JPH01110092A - Variable speed controller for induction motor - Google Patents
Variable speed controller for induction motorInfo
- Publication number
- JPH01110092A JPH01110092A JP62265391A JP26539187A JPH01110092A JP H01110092 A JPH01110092 A JP H01110092A JP 62265391 A JP62265391 A JP 62265391A JP 26539187 A JP26539187 A JP 26539187A JP H01110092 A JPH01110092 A JP H01110092A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- current
- speed
- voltage
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000006698 induction Effects 0.000 title claims abstract description 17
- 230000004907 flux Effects 0.000 claims abstract description 42
- 238000010586 diagram Methods 0.000 description 15
- 238000004364 calculation method Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、速度を直接検出する速度検出器を持たない、
誘導電動機の高性能速度制御装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention does not have a speed detector that directly detects speed.
This invention relates to a high-performance speed control device for an induction motor.
速度検出器を備えることなく誘導電動機の速度制御を行
う例として、トランジスタインバータや電流形インバー
タ等から給電される誘導電動機(銹導機)をV/f一定
制御する駆動装置が良く知られている。この方式はイン
バータの出力周波数をオープンループで与え、インバー
タの出力電圧は閉ループで制御し、電圧(V)指令と周
波数(f)指令を比例させるものである。しかし、この
方式は速度制御の応答性も悪く、又制御精度も悪いので
、高性能速度制御装置としては余シ用いられていない。As an example of controlling the speed of an induction motor without a speed detector, there is a well-known drive device that controls an induction motor (carrying motor) supplied with power from a transistor inverter, current source inverter, etc. to a constant V/f. . In this method, the output frequency of the inverter is given in an open loop, the output voltage of the inverter is controlled in a closed loop, and the voltage (V) command and the frequency (f) command are made proportional. However, this method has poor speed control responsiveness and poor control accuracy, so it is not often used as a high-performance speed control device.
高性能な誘導電動機可変速装置としてはベクトル制御を
応用した制御装置があるが、この制御装置は速度検出器
を備えないと成夛立たない。そこで、出願人は速度量を
検出器で検出せずに演算で推定し、その推定値を速度量
として制御する制御装置を出願している(特願昭61−
212625号:以下、出願済み装置とも云う。)。A control device that applies vector control is a high-performance induction motor variable speed device, but this control device cannot succeed unless it is equipped with a speed detector. Therefore, the applicant has applied for a control device that estimates the amount of speed by calculation without detecting it with a detector, and controls the estimated value as the amount of speed (Japanese Patent Application No. 1983-
No. 212625: Hereinafter also referred to as the applied device. ).
第4図はか−る出願済み装置を示す構成図である。こ〜
では、誘導電動機(誘導機)の制御にベクトル制御原理
が適用されているが、これは電動機の電流、電圧等をベ
クトル量とみなし、固定子巻線上から観測すると交流量
となっているこれらの量を、電動機の回転磁界上から観
測して直流量に変換し、これを磁界に平行な成分と直交
する成分とに分離してそれぞれ独立に制御しようとする
もので、既に多くの文献等に発表されて公知である。同
図の装置も公知である速度検出器付の速度制御装置(た
とえば、富士時報Vo1.57.N110゜1984、
P、609〜615@GTOサイリスタのインバータへ
の応用”の項参照)と制御の基本部は全く同じであるが
、こ工では速度の実施値が直接得られないため、演算に
よって速度を求めるようにしている点が大きな特徴であ
る。以下、第4図について説明する。FIG. 4 is a block diagram showing the device for which the application was filed. child~
The vector control principle is applied to the control of an induction motor (induction machine), which considers the motor's current, voltage, etc. as vector quantities, and converts these, which are alternating current quantities when observed from the stator windings. This method observes the amount from above the rotating magnetic field of the electric motor, converts it into a DC amount, separates this into a component parallel to the magnetic field, and a component perpendicular to the magnetic field, and attempts to control each component independently. It has been announced and is publicly known. The device shown in the figure is also a known speed control device with a speed detector (for example, Fuji Times Vo1.57.N110°1984,
The basic part of the control is exactly the same as in the section ``Application of GTO thyristors to inverters'' in 609-615@GTO), but since the actual value of speed cannot be obtained directly with this method, the speed must be determined by calculation. The major feature is that it is made as follows.The following describes Fig. 4.
