JPH04130010A - Production of disilane - Google Patents

Production of disilane

Info

Publication number
JPH04130010A
JPH04130010A JP25092090A JP25092090A JPH04130010A JP H04130010 A JPH04130010 A JP H04130010A JP 25092090 A JP25092090 A JP 25092090A JP 25092090 A JP25092090 A JP 25092090A JP H04130010 A JPH04130010 A JP H04130010A
Authority
JP
Japan
Prior art keywords
disilane
solvent
hydrocarbons
inert gas
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25092090A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ishikawa
石川 延宏
Sanpei Watanabe
渡辺 三平
Masaaki Ito
正章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP25092090A priority Critical patent/JPH04130010A/en
Publication of JPH04130010A publication Critical patent/JPH04130010A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce disilane having a reduced hydrocarbon content by separating hydrocarbons produced as by-products in a solvent with inert gas blown at a specified temp. CONSTITUTION:When a disilane deriv. is reduced in a solvent to obtain disilane, aluminum lithium hydride as a reducing agent is added to dehydrated butyl ether as the solvent for the reduction. Inert gas is blown into the solvent at 10-80 deg.C to separate hydrocarbons from the solvent and then the reduction is carried out. Disilane hardly contg. hydrocarbons as impurities can efficiently be produced.

Description

【発明の詳細な説明】 イ)発明の目的 〔産業上の利用分野〕 本発明は、炭化水素類からなる不純物の含有量が少ない
ジシラン(SizH6)を、ジシラン誘導体の金属水素
化物による還元反応で、効率よく製造できる新規な方法
に関する。
[Detailed Description of the Invention] A) Purpose of the Invention [Field of Industrial Application] The present invention is directed to reducing disilane (SizH6), which has a low content of impurities consisting of hydrocarbons, by a reduction reaction of a disilane derivative with a metal hydride. , relates to a novel method for efficient manufacturing.

〔従来の技術〕[Conventional technology]

ジシランを合成する従来公知の方法には、モノシランを
原料としたグロー放電法、マグネシウムシリサイドの酸
分解法等があるが、いずれもいくつかの欠点を有してい
る。
Conventionally known methods for synthesizing disilane include a glow discharge method using monosilane as a raw material and an acid decomposition method of magnesium silicide, but each method has several drawbacks.

特に重大な欠点は、目的のジシランの他にモノシランや
、トリシランその他の高級シランが大量に副生ずるため
に、ジシランの収率が低いことと、更にトリシランその
他の高級シランが分解しやすいので、操作に非常な危険
が伴うことである。
A particularly serious drawback is that, in addition to the desired disilane, large amounts of monosilane, trisilane, and other higher silanes are produced as by-products, resulting in a low yield of disilane.Furthermore, trisilane and other higher silanes are easily decomposed; There is great danger involved.

一方、初めから5i−3i骨格を有するジシラン誘導体
を出発原料としてジシランを合成する方法は、モノシラ
ンや高級シランの副生が少ない点で非常に優れており、
ジシランの大量製造に適した方法である。このようなジ
シラン誘導体を出発原料としてジシランを合成する方法
は従来から種々知られており(例えば英国特許823,
483号など)があり、ヘキサクロロジシラン、ヘキサ
ブロモジシランなどのヘキサハロゲノジシランを金属水
素化物すなわち分子内に還元能力を有する無機または有
機の金属化合物、例えば水素化リチウム、水素化リチウ
ムアルミニウム、水素化ナトリラムアルミニウム、水素
化ジエチルアルミニウムなどで還元する製法である。こ
の還元法によりジシランを製造する際の反応溶媒として
は、用いる金属水素化物の種類に対応して、例えばエチ
ルエーテル、テトラヒドロフラン、ブチルエーテル、l
パラフィン、トルエンなどが使用される。
On the other hand, the method of synthesizing disilane using a disilane derivative having a 5i-3i skeleton as a starting material is very superior in that it produces fewer by-products of monosilane and higher silane.
This method is suitable for mass production of disilane. Various methods for synthesizing disilane using such disilane derivatives as starting materials have been known (for example, British Patent No. 823,
No. 483, etc.), and hexahalogenodisilanes such as hexachlorodisilane and hexabromodisilane can be reduced to metal hydrides, that is, inorganic or organic metal compounds that have the ability to reduce them in the molecule, such as lithium hydride, lithium aluminum hydride, and sodium hydride. This is a manufacturing method that involves reduction with ram aluminum, diethyl aluminum hydride, etc. The reaction solvent for producing disilane by this reduction method may be ethyl ether, tetrahydrofuran, butyl ether, l, etc. depending on the type of metal hydride used.
Paraffin, toluene, etc. are used.

