JPH01109714A - Vapor-phase epitaxy appratus - Google Patents

Vapor-phase epitaxy appratus

Info

Publication number
JPH01109714A
JPH01109714A JP26779387A JP26779387A JPH01109714A JP H01109714 A JPH01109714 A JP H01109714A JP 26779387 A JP26779387 A JP 26779387A JP 26779387 A JP26779387 A JP 26779387A JP H01109714 A JPH01109714 A JP H01109714A
Authority
JP
Japan
Prior art keywords
gas
wafers
nozzle
difference
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26779387A
Other languages
Japanese (ja)
Other versions
JPH0682626B2 (en
Inventor
Masao Mikami
三上 雅生
Fumitoshi Toyokawa
豊川 文敏
Seiichi Shishiguchi
獅子口 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62267793A priority Critical patent/JPH0682626B2/en
Publication of JPH01109714A publication Critical patent/JPH01109714A/en
Publication of JPH0682626B2 publication Critical patent/JPH0682626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the difference in flow rate of gas discharged from gas discharging small holes and to improve the uniformity of formed films, by supplying gas to a plurality of nozzle tubes divided in the length, independently from each other. CONSTITUTION:Gas supply nozzle tubes 5 and 6 which have been divided in the length from each other are supplied with gas independently from each other through a mass flow (MF) controller 10. The gas supplied to the nozzle tubes 5, 6 respectively is discharged through gas discharging small holes 7, 8 approxi mately in parallel to the surfaces of wafers 3. In this manner, it is possible to decrease difference in flow rate of the gas discharged from the gas discharg ing small holes 7, 8 and hence difference in thickness of films formed on the various wafers. Consequently, the uniformity in film thickness can be improved substantially.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気相成長装置に関し、特に縦型の反応管内に
多数枚のウェーハを任意の間隔でほぼ水平にして、積み
重ねるように設置する気相成長装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vapor phase growth apparatus, and in particular, a vapor phase growth apparatus in which a large number of wafers are stacked at arbitrary intervals substantially horizontally in a vertical reaction tube. Regarding a vapor phase growth apparatus.

〔従来の技術〕[Conventional technology]

従来、この種の気相成長装置は、第2図に示すように、
管壁に多数のガス放出細孔7のあいたノズル管11を設
置して、ガスをウェーハ面にほぼ平行にガス放出細孔7
から放出し、ウェーハ表面上に新期の膜を成長させる構
造になっている。この際、ノズル管11は長さ方向には
連続した一本の管になっていた。
Conventionally, this type of vapor phase growth apparatus, as shown in FIG.
A nozzle tube 11 with a large number of gas discharge holes 7 is installed in the tube wall, and the gas is distributed through the gas discharge holes 7 almost parallel to the wafer surface.
The structure is such that a new film is grown on the wafer surface. At this time, the nozzle pipe 11 was a single continuous pipe in the length direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した、従来の気相成長装置は、ノズル管ll内の圧
力損失のため、ガス放出細孔7から放出されるガス流量
は下流すなわち、ウェーハポートの上方に行くほど少な
くなる。このため、ノズル管11が長くなるとウェーハ
ボートに搭載さhたウェーハ3上に成長する膜厚は、上
方に行くほど薄くなる。この結果、ウェーハ間の膜厚差
を小さくするために一度に成長できるウェーハの枚数が
少なくなるという欠点がある。
In the conventional vapor phase growth apparatus described above, the flow rate of gas released from the gas release hole 7 decreases as it goes downstream, that is, above the wafer port, due to pressure loss within the nozzle pipe 11. Therefore, as the nozzle tube 11 becomes longer, the thickness of the film grown on the wafer 3 mounted on the wafer boat becomes thinner as it goes upward. As a result, there is a drawback that the number of wafers that can be grown at once decreases in order to reduce the difference in film thickness between wafers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、縦型の反応管内に複数枚のウェーハを
任意の間隔でほぼ水平に積み重ねるように設置し、ウェ
ーハ近傍にほぼ垂直に立てて設置したノズル管を有し、
ガスをノズル管にあけら−れた多数の細孔から放出して
、ウェーハ上に成膜する気相成長装置において、ノズル
管が長さ方向で複数に分割されていて、分割されたノズ
ル管には、それぞれ独立してガスが供給されることを特
徴とする気相成長装置が得られる。
According to the present invention, a plurality of wafers are installed in a vertical reaction tube so as to be stacked approximately horizontally at arbitrary intervals, and a nozzle tube is installed approximately vertically in the vicinity of the wafers,
In a vapor phase growth apparatus that deposits a film on a wafer by ejecting gas from a number of pores in a nozzle tube, the nozzle tube is divided into multiple parts in the length direction. A vapor phase growth apparatus is obtained in which gases are supplied independently to each other.