同図において、誘導電動機(IM)2の一次電流は3相
−2相変換器12で2相量輸、iβに変換される。また
、この量はベクトル回転器11によシ回転座標(M−T
座標系)量−+ ITに座標変換される。このとき、M
軸すなわち磁束軸は、電流モデル式磁束演算器(以下、
単に電流モデルとも云う。)10によ)演算された磁束
の位相φ工によって決定される。電流モデルは次式に従
って演算を行う。In the figure, the primary current of an induction motor (IM) 2 is converted into a two-phase quantity, iβ, by a three-phase to two-phase converter 12. In addition, this amount is determined by the rotation coordinate (M-T
Coordinate system) Coordinates are transformed to quantity -+ IT. At this time, M
The axis, that is, the magnetic flux axis, is a current model type magnetic flux calculator (hereinafter referred to as
It is also simply called the current model. ) 10) is determined by the calculated phase φ of the magnetic flux. The current model is calculated according to the following equation.
φニーfω、dt−f(ω2+ω3勺dt ・・・・
・・(1)(1)式かられかるように、この電流モデル
λ式は回転子角速度量がないと成シ立たないため、調節
ループ200で演算によシ求めた回転子角速度推定値ω
2を用いて電流モデルを構成している。この調節ループ
200による速度演算については後述する。座標変換は
このφ、から、次式に従って行われる。φknee fω, dt-f(ω2+ω3勺dt...
...(1) As can be seen from equation (1), this current model λ equation is not valid without the rotor angular velocity, so the rotor angular velocity estimate ω calculated by the adjustment loop 200 is
2 is used to construct the current model. The speed calculation by this adjustment loop 200 will be described later. Coordinate transformation is performed from this φ according to the following equation.
この様に、−次電流11をlB*lTに分離すれば、I
Mは磁束を作る成分(磁化電流)となシ、ITはトルク
を作る成分(トルク電流)となることは良く知られてい
るところである。In this way, if the -order current 11 is separated into lB*lt, then I
It is well known that M is a component that creates magnetic flux (magnetizing current), and IT is a component that creates torque (torque current).
この磁化電流指令IM′は、磁化電流指令演算器4の出
力として与えられる。磁束一定制御の場合は演算器4は
一定の−を与え、又、高速領域で速度に依存して弱め界
磁側−を行う場合、演算器4は速度上昇につれて減少し
てい<IMを与える。This magnetizing current command IM' is given as the output of the magnetizing current command calculator 4. In the case of constant magnetic flux control, the arithmetic unit 4 gives a constant -, and when performing speed-dependent field weakening in a high-speed region, the arithmetic unit 4 gives <IM, which decreases as the speed increases.
磁化電流指令Ilは、ベクトル回転器11によシ 1
−次電流から変換されたIMと加算点14で比較され、
この偏差がPI(比例積分)調節器6によ)増幅されて
電動機の一次電圧ベクトル指令v1のM軸成分vM と
なる。The magnetizing current command Il is transmitted by the vector rotator 11.
- compared with the IM converted from the next current at the summing point 14;
This deviation is amplified by a PI (proportional integral) regulator 6) and becomes the M-axis component vM of the motor primary voltage vector command v1.
一方、速度設定器100よシ与えられた指令値N は、
加算点13によシ調節ループ200よ)演算された速度
推定値N−ω2と比較され、この偏差はPI調節器5に
よシ増幅されてトルク電流指令iT となる。このIT
はベクトル回転器11によシ作られたiT と加算点1
5で比較され、この偏差はPI調節器7で増幅されて一
次電圧ベクトル指令v1のT軸成分VT となる。この
vM。On the other hand, the command value N given by the speed setting device 100 is
The summing point 13 is compared with the calculated speed estimate N-ω2 (by the adjustment loop 200), and this deviation is amplified by the PI regulator 5 to become the torque current command iT. This IT
is iT created by vector rotator 11 and addition point 1
5, and this deviation is amplified by the PI controller 7 and becomes the T-axis component VT of the primary voltage vector command v1. This vM.
vTは座標変換回路8に入力され、電流モデル10によ
シ演算された磁束の位相φ□によ〕、次式の如く固定子
座標量に変換される。vT is input to the coordinate conversion circuit 8, and is converted into a stator coordinate quantity as shown in the following equation according to the phase φ□ of the magnetic flux calculated by the current model 10.