これらの従来法で製造されたジシラン中には、炭化水素
類としてエタン、プロパン、ブタン、イソブタン、1−
ブテン、トランス−2ブテンなどの飽和または不飽和の
低級脂肪族炭化水素が含まれている。
Disilane produced by these conventional methods contains hydrocarbons such as ethane, propane, butane, isobutane, and 1-
Contains saturated or unsaturated lower aliphatic hydrocarbons such as butene and trans-2-butene.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ジシランは各種の用途で使用され得るが、それらの多く
において高純度であることが要求されている。上記のご
とき還元法によって製造されるジシランが含有する不純
物のうち、低級脂肪族炭化水素とりわけ不飽和低級脂肪
族炭化水素は、ジシランからの分離、除去が非常に困難
であるが、本発明はこれらの炭化水素類の含有量が極め
て低減された、還元法によるジシランの製法を提供しよ
うとするものである。
Disilanes can be used in a variety of applications, many of which require high purity. Among the impurities contained in disilane produced by the above reduction method, lower aliphatic hydrocarbons, especially unsaturated lower aliphatic hydrocarbons, are very difficult to separate and remove from disilane. The present invention aims to provide a method for producing disilane by a reduction method in which the content of hydrocarbons is extremely reduced.

口)発明の構成 [課題を解決するだめの手段] 本発明者らは、ジシラン中の炭化水素類の分離、除去に
ついて検討を進め、ジシランの還元反応について詳細に
検討した結果、還元反応によって取得されるジシラン中
の炭化水素類は、系に溶媒と還元剤である金属水素化物
および必要に応して触媒が存在し、原料であるジシラン
誘導体が存在しない時点で、すでに生成していることを
見出し、さらに検討を重ねることによって、溶媒と還元
剤および必要に応して触媒を混合した段階で、溶媒中に
副生じた炭化水素類を、該溶媒に10°C〜80°Cの
温度で不活性ガスを吹き込むことにより分離すれば、そ
れ以降は炭化水素類を実質的に副生ぜず、その後のジシ
ラン誘導体と金属水素化物との反応により生成するジシ
ラン中に炭化水素類が混入することが避けられるとの知
見を得て、前記を要旨とする本発明を完成するに至った
g) Structure of the Invention [Means for Solving the Problem] The present inventors have proceeded with studies on the separation and removal of hydrocarbons in disilane, and as a result of detailed studies on the reduction reaction of disilane, the present inventors have discovered that they can be obtained by a reduction reaction. The hydrocarbons in disilane to be produced are already formed when the solvent, metal hydride as a reducing agent, and optionally a catalyst are present in the system, and the disilane derivative as a raw material is not present. Based on this discovery and further investigation, it was found that at the stage of mixing the solvent, reducing agent, and if necessary, the catalyst, hydrocarbons by-produced in the solvent were added to the solvent at a temperature of 10°C to 80°C. If the separation is performed by blowing inert gas, hydrocarbons will not be substantially produced as a by-product, and hydrocarbons will not be mixed into the disilane produced by the subsequent reaction between the disilane derivative and the metal hydride. Having found that this can be avoided, we have completed the present invention having the above-mentioned gist.

不活性ガスを吹き込むときの溶媒の温度は、10°C〜
80°Cとすることが必要であり、より好ましい温度は
20°C〜60°Cである。溶媒温度が10′Cより低
い場合は、炭化水素類の放散に時間を要するので効率的
でない。また逆に80°Cより高い場合は、炭化水素類
の除去という目的がらすると熱エネルギーの不必要な損
失に加えて、溶媒の放散量が多くなるばかりでなく、理
由はまったく不詳であるが、還元反応が阻害される現象
が認められる場合もあり不適当である。
The temperature of the solvent when blowing inert gas is 10°C ~
It is necessary to set the temperature to 80°C, and a more preferable temperature is 20°C to 60°C. If the solvent temperature is lower than 10'C, it is not efficient because it takes time for the hydrocarbons to dissipate. On the other hand, if the temperature is higher than 80°C, in addition to the unnecessary loss of thermal energy compared to the purpose of removing hydrocarbons, the amount of solvent dissipated increases, and for reasons that are completely unknown, In some cases, a phenomenon in which the reduction reaction is inhibited is observed, making it unsuitable.