本発明によれば、ウェーハポートのウェーハ搭載部分の
長さが一定の場合、分割数を多くするほど、各ノズルの
ガス放出細孔からでるガス流量の差は少なくできウェー
ハ間の膜厚差を小さくすることができる。
According to the present invention, when the length of the wafer mounting portion of the wafer port is constant, the larger the number of divisions, the smaller the difference in gas flow rate from the gas discharge pores of each nozzle, and the difference in film thickness between wafers can be reduced. Can be made smaller.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の気相成長装置の縦′断面図
であり、この装置を用いてシリコンエピタキシャル成長
を実施した場合について説明する。
FIG. 1 is a longitudinal sectional view of a vapor phase growth apparatus according to an embodiment of the present invention, and a case in which silicon epitaxial growth is performed using this apparatus will be described.

反応管は外管1と内管2の2重構造になっている。The reaction tube has a double structure of an outer tube 1 and an inner tube 2.

直径150mmのウェーハ3はウェーハボード4にほぼ
水平になるように約6mmの間隔で70枚搭載した。本
発明に係るノズル管については、長さ方向に分割したガ
ス供給ノズル管5及び6にそれぞれ独立して、S i 
HiCj22とH2ガスがマスクローコントローラ(M
F)10を通して供給されるようになっている。それぞ
れのノズル管に供給されたガスは、それぞれガス放出細
孔7,8からウェーハ面にほぼ平行に放出される。
Seventy wafers 3 each having a diameter of 150 mm were mounted on a wafer board 4 almost horizontally at intervals of about 6 mm. Regarding the nozzle pipe according to the present invention, the gas supply nozzle pipes 5 and 6 divided in the length direction are each independently provided with Si
HiCj22 and H2 gas are mask low controller (M
F) is adapted to be supplied through 10. The gas supplied to each nozzle pipe is discharged from the gas discharge holes 7 and 8, respectively, approximately parallel to the wafer surface.

シリコンエピタキシャル成長実験の一例を以下に示す。An example of a silicon epitaxial growth experiment is shown below.

電気炉加熱によって反応管内の温度を1100℃とした
。ノズル管5より反応ガスSiH2CII 2を0.3
u/min、キャリアガスH2を20A/min、また
ノズル管6より同様にSiH2CR20,3j7/mi
n、 H220β/ m i nを流した。ウェーハポ
ートは1分間に10回転の回転速度(10rpm)で回
転した。その結果、ウェーハポート4の下半分と上半分
に設置したウェーハ3は、はとんど同じ膜厚分布を示し
、全ウェーハに対してウェーハ間の膜厚差を±5%以内
に抑えることができた。
The temperature inside the reaction tube was brought to 1100° C. by heating in an electric furnace. 0.3 of the reaction gas SiH2CII 2 from the nozzle pipe 5
u/min, carrier gas H2 at 20A/min, and SiH2CR20, 3j7/min from the nozzle pipe 6.
n, H220β/min was flowed. The wafer port rotated at a rotational speed of 10 revolutions per minute (10 rpm). As a result, the wafers 3 installed in the lower and upper halves of the wafer port 4 show almost the same film thickness distribution, and it is possible to suppress the film thickness difference between wafers to within ±5% for all wafers. did it.

一方、第2図に示した従来方式の一本のノズルによって
成長した場合は、ウェーハ間膜厚差は±12%と大きか
った。
On the other hand, when the film was grown using a conventional single nozzle shown in FIG. 2, the film thickness difference between wafers was as large as ±12%.

次に、ノズルを3分割することによりて、同様に搭載ウ
ェーハ数70枚にシリコンエピタキシャル成長を試みた
。各分割ノズル管にそれぞれ、S i H2Cj22を
0.3A/min、キャリアガスH2を20j7/mi
n流した。その結果、ウェーハ間の膜厚分布を±3%以
下に抑えることがでた。すなわち、分割数を多くすれば
、ガス供給系などの装置は複雑化するが、膜厚の均一性
は向上する。
Next, by dividing the nozzle into three parts, silicon epitaxial growth was similarly attempted on 70 mounted wafers. S i H2Cj22 at 0.3A/min and carrier gas H2 at 20j7/mi in each divided nozzle pipe.
n flowed. As a result, it was possible to suppress the film thickness distribution between wafers to ±3% or less. That is, if the number of divisions is increased, equipment such as a gas supply system becomes more complicated, but the uniformity of the film thickness improves.