・・・・・・(4)
固定子座標量に変換された一次電圧指令V(1、Vβは
、パルス発生回路9でインバータパルスに変換され、P
WMインバータ1に与えられ誘導電動機2へ給電される
ことになる。......(4) The primary voltage command V (1, Vβ converted into stator coordinate quantity is converted into an inverter pulse by the pulse generation circuit 9, and P
The power is applied to the WM inverter 1 and is then supplied to the induction motor 2.
次に、速度推定方式について説明する。第4図に示すよ
うに、電動機の一次電圧■1と一次電流i、を誘起電圧
演算回路22に入力して、誘導機の二次誘起電圧ベクト
ルE2の固定座標量Eα。Next, the speed estimation method will be explained. As shown in FIG. 4, the motor's primary voltage (1) and primary current i are input to the induced voltage calculation circuit 22 to obtain a fixed coordinate quantity Eα of the secondary induced voltage vector E2 of the induction machine.
Eβを算出する。この算出方法は次のとおルである。な
お、矢印を付してベクトル量を示すが、特に必要な場合
の外は省略する。Calculate Eβ. The calculation method is as follows. Note that vector quantities are shown with arrows, but are omitted unless particularly necessary.
誘起電圧演算回路22は、次式に従って誘起電圧を演算
する。The induced voltage calculation circuit 22 calculates the induced voltage according to the following equation.
また、二次誘起電圧E2と二次鎖交磁束F2との関係は
、次の(6)式で表わされる。Further, the relationship between the secondary induced voltage E2 and the secondary interlinkage flux F2 is expressed by the following equation (6).
(6)式かられかるように、二次誘起電圧は二次鎖交磁
束F2よシ位相がπ/2だけ進んでいる。二次鎖交磁束
F2の固定座標α軸からの位相をφ7とすると、二次誘
起電圧E2の固定座標jaEct。As can be seen from equation (6), the phase of the secondary induced voltage leads the secondary interlinkage flux F2 by π/2. If the phase of the secondary interlinkage flux F2 from the fixed coordinate α axis is φ7, then the fixed coordinate jaEct of the secondary induced voltage E2.
Eβは次の(7)式で示される。Eβ is expressed by the following equation (7).
第5図に、(7)式の関係を示す誘起電圧のベクトル図
を示す。FIG. 5 shows a vector diagram of induced voltage showing the relationship of equation (7).
次に、上記演算によシ求めたEaIEβ を、ベクトル
回転器(VD )24によシミ流モデル10で演算され
た磁束軸へ座標変換する。ここで、電流モデルで演算さ
れた磁束V□のα軸からの位相をφ□とすると、φ7と
φ1の関係が求まる。Next, the coordinates of EaIEβ obtained by the above calculation are converted to the magnetic flux axis calculated by the stain flow model 10 by the vector rotator (VD) 24. Here, if the phase of the magnetic flux V□ from the α-axis calculated using the current model is φ□, the relationship between φ7 and φ1 can be found.
(7)弐K(8)式を代入すると、次の(9)、 (1
0)式が求まる。(7) 2K By substituting equation (8), we get the following (9), (1
0) The formula is found.