この炭化水素類の除去操作を還元反応用の反応槽で実施
し、引続き還元反応を行うことはもちろん可能であり、
この方法は原材料の移動を要しない点において有利であ
るが、還元反応とは別の槽で本除去操作を実施した後、
反応槽に供給することもできる。
It is of course possible to carry out this hydrocarbon removal operation in a reaction tank for reduction reaction, and then continue the reduction reaction.
This method is advantageous in that it does not require the transfer of raw materials, but after carrying out the main removal operation in a tank separate from the reduction reaction,
It can also be supplied to a reaction tank.

除去操作を行う槽について制限はないが、撹拌機が装備
された反応槽、あるいは循環ポンプを装備した槽などの
ように、還元剤を含む溶媒からなる懸濁液を撹拌できる
構造の槽が適している。また除去を、制御された温度下
で実施するために、ジャケントのような加温および/ま
たは冷却のできる設備を設したものが好ましい。
There are no restrictions on the tank in which the removal operation is performed, but a tank with a structure that can stir a suspension consisting of a solvent containing a reducing agent, such as a reaction tank equipped with an agitator or a tank equipped with a circulation pump, is suitable. ing. Further, in order to carry out the removal under a controlled temperature, it is preferable to use equipment capable of heating and/or cooling such as Jaquent.

炭化水素の除去に使用する不活性ガスは、反応溶媒と還
元剤および、場合により使用される触媒に対して悪影響
を与えないものであればなんでも使用可能である。例え
ば、空気、窒素、アルゴン等が使用できる。引続き還元
反応を実施する場合には、生成するジシランが自然発火
性を有していることから、空気の混入は好ましくなく、
窒素、アルゴンといった不活性ガスが好適である。
Any inert gas used for removing hydrocarbons can be used as long as it does not have an adverse effect on the reaction solvent, reducing agent, and optionally used catalyst. For example, air, nitrogen, argon, etc. can be used. When carrying out a subsequent reduction reaction, it is undesirable for air to be mixed in because the disilane produced is pyrophoric.
Inert gases such as nitrogen and argon are preferred.

炭化水素類の副生は、溶媒に還元剤を添加後すみやかに
発生し、その後数分間程度の短時間で実質的に終了する
ので、不活性ガスの吹き込みはそれ以降に行うのが一般
的であるが、炭化水素類が副生じつつある段階で、不活
性ガスの吹き込みを開始することもできる。不活性ガス
を吹き込むときの流量および時間といった吹き込み条件
は、副生ずる炭化水素類の種類と量および以後の還元反
応によって取得されるジシランに許容される炭化水素類
の含有量に応じて、反応溶媒中の炭化水素類の濃度を測
定することにより、適宜設定される。
Hydrocarbon by-products are generated immediately after the reducing agent is added to the solvent, and are essentially completed within a few minutes, so inert gas is generally blown into the solvent after that point. However, it is also possible to start blowing inert gas at a stage when hydrocarbons are being produced as by-products. The blowing conditions such as flow rate and time when blowing inert gas are determined depending on the type and amount of by-product hydrocarbons and the allowable hydrocarbon content of disilane obtained by the subsequent reduction reaction. It is set appropriately by measuring the concentration of hydrocarbons in it.

例えば、1001!、の反応溶媒を対象として窒素ガス
を吹き込む場合の好ましい条件は、流量が0.2〜5m
/hrで、吹き込み時間1〜24時間の範囲内にあり、
最適条件は上記のようにして定めれば良い。
For example, 1001! The preferred conditions for blowing nitrogen gas into the reaction solvent are a flow rate of 0.2 to 5 m
/hr, the blowing time is within the range of 1 to 24 hours,
The optimal conditions may be determined as described above.

本発明において、不活性ガスの吹き込み処理を行った後
に行う、ジシラン誘導体の還元反応は、常法に従えばよ
い。
In the present invention, the reduction reaction of the disilane derivative performed after the inert gas blowing treatment may be carried out according to a conventional method.

〔実施例および比較例] 以下に、実施例および比較例によって、本発明を更に詳
細に説明する。
[Examples and Comparative Examples] The present invention will be explained in more detail below using Examples and Comparative Examples.