〔発明の効果〕〔Effect of the invention〕

本発明は、縦型の反応管内に任意の間隔をもたせて、は
ぼ水平にウェーハな積み重ねて設置し、はぼ垂直に立て
たノズル管の管壁にあけられたガス放出細孔からウェー
ハ面にほぼ水平にガスを供給する気相成長装置で、ノズ
ル管を長さ方向に分割し各分割部分に独立にガスを供給
することによって、各ガス放出細孔管のガス流量の差を
小さくすることができる。その結果、各ウェーハ上に成
長する膜のウェーハ間の膜厚差を小さくできて、成膜の
均一性を著しく向上する効果がある。
In the present invention, wafers are stacked almost horizontally with arbitrary intervals in a vertical reaction tube, and the wafer surface is ejected from a gas discharge hole drilled in the wall of a nozzle tube erected almost vertically. This is a vapor phase growth device that supplies gas almost horizontally to the nozzle tube. By dividing the nozzle tube in the length direction and supplying gas to each divided section independently, the difference in gas flow rate between each gas discharge pore tube is reduced. be able to. As a result, the difference in film thickness between the wafers of the film grown on each wafer can be reduced, which has the effect of significantly improving the uniformity of film formation.

また、以上はシリコンエピタキシャル成長を例に説明し
てきたが、各種の酸化膜、窒化膜、ポリシリコン膜、ア
モルファスシリコン膜ナトの成膜にも適用できるもので
あり、その応用価値は、きわめて大きい。
Further, although the above explanation has been given using silicon epitaxial growth as an example, it can also be applied to the formation of various oxide films, nitride films, polysilicon films, and amorphous silicon films, and its application value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の気相成長装置の断面図、第
2図は従来の気相成長装置の縦断面図である。 1・・・・・・反応管(外管)、2・・・・・・反応管
(内管)、3・・・・・・ウェーハ、4・旧・・ウェー
ハポー)、5゜6・・・・・・ガス供給ノズル管、7,
8・・・・・・ガス放出細孔、9・・・・・・排気口、
10・・・・・・マスクローコントローラー、11・旧
・・ノズル管。 代理人 弁理士  内 原   晋 竿 1 図 $ 2  圏
FIG. 1 is a sectional view of a vapor phase growth apparatus according to an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional vapor phase growth apparatus. 1...Reaction tube (outer tube), 2...Reaction tube (inner tube), 3...Wafer, 4.Old...Wafer po), 5゜6... ...Gas supply nozzle pipe, 7,
8...Gas release pore, 9...Exhaust port,
10...Masklow controller, 11. Old...Nozzle pipe. Agent Patent Attorney Shinkan Uchihara 1 Figure $ 2 Area

Claims (1)

【特許請求の範囲】[Claims]  縦型の反応管内に複数枚のウェーハを任意の間隔でほ
ぼ水平に積み重ねるように設置し、前記ウェーハ近傍に
ほぼ垂直に立てて設置したノズル管を有し、ガスを前記
ノズル管にあけられた多数の細孔から放出して、前記ウ
ェーハ上に成膜する気相成長装置において、前記ノズル
管が長さ方向で複数に分割されていて、該分割されたノ
ズル管には、それぞれ独立してガスが供給されることを
特徴とする気相成長装置。
A plurality of wafers are installed in a vertical reaction tube so as to be stacked almost horizontally at arbitrary intervals, and a nozzle tube is installed almost vertically in the vicinity of the wafer, and a gas can be introduced into the nozzle tube. In a vapor phase growth apparatus that forms a film on the wafer by emitting water from a large number of pores, the nozzle pipe is divided into a plurality of parts in the length direction, and each of the divided nozzle pipes has an independent film. A vapor phase growth apparatus characterized in that a gas is supplied.
JP62267793A 1987-10-22 1987-10-22 Vapor phase growth equipment Expired - Lifetime JPH0682626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267793A JPH0682626B2 (en) 1987-10-22 1987-10-22 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267793A JPH0682626B2 (en) 1987-10-22 1987-10-22 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH01109714A true JPH01109714A (en) 1989-04-26
JPH0682626B2 JPH0682626B2 (en) 1994-10-19