EM−−ECO8φ!S−φV + E sixφ!(
9)φV−−Esia(φ7−φ1) ・・・
・・・(9)E 7− E siaφIUnφ、+EC
QSφ、□□□φ7− E cos (φ7−φ、 )
’・−−−−−(10)(9)式において
、誘起電圧ベクトルE2よシ検出された二次鎖交磁束ベ
クトル1F20位相φ7と、速度推定値ω2を用いた電
流モデルで演算された磁束ベクトルの位相φ!とが一致
しない場合にEMが発生する。第6図にφ□とφ7とが
一致しない場合の誘起電圧のベクトル図を示す。同図に
示すφ1はω2とω、を積分器102で積分して求めら
れる。調節器25はEM−0となるように動作し、磁束
の位相を一致させる。磁束の位相が一致すると、電動機
内と制御装置内の磁束の角速度ω。EM--ECO8φ! S-φV + E sixφ! (
9)φV--Esia(φ7-φ1)...
...(9) E 7- E siaφIUnφ, +EC
QSφ, □□□φ7- E cos (φ7-φ, )
'・------(10) In equation (9), the magnetic flux calculated by the current model using the induced voltage vector E2, the detected secondary interlinkage magnetic flux vector 1F20 phase φ7, and the estimated speed value ω2 Vector phase φ! EM occurs when these do not match. FIG. 6 shows a vector diagram of the induced voltage when φ□ and φ7 do not match. φ1 shown in the figure is obtained by integrating ω2 and ω using an integrator 102. The adjuster 25 operates to achieve EM-0 and matches the phase of the magnetic flux. When the phases of the magnetic flux match, the angular velocity ω of the magnetic flux inside the motor and inside the control device.
は(11)式のように一致する。match as shown in equation (11).
△
ωヨω+♂−ω2+ωS −・・・−(11)1
2s
ここで、すベシ角速度実際値ω3は、陶磁束の位相が一
致しているとき、トルク電流、磁化電流の各指令値と実
際値とが一致するので、(2)式から明らかのように、
すベシ角速度指令値ωrと一致する。これによシ、調節
ループ200の出力ω2は回転子角速度の真直と等しく
なシ、正しい速度が演算されることになる。なお、極性
回路23はETKよシ磁束の相回転を判断し、その相回
転に合うようにEMの極性を決定する。△ωyoω+♂−ω2+ωS −・・・−(11)1
2s Here, when the phase of the ceramic flux matches, the actual value of the angular velocity ω3 matches the actual value and the command value of the torque current and magnetizing current, so as is clear from equation (2), ,
angular velocity command value ωr. As a result, the output ω2 of the adjustment loop 200 is equal to the straightness of the rotor angular velocity, and the correct velocity is calculated. Note that the polarity circuit 23 determines the phase rotation of the magnetic flux from the ETK, and determines the polarity of the EM in accordance with the phase rotation.
以上の如き装置では、第4図で示すように、出力電圧を
検出するための検出用トランス(20)や、交流電圧を
直流電圧に座標変換する回路(24)を必要とするため
回路構成が複雑となシ、制御装置のコスト増につながる
と云う問題点がある。As shown in Fig. 4, the above device requires a detection transformer (20) for detecting the output voltage and a circuit (24) for converting the coordinates of AC voltage into DC voltage, so the circuit configuration is complicated. There are problems in that it is complicated and leads to an increase in the cost of the control device.
又、検出用トランスを用いた場合、PWMインバータの
ため出力電圧の上昇率dv/diが高く、そのためトラ
ンスの1次側と2次側との間のストレイキャパシタンス
の影響によって2次側に電流が流れ、2次側のインピー
ダンスによって検出ノイズが発生し、正確な検出値が得
られないと云う問題もある。Furthermore, when a detection transformer is used, the increase rate dv/di of the output voltage is high because it is a PWM inverter, and therefore current flows to the secondary side due to the influence of stray capacitance between the primary and secondary sides of the transformer. There is also the problem that detection noise is generated due to current and impedance on the secondary side, making it impossible to obtain accurate detection values.
したがって、本発明は速度及び電動機電圧を直接検出す
ることなく、高性能な速度制御が可能な制御装置を提供
することを目的とする。Therefore, an object of the present invention is to provide a control device capable of high-performance speed control without directly detecting speed and motor voltage.