実施例1 還元反応の溶媒である脱水したブチルエーテル100d
の中に、還元剤として水素化リチウムアルミニウムを5
 g (0,13mol)加えた後、十分混合撹拌し、
溶媒の温度を30°Cに保った。この溶媒を撹拌しなが
ら、その中に窒素ガスをL OOOd/時間の流量で吹
き込み、放出される窒素中の炭化水素類をFID検出器
付きガスクロマトグラフで分析した。その結果は表1の
ごとくであり、5時間後には炭化水素類が検出されなく
なった。
Example 1 100 d of dehydrated butyl ether as a solvent for reduction reaction
5 liters of lithium aluminum hydride as a reducing agent.
After adding g (0.13 mol), mix thoroughly and stir.
The temperature of the solvent was kept at 30°C. While stirring the solvent, nitrogen gas was blown into it at a flow rate of LOOOd/hour, and hydrocarbons in the released nitrogen were analyzed using a gas chromatograph equipped with an FID detector. The results are shown in Table 1, and no hydrocarbons were detected after 5 hours.

その後、この?容媒中に23g(0,087m○1)の
へキサクロロジシランを供給し、還元させることによっ
て4.3g(収率80%)のジシランを得た。
Then this? 23 g (0,087 m○1) of hexachlorodisilane was supplied into the container and reduced to obtain 4.3 g (yield: 80%) of disilane.

このジシラン中の炭化水素類を分析したところ、いずれ
の成分も検出されなかった。
When hydrocarbons in this disilane were analyzed, no components were detected.

表1 実施例2 ブチルエーテル100戚の中に、還元剤として水素化リ
チウム5 g (0,63mol)を、また触媒として
臭化アルミニウム1 g (0,0037mol)をそ
れぞれ加えた後、十分混合撹拌し、溶媒の温度を50°
Cに保った。この溶媒を撹拌しながら、その中に窒素ガ
スを1,000d/時間の流量で吹き込み、放出される
窒素中の炭化水素類をFID検出器付きガスクロマトグ
ラフで分析した。その結果は表2のごとくであり、8時
間後には炭化水素類が検出されなくなった。
Table 1 Example 2 After adding 5 g (0.63 mol) of lithium hydride as a reducing agent and 1 g (0,0037 mol) of aluminum bromide as a catalyst to butyl ether 100, they were thoroughly mixed and stirred. , the temperature of the solvent is 50°
I kept it at C. While stirring this solvent, nitrogen gas was blown into it at a flow rate of 1,000 d/hour, and hydrocarbons in the released nitrogen were analyzed using a gas chromatograph equipped with an FID detector. The results are shown in Table 2, and no hydrocarbons were detected after 8 hours.

その後、この溶媒中にヘキサクロロジシラン25 g 
(0,095mol)を供給し、還元させルコとによっ
てジシラン5.0g(収率85%)を得た。このジシラ
ン中の炭化水素類を分析したところ、いずれの成分も検
出されなかった。
Then add 25 g of hexachlorodisilane to this solvent.
(0,095 mol) was supplied and reduced to give 5.0 g (yield: 85%) of disilane. When hydrocarbons in this disilane were analyzed, no components were detected.

余白 表2 比較例1 炭化水素類除去時の溶媒温度だけを90°Cに変え、そ
れ以外は実施例1と同様の操作を実施した。
Margin Table 2 Comparative Example 1 The same operation as in Example 1 was carried out except that only the solvent temperature during hydrocarbon removal was changed to 90°C.

窒素ガスの吹き込み時間も、同様に5時間とした。The nitrogen gas blowing time was also 5 hours.

取得したジシラン中に炭化水素類は検出されなかったが
、ジシランの収量は3.8g(収率70%)にとどまっ
た。
Although no hydrocarbons were detected in the obtained disilane, the yield of disilane remained at 3.8 g (yield 70%).

比較例2 炭化水素類を除去するときの溶媒の温度だけを0°Cに
変え、それ以外は実施例1と同様にして、炭化水素類の
除去および還元反応を行った。窒素ガスの吹き込み時間
も、同様に5時間とした。
Comparative Example 2 Removal of hydrocarbons and reduction reaction were carried out in the same manner as in Example 1 except that only the temperature of the solvent when removing hydrocarbons was changed to 0°C. The nitrogen gas blowing time was also 5 hours.

収率80%でジシランを得たが、このジシランは炭化水
素類を含有しており、それらのうちの1ブテンの濃度は
5 ppmであった。
Disilane was obtained with a yield of 80%, but this disilane contained hydrocarbons, among which the concentration of 1-butene was 5 ppm.

