JPH0240603B2 - SUISOKAARUKARIKINZOKUSAKUKAGOBUTSUNOSEIZOHO - Google Patents

SUISOKAARUKARIKINZOKUSAKUKAGOBUTSUNOSEIZOHO

Info

Publication number
JPH0240603B2
JPH0240603B2 JP9397082A JP9397082A JPH0240603B2 JP H0240603 B2 JPH0240603 B2 JP H0240603B2 JP 9397082 A JP9397082 A JP 9397082A JP 9397082 A JP9397082 A JP 9397082A JP H0240603 B2 JPH0240603 B2 JP H0240603B2
Authority
JP
Japan
Prior art keywords
hydride
aluminum
alkali metal
aluminum alloy
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9397082A
Other languages
Japanese (ja)
Other versions
JPS58213601A (en
Inventor
Reiji Hirai
Hidetaka Sakimoto
Seijiro Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP9397082A priority Critical patent/JPH0240603B2/en
Publication of JPS58213601A publication Critical patent/JPS58213601A/en
Publication of JPH0240603B2 publication Critical patent/JPH0240603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明は有用な還元剤である水素化アルカリ金
属錯化合物の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing alkali metal hydride complex compounds that are useful reducing agents.

従来からすでに、アルカリ金属とアルミニウム
と水素から水素化アルカリ金属錯化合物を製造す
ることが提案されているが、それらはいずれもア
ルミニウムを活性化させるために、トリエチルア
ルミニウムで前処理したり、ボールミル中で粉砕
する必要があつた。
Previously, it has been proposed to produce alkali metal hydride complexes from alkali metals, aluminum, and hydrogen, but these methods involve pretreatment with triethylaluminum or ball milling to activate aluminum. It was necessary to crush it.

本発明者らは鋭意研究の結果、アルミニウム合
金を用いることによつて何ら活性化処理を必要と
せず、きわめて容易に反応が開始され、反応速度
も増進し、収率よく目的物が得られることを見い
出して本発明に到つた。
As a result of intensive research, the present inventors have found that by using an aluminum alloy, the reaction can be started extremely easily without any activation treatment, the reaction rate can be increased, and the target product can be obtained in good yield. This discovery led to the present invention.

すなわち、本発明はアルカリ金属またはその水
素化物、アルミニウム合金および水素から水素化
アルカリ金属錯化合物を製造する方法において、
アルミニウム合金の合金元素がチタン、ジルコニ
ウムまたはバナジウムであることを特徴とする方
法である。
That is, the present invention provides a method for producing an alkali metal hydride complex compound from an alkali metal or its hydride, an aluminum alloy, and hydrogen,
This method is characterized in that the alloying element of the aluminum alloy is titanium, zirconium, or vanadium.

本発明において、アルカリ金属もしくはその水
素化物としてはリチウム、水素化リチウム、ナト
リウム、水素化ナトリウム、カリウム、水素化カ
リウム、およびそれらの混合物などがあげられ、
特にナトリウム水素化ナトリウムもしくはそれら
の混合物が有利である。
In the present invention, examples of the alkali metal or its hydride include lithium, lithium hydride, sodium, sodium hydride, potassium, potassium hydride, and mixtures thereof,
Particular preference is given to sodium sodium hydride or mixtures thereof.

また、アルミニウム合金としては、本発明にお
いてはアルミニウムとチタン、ジルコニウムまた
はバナジウムとからなるものであり、二元合金、
多元合金のいずれであつてもよい。合金中の金属
元素としては具体的にはチタン、ジルコニウム、
ハフニウム、バナジウム、ニオブなどがあげられ
特にチタン、ジルコニウム、またはバナジウムが
好ましい。合金中の金属元素の含有量は金属の種
類によつて異なるが、0.01〜2重量%が望ましく
特に0.05〜1.0重量%のものが好ましい。これら
の合金は通常粉末状で用いられる。
In addition, in the present invention, the aluminum alloy includes aluminum and titanium, zirconium, or vanadium, and includes binary alloys,
It may be any multi-component alloy. Specifically, the metal elements in the alloy include titanium, zirconium,
Examples include hafnium, vanadium, and niobium, with titanium, zirconium, and vanadium being particularly preferred. The content of the metal element in the alloy varies depending on the type of metal, but is preferably 0.01 to 2% by weight, and particularly preferably 0.05 to 1.0% by weight. These alloys are usually used in powder form.

反応は通常、アルカリ金属または水素化アルカ
リ金属とアルミニウム合金を溶媒に溶解ないし懸
濁させ、水素を吹き込むことにより行われる。
The reaction is usually carried out by dissolving or suspending an alkali metal or an alkali metal hydride and an aluminum alloy in a solvent and blowing hydrogen into the solution or suspension.