磁化電流、トルク電流の各指令値、磁束の角速度および
電動機定数から電動機磁束に平行な電動機電圧成分の指
令値を演算すると〜もに1該電動機電圧成分の指令値と
磁化電流調節器からの出力との偏差を演算する演算器と
、該演算器出力を零にすべく調節する調節器とを設ける
。When the command value of the motor voltage component parallel to the motor magnetic flux is calculated from each command value of the magnetizing current and torque current, the angular velocity of the magnetic flux, and the motor constant, the command value of the motor voltage component and the output from the magnetizing current regulator are obtained. A computing unit that computes the deviation from the computing unit, and a regulator that adjusts the output of the computing unit to zero are provided.
速度検出器を持たない制御装置において、電流モデル方
式((5)、 (4)式よシ)で演算された制御装置内
の磁束軸φ1上の電圧ベクトルv1の磁束軸と平行な電
圧成分vMと、電動機内部の磁束軸上の■つとは、両磁
束軸に偏差がある場合には一致しないことに着目し、両
成分が常に一致するように回転子角速度を推定すること
によ)、速度および電動機電圧を直接検出することなく
、高精度の速度制御を可能にする。In a control device that does not have a speed detector, the voltage component vM parallel to the magnetic flux axis of the voltage vector v1 on the magnetic flux axis φ1 in the control device calculated by the current model method ((5), (4)) By focusing on the fact that the two components on the magnetic flux axis inside the motor do not match if there is a deviation between the two magnetic flux axes, and estimating the rotor angular velocity so that both components always match), the speed and enables high-precision speed control without directly detecting motor voltage.
第1図は本発明の実施例を示す、速度検出器を持たない
誘導電動機の速度制御装置を示すブロック図である。こ
の例によると、第4図の速度検出器を持たない速度制御
装置の場合と制御の基本部は全く同一(同一のものは同
じ番号で示す。)であるが、調節ループ300の構成が
異なっている。FIG. 1 is a block diagram showing a speed control device for an induction motor without a speed detector, showing an embodiment of the present invention. According to this example, the basic control part is exactly the same as in the case of the speed control device without a speed detector shown in FIG. ing.
以下、第1図について説明する。Below, FIG. 1 will be explained.
電圧ベクトルのM軸成分電圧vMは、トルク電流、磁化
電流の各指令[iTpムウ と電動機定数R1,Lσか
ら、次の(12)式に従って演算で求めることができる
。The M-axis component voltage vM of the voltage vector can be calculated from the torque current and magnetizing current commands [iTpmu] and motor constants R1 and Lσ according to the following equation (12).
V −R,IB(−L、 (Ml、5T−−−−−−
(12)しかし、とへでは上記の演算を行わすに、電流
調節器6の出力を直接、M軸成分電圧v、IHI とし
ている。ここで、vMとVM”の関係について考察する
。V -R, IB(-L, (Ml, 5T------
(12) However, in Tohe, when performing the above calculation, the output of the current regulator 6 is directly set as the M-axis component voltage v, IHI. Here, the relationship between vM and VM will be considered.
すなわち、電流モデル方式で求めた制御装置内の磁束軸
CM−T軸)と、電動機内の磁束軸とが一致している場
合には、電動機内部のトルク電流。That is, if the magnetic flux axis (CM-T axis) in the control device determined by the current model method and the magnetic flux axis in the electric motor match, the torque current inside the electric motor.
磁化電流の各実際値と、制御装置内部で電動機に流れて
いる一次電流ベクトルを座標変換して求めたトルク電流
、磁化電流の各検出値は互いに等しくなる。そこで、こ
の検出値と指令値を電流調節器に入力すれば、電流調節
器の出力は、電流の指令値と検出値を亙いに等しくする
電圧ベクトルのM−T軸、iX分の電圧を与えることに
なる。Each actual value of the magnetizing current and each detected value of the torque current and magnetizing current obtained by coordinate transformation of the primary current vector flowing through the motor inside the control device are equal to each other. Therefore, if this detected value and command value are input to the current regulator, the output of the current regulator will be the voltage for iX on the M-T axis of the voltage vector that makes the current command value and detected value much equal. will give.