ハ)発明の効果 本発明によれば、除去精製が極めて困難な炭化水素類の
含有量が、著しく低減されたジシランを容易に製造する
ことが可能であり、本発明は工業的に大いに価値のある
方法を提供するものである。
C) Effects of the invention According to the present invention, it is possible to easily produce disilane in which the content of hydrocarbons, which is extremely difficult to remove and purify, is significantly reduced, and the present invention is of great industrial value. It provides a method.

Claims (1)

【特許請求の範囲】[Claims] 1、ジシラン誘導体を溶媒中で還元し、ジシランを得る
方法において、まず溶媒に還元剤を含有させ、これに伴
い副生する炭化水素類を、該溶媒に10〜80℃の温度
において不活性ガスを吹き込むことにより、あらかじめ
溶媒から分離し、ついで還元反応を行うことを特徴とす
るジシランの製造方法。
1. In the method of reducing a disilane derivative in a solvent to obtain disilane, first a reducing agent is added to the solvent, and the hydrocarbons produced by this are added to the solvent at a temperature of 10 to 80°C with an inert gas. A method for producing disilane, which comprises separating the disilane from the solvent in advance by blowing in the solvent, and then carrying out a reduction reaction.
JP25092090A 1990-09-20 1990-09-20 Production of disilane Pending JPH04130010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25092090A JPH04130010A (en) 1990-09-20 1990-09-20 Production of disilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25092090A JPH04130010A (en) 1990-09-20 1990-09-20 Production of disilane

Publications (1)

Publication Number Publication Date
JPH04130010A true JPH04130010A (en) 1992-05-01

Family

ID=17214990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25092090A Pending JPH04130010A (en) 1990-09-20 1990-09-20 Production of disilane

Country Status (1)

Country Link
JP (1) JPH04130010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056731A1 (en) 2009-12-04 2011-06-09 Rev Renewable Energy Ventures, Inc. Halogenated polysilanes and polygermanes
CN102502653A (en) * 2011-12-14 2012-06-20 浙江赛林硅业有限公司 System and method for producing high-purity disilane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009056731A1 (en) 2009-12-04 2011-06-09 Rev Renewable Energy Ventures, Inc. Halogenated polysilanes and polygermanes
US9040009B2 (en) 2009-12-04 2015-05-26 Spawnt Private S.à.r.1. Kinetically stable chlorinated polysilanes and production thereof
US9139702B2 (en) 2009-12-04 2015-09-22 Spawnt Private S.A.R.L. Method for producing halogenated polysilanes
US9458294B2 (en) 2009-12-04 2016-10-04 Spawnt Private S.À.R.L. Method for removing impurities from silicon
CN102502653A (en) * 2011-12-14 2012-06-20 浙江赛林硅业有限公司 System and method for producing high-purity disilane

Similar Documents

Publication Publication Date Title
CN101027327A (en) Method of preparation of spherical support for olefin polymerization catalyst
EP1016627B1 (en) Controlling the particle size and particle size distribution in a process for continuous synthesis of molecular sieves
EP0063272B1 (en) Synthesis of silicon nitride
US3305586A (en) Process for preparing cyclohexanone
US4639361A (en) Process of preparing disilane by reduction of hexachlorodisilane
JPH04130010A (en) Production of disilane
US4614800A (en) Synthesis of cyclic dinitramines useful as explosive and propellant ingredients, gas generants and in other ordnance applications
JPH0349609B2 (en)
JP4087913B2 (en) Continuous process for producing sodium C4-C8 alcoholate
JPS58156522A (en) Preparation of disilane
CN112239217A (en) SAPO-34 molecular sieve, and preparation method and application thereof
JPH04338393A (en) Production of alkoxysilane
CN111072746B (en) Preparation method of 6-alpha-ethyl-7-ketocholic acid
US2138609A (en) Process for hydrolyzing organic halides
JP3470357B2 (en) Method for producing anilines
JPH0240603B2 (en) SUISOKAARUKARIKINZOKUSAKUKAGOBUTSUNOSEIZOHO
JPS60212231A (en) Chlorosilane disproportionation catalyst and disproportionation method
JPH07206736A (en) Oxidation of hydrocarbon
JP2523123B2 (en) Silane gas manufacturing method
EP0101337B1 (en) Process for the production of methylene chloride
CN115043865A (en) Synthesis method of gem-diboron compound containing adjacent quaternary carbon centers
JPS6026396B2 (en) Method for manufacturing dimethylmonochlorosilane
JPH06247982A (en) Production of triisobutylaluminum
JPS62129227A (en) Production of ethane and ethylene by partial oxidization of methane
RU2087476C1 (en) Method of preparing hexaethoxy disilane