルエーテルに溶解したものを3時間
かけて滴下し、さらに還流下に4時間撹拌した。
Allyl chloride 24 was then added under reflux of ethyl ether.
A solution of g850ml of ethyl ether was added dropwise over 3 hours, and the mixture was further stirred under reflux for 4 hours.

次いで室温でろ過し、固形分をエチルエーテルで洗浄し
、窒素気流で乾燥して、固形分41gを得た。得られた
固形分は阿g:cj!:Brがほぼ1:0.5:1.5
であり、MgRro、 sCl +、 sであった。
Then, it was filtered at room temperature, and the solid content was washed with ethyl ether and dried with a nitrogen stream to obtain 41 g of solid content. The obtained solid content is Ag:cj! :Br is approximately 1:0.5:1.5
and MgRro, sCl +, s.

上記固形分Logを200m lの丸底フラスコに入れ
、四塩化チタン50m1、ヘプタン50m1を入れ、9
0℃で1時間撹拌処理し、次いで静置して上澄を除去し
た。さらに四塩化チタン501、ヘプタン50+w I
を入れ、90°Cで1時間撹拌処理し、次いで静置して
上澄を除去し、得られた固形分をトルエンで7回洗浄し
て遷移金属触媒とした0分析の結果はチタンを1 、3
w tz金含有ていた。
Put the above solid content Log into a 200 ml round bottom flask, add 50 ml of titanium tetrachloride and 50 ml of heptane, and
The mixture was stirred at 0° C. for 1 hour, then allowed to stand, and the supernatant was removed. Furthermore, titanium tetrachloride 501, heptane 50+w I
was stirred at 90°C for 1 hour, then left to stand, the supernatant was removed, and the resulting solid content was washed with toluene 7 times to use as a transition metal catalyst. ,3
w tz It contained gold.

上記操作で得た遷移金属触媒を用いた他は実験例1の実
施例1(実施例3)、比較例1(但し2−エトキシ−1
−クロルエタンに変え2−イソプロポキシ−1−クロル
エタンを用いた)(比較例2) と同様にした。但し、
前処理の際、遷移金属触媒1gに対しトリエチルアルミ
ニウム0.2ml 、  トリットキシフェニルシラン
0.05m1を使用し、塊状重合の際には遷移金属触媒
20曽gに対し、トリエチルアルミニウム0.20m1
、トリメトキシフェニルシラン0.05m1を追加して
用いた。
Example 1 (Example 3) of Experimental Example 1, Comparative Example 1 (However, 2-ethoxy-1
-2-isopropoxy-1-chloroethane was used instead of chloroethane) (Comparative Example 2). however,
During pretreatment, 0.2 ml of triethylaluminum and 0.05 ml of tritoxyphenylsilane were used per 1 g of transition metal catalyst, and during bulk polymerization, 0.20 ml of triethyl aluminum was used per 20 g of transition metal catalyst.
, 0.05 ml of trimethoxyphenylsilane was additionally used.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を実施することで高活性な遷移金属触媒を
性能を低下させることなく前処理でき工業的に極めて価
値がある。
By carrying out the method of the present invention, highly active transition metal catalysts can be pretreated without deteriorating their performance, which is extremely valuable industrially.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] マグネシウム化合物にチタン化合物を担持して得た遷移
金属触媒を不活性炭化水素溶剤中で少量のオレフィンで
処理し次いで実質的に不活性炭化水素溶剤の存在しない
塊状重合法か或いは気相重合法でオレフィンを重合する
方法において、該不活性炭化水素溶剤として一般式▲数
式、化学式、表等があります▼(式中R^1は炭化水素
残基)で表される塩素化エーテル類の含有量が10pp
m以下である不活性炭化水素溶剤を用いることを特徴と
する遷移金属触媒の前処理方法
A transition metal catalyst obtained by supporting a titanium compound on a magnesium compound is treated with a small amount of olefin in an inert hydrocarbon solvent, and then subjected to bulk polymerization in the absence of substantially an inert hydrocarbon solvent or gas phase polymerization. In the method of polymerizing olefins, the content of chlorinated ethers represented by the general formula ▲ mathematical formula, chemical formula, table, etc. ▼ (wherein R^1 is a hydrocarbon residue) is used as the inert hydrocarbon solvent. 10pp
A pretreatment method for a transition metal catalyst characterized by using an inert hydrocarbon solvent having a molecular weight of less than m.
JP62268205A 1987-10-26 1987-10-26 Pretreatment of transition metal catalyst Pending JPH01110510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268205A JPH01110510A (en) 1987-10-26 1987-10-26 Pretreatment of transition metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268205A JPH01110510A (en) 1987-10-26 1987-10-26 Pretreatment of transition metal catalyst