第2A図は両磁束軸が一致する場合の電圧、電流の関係
を示すベクトル図、第2B図は両磁束軸が一致しない場
合の電圧、電流の関係を示すベクトル図である。FIG. 2A is a vector diagram showing the relationship between voltage and current when both magnetic flux axes match, and FIG. 2B is a vector diagram showing the relationship between voltage and current when both magnetic flux axes do not match.
すなわち、両磁束軸が一致する場合は、第2A図の如く
演算値■つと調節器出力■ウ とは互いに一致する。こ
れに対し、両磁束軸が一致しない場合には、電動機内の
トルク電流、磁化電流の実際値’T’F ’M’と制御
装置内の検出値ム1.−は異なシ、第1図に符号6,7
で示す電流調節器はこの電圧■1を出力するために必要
な電圧vM′。That is, when both magnetic flux axes coincide, the calculated value (1) and the regulator output (2) coincide with each other as shown in FIG. 2A. On the other hand, if the two magnetic flux axes do not match, the actual values 'T'F'M' of the torque current and magnetizing current in the motor and the detected values in the control device M1. - are different numbers, numbers 6 and 7 in Figure 1.
The current regulator shown by is the voltage vM' required to output this voltage 1.
vT”をそれぞれ出力し、その結果、(12)式の演算
によって求めたVMとvM とは一致しなくなる。そこ
で、vM″′とvM との偏差をΔEとすると、以下に
示す関係が得られる。As a result, VM obtained by calculating equation (12) and vM do not match. Therefore, if the deviation between vM'' and vM is set to ΔE, the following relationship is obtained. .
ΔE−vM″41−vM”
一■;−Ri +L、ω、i、 ・(13) M
とのΔEは、速度推定値と速度実際値が異な)、磁束軸
が一致しないために生じたものであるから、この実施例
では上記偏差ΔEを調節ルー1300内の調節器25に
入力し、常にΔEが零になる調節ループを形成して速度
を演算するようにしている。ΔE−vM″41−vM” 1■;−Ri +L, ω, i, ・(13) ΔE with M is caused by the fact that the estimated speed value and the actual speed value are different), and the magnetic flux axes do not match. Therefore, in this embodiment, the deviation ΔE is inputted to the regulator 25 in the adjustment loop 1300, and the speed is calculated by forming an adjustment loop in which ΔE is always zero.
第3図は上述の如き偏差ΔEを演算する演算回路30の
具体例を示し、(13)式の演算を行うものである。す
なわち、乗算器31.52.55と加算点34を設け、
乗算器31によシ第(13)式の右辺第2頁を演算し、
また乗算器52.55によシ同式の右辺第3項を演算し
、これらと調節器出力vM とを加算点34に図示の如
き極性で与えることによル、ΔEを演算する。FIG. 3 shows a specific example of the arithmetic circuit 30 for calculating the deviation ΔE as described above, which performs the calculation of equation (13). That is, multipliers 31, 52, 55 and addition points 34 are provided,
The multiplier 31 calculates the second page on the right side of equation (13),
Further, the third term on the right side of the equation is calculated by multipliers 52 and 55, and ΔE is calculated by applying these and the regulator output vM to the addition point 34 with the polarity shown.
なお、この出力は第4図と同じく調節器25に与えられ
、その出力からは回転子角速度の推定値ω2が得られる
ことになる。Note that this output is given to the regulator 25 as in FIG. 4, and the estimated value ω2 of the rotor angular velocity is obtained from the output.
本発明によれば、速度検出器を設けずに誘導機の高性能
速度制御ができるだけでなく、電圧検出器も必要としな
いので、回路構成が簡単にな〕制御装置のコストダウン
が可能となる。又、電圧検出器を用いた場合の検出ノイ
ズ等の影響がなくなるため、正確な検出値を得ることが
できる。さらに、従来の速度検出器付の制御装置に、比
較的簡単な構成の調節ループを付加するだけで、高性能
な速度制御が可能となる利点もある。According to the present invention, not only is it possible to perform high-performance speed control of an induction machine without providing a speed detector, but also a voltage detector is not required, which simplifies the circuit configuration and reduces the cost of the control device. . Furthermore, since the influence of detection noise and the like when using a voltage detector is eliminated, accurate detection values can be obtained. Furthermore, there is the advantage that high-performance speed control can be achieved simply by adding a relatively simple adjustment loop to a conventional control device equipped with a speed detector.