使用する溶媒としてはヘキサン、シクロヘキサ
ン、トルエンなどの炭化水素類、ジメチルエーテ
ル、ジプロピルエーテル、ジオキサン、ジエチレ
ングリコールジメチルエーテル、テトラヒドロフ
ランなどのエーテル類、トリエチルアミン、エチ
レンジアミンなどのアミン類があげられ、特にジ
エチレングリコールジメチルエーテル、テトラヒ
ドロフランなどのエーテル系溶媒が有用である。
Examples of solvents used include hydrocarbons such as hexane, cyclohexane, and toluene, ethers such as dimethyl ether, dipropyl ether, dioxane, diethylene glycol dimethyl ether, and tetrahydrofuran, and amines such as triethylamine and ethylene diamine, particularly diethylene glycol dimethyl ether, tetrahydrofuran, etc. ethereal solvents are useful.

アルカリ金属もしくはその水素化物に対するア
ルミニウム合金粉末のモル比を1〜4倍量、特に
好ましくは1〜2倍量、溶媒を生成物に対して
0.2〜3/モル好ましくは0.3〜1/モルをそ
れぞれ用いて反応を行なうのが望ましい。
The molar ratio of the aluminum alloy powder to the alkali metal or its hydride is 1 to 4 times, particularly preferably 1 to 2 times the amount, and the solvent is in the product.
It is desirable to carry out the reaction using 0.2 to 3/mol, preferably 0.3 to 1/mol, respectively.

水素は加圧下で約10Kg/cm2以上特には50〜200
Kg/cm2が有利である。また反応温度としては100
〜200℃でよい。
Hydrogen is about 10Kg/ cm2 or more under pressure, especially 50 to 200
Kg/cm 2 is advantageous. Also, the reaction temperature is 100
~200℃ is sufficient.

かくして、水素化アルカリ金属錯化合物が生成
する。この化合物はジメチルエーテル、テトラヒ
ドロフランなどの特定の溶媒に可溶であり、未反
応のアルミニウムと容易に分離される。なお回収
された未反応アルミニウムは再使用することがで
きる。
Thus, an alkali metal hydride complex is produced. This compound is soluble in specific solvents such as dimethyl ether and tetrahydrofuran, and is easily separated from unreacted aluminum. Note that the recovered unreacted aluminum can be reused.

以上のように、本発明によれば、アルミニウム
の活性化を行なうことなく、きわめて簡単な操作
により短時間に収率よく水素化アルカリ金属化合
物を得ることができる。
As described above, according to the present invention, an alkali metal hydride compound can be obtained in high yield in a short time by extremely simple operations without activating aluminum.

更に実施例により本発明を具体的に説明する。 Further, the present invention will be specifically explained with reference to Examples.

実施例 1 3電磁撹拌式オートクレーブに金属ナトリウ
ム69g、0.23%のチタンを含むアルミニウム合金
の粉末95gを仕込み、テトラヒドロフラン1200ml
を加える。温度を170〜175℃に保持し、水素圧力
を90Kg/cm2となるように水素を加えて5時間反応
させる。冷却後、内容物を取出し、ガラスフイル
ターでろ過し、未反応のアルミニウムを除去す
る。透明のろ液からテトラヒドロフランを蒸発さ
せ、水素化ナトリウムアルミニウム134.5g(収
率82%)を得た。
Example 1 3 Put 69 g of metallic sodium and 95 g of aluminum alloy powder containing 0.23% titanium into a magnetic stirring autoclave, and add 1200 ml of tetrahydrofuran.
Add. The temperature was maintained at 170 to 175°C, hydrogen was added to the mixture at a hydrogen pressure of 90 kg/cm 2 , and the reaction was allowed to proceed for 5 hours. After cooling, the contents are taken out and filtered through a glass filter to remove unreacted aluminum. Tetrahydrofuran was evaporated from the clear filtrate to obtain 134.5 g (82% yield) of sodium aluminum hydride.

参考例 1 チタン合金を使用する代りに、純アルミニウム
の粉末を用いた以外は、実施例1と同じ方法によ
り操作した。水素化ナトリウムアルミニウムの収
量は55g(収率34%)であつた。
Reference Example 1 The same procedure as in Example 1 was carried out except that pure aluminum powder was used instead of titanium alloy. The yield of sodium aluminum hydride was 55 g (yield 34%).

実施例 2 実施例1の方法において、チタン合金の代り
に、0.2%のジルコニウムを含むアルミニウム合
金の粉末を使用した以外は同様の方法で操作し
た。水素化ナトリウムアルミニウムの収量は114
g(収率70%)であつた。
Example 2 The procedure of Example 1 was repeated except that aluminum alloy powder containing 0.2% zirconium was used instead of titanium alloy. The yield of sodium aluminum hydride is 114
g (yield 70%).