Publications (1)

Publication Number Publication Date
JPH01110510A true JPH01110510A (en) 1989-04-27

Family

ID=17455379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268205A Pending JPH01110510A (en) 1987-10-26 1987-10-26 Pretreatment of transition metal catalyst

Country Status (1)

Country Link
JP (1) JPH01110510A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131204A (en) * 1981-02-05 1982-08-14 Mitsubishi Chem Ind Ltd Production of polyolefin
JPS5928754A (en) * 1982-08-10 1984-02-15 Nippon Telegr & Teleph Corp <Ntt> Facsimile device
JPS59140206A (en) * 1983-02-01 1984-08-11 Mitsubishi Chem Ind Ltd Production of propylene polymer
JPS62268204A (en) * 1985-05-10 1987-11-20 ゼネラル・エレクトリック・カンパニイ Charge coupler
JPS6327511A (en) * 1986-07-21 1988-02-05 Mitsubishi Chem Ind Ltd Production of propylene polymer
JPS63202604A (en) * 1987-02-19 1988-08-22 Mitsui Petrochem Ind Ltd Polymerization of alpha-olefin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131204A (en) * 1981-02-05 1982-08-14 Mitsubishi Chem Ind Ltd Production of polyolefin
JPS5928754A (en) * 1982-08-10 1984-02-15 Nippon Telegr & Teleph Corp <Ntt> Facsimile device
JPS59140206A (en) * 1983-02-01 1984-08-11 Mitsubishi Chem Ind Ltd Production of propylene polymer
JPS62268204A (en) * 1985-05-10 1987-11-20 ゼネラル・エレクトリック・カンパニイ Charge coupler
JPS6327511A (en) * 1986-07-21 1988-02-05 Mitsubishi Chem Ind Ltd Production of propylene polymer
JPS63202604A (en) * 1987-02-19 1988-08-22 Mitsui Petrochem Ind Ltd Polymerization of alpha-olefin

Similar Documents

Publication Publication Date Title
US4477639A (en) Olefin polymerization catalyst component and composition and method of preparation
JP2905184B2 (en) Olefin polymerization method
EP0159736B1 (en) Olefin polymerization catalyst composition
RU2073565C1 (en) Method of preparing solid catalyst component, solid catalyst component, catalyst for stereospecific polymerization, and method of stereospecific polymerization of propylene
US5413979A (en) Method for the preparation of a catalyst component for the polymerization of olefins, a polymerization catalyst component produced by the method and use of the same
EP0177841A1 (en) Process for production of olefin polymers
JPH01110510A (en) Pretreatment of transition metal catalyst
JPH01110509A (en) Pretreatment of transition metal catalyst
JPH06345814A (en) Catalyst for polymerization of olefin
JPH0725927A (en) Polymerization of olefin
JPH0456012B2 (en)
CN87107065A (en) Catalyst component of alpha-olefin polymerization catalyst and preparation method thereof
US3257369A (en) Catalysts having an improved activity in the stereospecific polymerization of alpha-olefins and process for preparing same
JPS612706A (en) Polymerization of propylene
JPH01131206A (en) Production of transition metal catalyst
JPH1095809A (en) Supported catalyst for use in olefin polymerization
JPH01111449A (en) Method for preservation of transition metal catalyst
JPS59124909A (en) Production of olefin polymerization catalyst
JPS6136304A (en) Production of olefin polymer
JPH01111448A (en) Method for preservation of transition metal catalyst
JPH0158202B2 (en)
JPH11508272A (en) Purification method for vinyl aromatic and alicyclic monomers
JP2657389B2 (en) Catalyst for polymerization of olefins
JPS61133204A (en) Reclamation of solvent for ziegler-type polymerization
JPH04130010A (en) Production of disilane