第1図は本発明の実施例を示す構成図、第2A図は制御
装置内の磁束軸と電動機内の磁束軸とが一致した場合の
電圧、電流の関係を示すベクトル図、第2B図はこれら
2つの磁束軸が一致しない場合の電圧、電流の関係を示
すベクトル図、第3図はΔE(電圧偏差)演算回路の具
体例を示すブロック図、第4図は出願済み装置を示す構
成図、第5図は二次誘起電圧を示すベクトル図、第6図
は演算された磁束の位相と実際の磁束の位相との間に偏
差が生じた場合の二次誘起電圧を示すベクトル図である
。
符号説明
1・・・・・・PWMインバータ、2・・・・・・誘導
電動機、4・・・・・・磁化電流指令演算器、5・・・
・・・速度調節器(SR)、6・・・・・・磁化電流調
節器(ACR)、7・・・・・・トルク電流調節器(A
CR)、8・・・・・・座標変換回路、9・・・・・・
パルス発生回路、10・・・・・・電流そデル式磁束演
算器(を流モデル)、11.24・・・・・・ベクトル
回転器(VD)、12.21・・・・・・3相−2相変
換器、13,14,15,34・・・・・・加算点、2
0・・・・・・電圧変成器、22・・・・・・誘起電圧
演算回路、23・・・・・・極性回路、25・・・・・
・調節器、30・・曲ΔE演算回路、31,32.33
・・・・・・乗算器、1゜O・・・・・・速度設定器、
101・・・・・・すベシ角速度演算器、102・・・
・・・積分器、200.300・・・・・・調節ループ
。
W2A図
112BB!1
$31
30 v−115図
璽6 図Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2A is a vector diagram showing the relationship between voltage and current when the magnetic flux axis in the control device and the magnetic flux axis in the motor coincide, and Fig. 2B is A vector diagram showing the relationship between voltage and current when these two magnetic flux axes do not match, Fig. 3 is a block diagram showing a specific example of a ΔE (voltage deviation) calculation circuit, and Fig. 4 is a configuration diagram showing the applied device. , Fig. 5 is a vector diagram showing the secondary induced voltage, and Fig. 6 is a vector diagram showing the secondary induced voltage when a deviation occurs between the calculated magnetic flux phase and the actual magnetic flux phase. . Description of symbols 1... PWM inverter, 2... Induction motor, 4... Magnetizing current command calculator, 5...
... Speed regulator (SR), 6... Magnetizing current regulator (ACR), 7... Torque current regulator (A
CR), 8... Coordinate conversion circuit, 9...
Pulse generation circuit, 10... Current magnetic flux calculator (current model), 11.24... Vector rotator (VD), 12.21...3 Phase-to-two phase converter, 13, 14, 15, 34... Addition point, 2
0... Voltage transformer, 22... Induced voltage calculation circuit, 23... Polarity circuit, 25...
・Adjuster, 30... Song ΔE calculation circuit, 31, 32.33
・・・・・・Multiplier, 1゜O・・・・Speed setter,
101...Subeshi angular velocity calculator, 102...