実施例 3 実施例1の方法において、チタン合金に代えて
0.3%のバナジウムを含むアルミニウム合金を使
用した以外は同様の方法で操作した。水素化ナト
リウムアルミニウムの収量は88gであつた。
Example 3 In the method of Example 1, instead of titanium alloy
It was operated in a similar manner, except that an aluminum alloy containing 0.3% vanadium was used. The yield of sodium aluminum hydride was 88 g.

実施例 4 実施例1と同様の方法により、0.3%のチタン
を含むアルミニウム合金が使用された。水素化ナ
トリウムの収量は138gであつた。
Example 4 In a similar manner to Example 1, an aluminum alloy containing 0.3% titanium was used. The yield of sodium hydride was 138 g.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ金属またはその水素化物、アルミニ
ウム合金および水素から水素化アルカリ金属錯化
合物を製造する方法において、アルミニウム合金
の合金元素がチタン、ジルコニウムまたはバナジ
ウムであることを特徴とする方法。
1. A method for producing an alkali metal hydride complex compound from an alkali metal or its hydride, an aluminum alloy, and hydrogen, characterized in that the alloying element of the aluminum alloy is titanium, zirconium, or vanadium.
JP9397082A 1982-06-03 1982-06-03 SUISOKAARUKARIKINZOKUSAKUKAGOBUTSUNOSEIZOHO Expired - Lifetime JPH0240603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9397082A JPH0240603B2 (en) 1982-06-03 1982-06-03 SUISOKAARUKARIKINZOKUSAKUKAGOBUTSUNOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9397082A JPH0240603B2 (en) 1982-06-03 1982-06-03 SUISOKAARUKARIKINZOKUSAKUKAGOBUTSUNOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS58213601A JPS58213601A (en) 1983-12-12
JPH0240603B2 true JPH0240603B2 (en) 1990-09-12

Family

ID=14097257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9397082A Expired - Lifetime JPH0240603B2 (en) 1982-06-03 1982-06-03 SUISOKAARUKARIKINZOKUSAKUKAGOBUTSUNOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0240603B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60500252A (en) * 1982-12-15 1985-02-28 エシル コ−ポレ−シヨン Production method of aluminum alkali metal hydride
HUT40584A (en) * 1984-10-24 1987-01-28 Sumsk Kh Polt I Ball throwing apparatus
DE68918951T2 (en) * 1988-10-31 1995-03-16 Mitsui Toatsu Chemicals METHOD FOR PRODUCING SODIUM ALUMINUM HYDRIDS SUBSTITUTED WITH AN ORGANIC GROUP.
JP2954226B2 (en) * 1989-02-02 1999-09-27 三井化学株式会社 A new method for producing alkali metal hydride complex compounds.

Also Published As

Publication number Publication date
JPS58213601A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
JP2733045B2 (en) Preparation of toluene-free solutions of ether-free and halogenide-free aluminum hydride.
JPH0240603B2 (en) SUISOKAARUKARIKINZOKUSAKUKAGOBUTSUNOSEIZOHO
CA2108512C (en) Method of producing ph3c[b(c6f5)4]
JPS58217426A (en) Simultaneous manufacture of sodium borohydride and substituted aluminum hydride
JPS60221301A (en) Novel manufacture of germanium hydride
JPS64324B2 (en)
US4614800A (en) Synthesis of cyclic dinitramines useful as explosive and propellant ingredients, gas generants and in other ordnance applications
JPH02502464A (en) Method for producing metal alkyl compounds
JPS58176105A (en) Soluble hydrogenated magnesium reagent and manufacture
JPS62130208A (en) Production of finely divided metal powder
US4206191A (en) Preparation of lithium amide
US3971846A (en) Preparation of beryllium hydride and aluminum hydride
EP0392445A1 (en) Preparation of amine alanes
US20090140201A1 (en) Solutions of lithium aluminium hydride
JP2954226B2 (en) A new method for producing alkali metal hydride complex compounds.
US2880058A (en) Preparation of alkali metal borohydrides
JPH0443075B2 (en)
JPH08259212A (en) Method for synthesizing disilicon hexafluoride
HU208698B (en) Process fopr producing vanadium-arene derivatives
JP2854988B2 (en) Method for producing 9,9-dialkylfluorene
US3783054A (en) High energy beryllium rocket fuel compositions and processes therefor
US3755555A (en) Production of alkali hydridoaluminates
EP1309526B2 (en) Process for the preparation of alkyllithium compounds
US5367085A (en) Preparation of TiCl3 coordination complexes
KR940005336B1 (en) Improved process for producing vanadium-arenes