Family

ID=17449670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267793A Expired - Lifetime JPH0682626B2 (en) 1987-10-22 1987-10-22 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPH0682626B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220434A (en) * 1988-02-29 1989-09-04 Tel Sagami Ltd Heat treating furnace
US5925188A (en) * 1995-10-30 1999-07-20 Tokyo Electron Limited Film forming apparatus
US6444262B1 (en) 1999-04-14 2002-09-03 Tokyo Electron Limited Thermal processing unit and thermal processing method
JP2009200298A (en) * 2008-02-22 2009-09-03 Hitachi Kokusai Electric Inc Substrate processing apparatus
US8361274B2 (en) * 2004-01-13 2013-01-29 Samsung Electronics Co., Ltd Etching apparatus and etching method
CN108085658A (en) * 2016-11-21 2018-05-29 东京毅力科创株式会社 Substrate board treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118671A (en) * 1974-03-01 1975-09-17
JPS6171625A (en) * 1984-09-17 1986-04-12 Fujitsu Ltd Vertical cvd device
JPS61199629A (en) * 1985-03-01 1986-09-04 Hitachi Ltd Epitaxial growth device for semiconductor
JPS6212945U (en) * 1986-03-20 1987-01-26
JPS6276529U (en) * 1985-10-31 1987-05-16

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118671A (en) * 1974-03-01 1975-09-17
JPS6171625A (en) * 1984-09-17 1986-04-12 Fujitsu Ltd Vertical cvd device
JPS61199629A (en) * 1985-03-01 1986-09-04 Hitachi Ltd Epitaxial growth device for semiconductor
JPS6276529U (en) * 1985-10-31 1987-05-16
JPS6212945U (en) * 1986-03-20 1987-01-26

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220434A (en) * 1988-02-29 1989-09-04 Tel Sagami Ltd Heat treating furnace
US5925188A (en) * 1995-10-30 1999-07-20 Tokyo Electron Limited Film forming apparatus
US6444262B1 (en) 1999-04-14 2002-09-03 Tokyo Electron Limited Thermal processing unit and thermal processing method
US8361274B2 (en) * 2004-01-13 2013-01-29 Samsung Electronics Co., Ltd Etching apparatus and etching method
JP2009200298A (en) * 2008-02-22 2009-09-03 Hitachi Kokusai Electric Inc Substrate processing apparatus
CN108085658A (en) * 2016-11-21 2018-05-29 东京毅力科创株式会社 Substrate board treatment
KR20180057537A (en) * 2016-11-21 2018-05-30 도쿄엘렉트론가부시키가이샤 Substrate treatment apparatus
JP2018085392A (en) * 2016-11-21 2018-05-31 東京エレクトロン株式会社 Substrate processing device

Also Published As

Publication number Publication date
JPH0682626B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
KR940009945B1 (en) Cvd apparatus
TW201840887A (en) Vapor phase film deposition apparatus
JPH02222134A (en) Thin film forming apparatus
US4781945A (en) Process for the formation of phosphosilicate glass coating
JPH01109714A (en) Vapor-phase epitaxy appratus
JPH0758030A (en) Apparatus for manufacturing semiconductor
JPH0316208A (en) Apparatus for silicon epitaxial growth
JPS62263629A (en) Vapor growth device
JPH04163912A (en) Vapor growth equipment
JP3057744B2 (en) Low pressure CVD equipment
JPH0626188B2 (en) Vapor phase growth equipment
JPH0658880B2 (en) Vapor phase epitaxial growth system
JP3350590B2 (en) Semiconductor manufacturing apparatus and cleaning method thereof
JPH046825A (en) Semiconductor growth apparatus
JPH01157519A (en) Vapor growth apparatus
JPS626682Y2 (en)
JPH11131233A (en) Production of titanium nitride thin coating film and cvd device
JPH1050615A (en) Single wafer processing gas-phase growth device
CN108048901A (en) A kind of nozzle structure of hydride gas-phase epitaxy
JPH0669138A (en) Low pressure vapor phase epitaxial growth system
JPH01235235A (en) Vapor growth equipment
JPS6058608A (en) Heat processing furnace
JPH0713946B2 (en) CVD equipment
JPS6154617A (en) Chemical vapor deposition equipment
JPS61242012A (en) Vapor-phase growth device