...Integrator, 200.300...Adjustment loop. W2A figure 112BB! 1 $31 30 v-115 diagram 6 diagram
Claims (1)
電力変換器を介して給電される誘導電動機の一次電流を
該電動機の磁束と平行な成分(磁化電流)とこれに直交
する成分(トルク電流)とに分離し、各々を独立に調節
する調節器をそれぞれ設けて、少なくとも電動機トルク
を制御する誘導電動機の可変速制御装置において、 前記磁化電流、トルク電流の各指令値、磁束の角速度お
よび電動機定数から電動機磁束に平行な電動機電圧成分
の指令値を演算するとゝもに、該電動機電圧成分の指令
値と磁化電流を調節する前記調節器からの出力との偏差
を演算する演算器と、該演算器出力を零にすべく調節す
る調節器と、を設け、該調節器出力を電動機角速度の推
定値として用いることを特徴とする誘導電動機の可変速
制御装置。[Claims] The primary current of an induction motor, which is supplied via a power converter that can control the magnitude, frequency and phase of the output voltage, is divided into a component parallel to the magnetic flux of the motor (magnetizing current) and a component parallel to the magnetic flux of the motor (magnetizing current). In a variable speed control device for an induction motor that controls at least the motor torque by separating orthogonal components (torque current) and adjusting each independently, each command value of the magnetizing current and the torque current is provided. , calculate a command value of a motor voltage component parallel to the motor magnetic flux from the angular velocity of the magnetic flux and a motor constant, and calculate a deviation between the command value of the motor voltage component and the output from the regulator that adjusts the magnetizing current. 1. A variable speed control device for an induction motor, comprising: a computing unit that adjusts the output of the computing unit; and a regulator that adjusts the output of the computing unit to zero, and uses the output of the regulator as an estimated value of the motor angular velocity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62265391A JPH0773440B2 (en) | 1987-10-22 | 1987-10-22 | Variable speed controller for induction motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62265391A JPH0773440B2 (en) | 1987-10-22 | 1987-10-22 | Variable speed controller for induction motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01110092A true JPH01110092A (en) | 1989-04-26 |
JPH0773440B2 JPH0773440B2 (en) | 1995-08-02 |
Family
ID=17416525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62265391A Expired - Lifetime JPH0773440B2 (en) | 1987-10-22 | 1987-10-22 | Variable speed controller for induction motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0773440B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6404162B1 (en) | 1999-05-21 | 2002-06-11 | Fuji Electric Co., Ltd. | Variable-speed controlling device for use with an induction motor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6152176A (en) * | 1984-08-21 | 1986-03-14 | Hitachi Ltd | Vector controlling method of induction motor |
-
1987
- 1987-10-22 JP JP62265391A patent/JPH0773440B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6152176A (en) * | 1984-08-21 | 1986-03-14 | Hitachi Ltd | Vector controlling method of induction motor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6404162B1 (en) | 1999-05-21 | 2002-06-11 | Fuji Electric Co., Ltd. | Variable-speed controlling device for use with an induction motor |
Also Published As
Publication number | Publication date |
---|---|
JPH0773440B2 (en) | 1995-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6690137B2 (en) | Sensorless control system for synchronous motor | |
JP3771544B2 (en) | Method and apparatus for controlling permanent magnet type synchronous motor | |
JP2585376B2 (en) | Control method of induction motor | |
JP2001352800A (en) | Constant identification method of synchronous motor and control unit with constant identification function therefor | |
JPH0773438B2 (en) | Variable speed controller for induction motor | |
JPS5949797B2 (en) | AC machine current control method | |
JPH01110092A (en) | Variable speed controller for induction motor | |
JP2004187460A (en) | Inverter control device, induction motor control device, and induction motor system | |
JPH089697A (en) | Vector control apparatus of induction motor | |
JP2634959B2 (en) | Speed sensorless speed control method | |
JPH07123799A (en) | Speed sensorless vector control system for induction motor | |
JPH06335278A (en) | Tuning of vector control inverter for induction motor | |
JP5456873B1 (en) | Synchronous machine controller | |
JPS6159071B2 (en) | ||
JP6923801B2 (en) | Observer control device for induction motors | |
JPS6295987A (en) | Controller for ac motor | |
JPS6192185A (en) | Vector controller for automatic regulation | |
JP3124019B2 (en) | Induction motor control device | |
JPS6330236Y2 (en) | ||
JPS6369491A (en) | Variable speed controller for induction motor | |
JPH0561876B2 (en) | ||
JPS63265586A (en) | Variable speed driving system for induction motor | |
JPH0732640B2 (en) | Variable speed drive of induction motor | |
JPH0634724A (en) | Motor constant identifying method in vector control device for induction motor | |
JPH0773439B2 (en) | Variable speed controller for induction motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070802 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080802 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080802 Year of fee payment: 13 |