JPH01108200A - Production of sic ingot - Google Patents

Production of sic ingot

Info

Publication number
JPH01108200A
JPH01108200A JP26300287A JP26300287A JPH01108200A JP H01108200 A JPH01108200 A JP H01108200A JP 26300287 A JP26300287 A JP 26300287A JP 26300287 A JP26300287 A JP 26300287A JP H01108200 A JPH01108200 A JP H01108200A
Authority
JP
Japan
Prior art keywords
sic
raw material
single crystal
doped
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26300287A
Other languages
Japanese (ja)
Inventor
Kazuyuki Koga
古賀 和幸
Toshitake Nakada
中田 俊武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26300287A priority Critical patent/JPH01108200A/en
Publication of JPH01108200A publication Critical patent/JPH01108200A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain SiC ingot in which impurities are doped in an amount of <=10<19>/cm<2> without causing polycrystallization, by sublimating a SiC raw material having different impurities concentration in specific order and growing a single crystal. CONSTITUTION:A SiC single crystal 9 is grown on a SiC seed crystal 6 by sublimating a SiC raw material 8 in which <10<19> impurities are doped and successively a SiC raw material in which >=10<19>/cm<2> impurities are doped is sublimated to further grow SiC single crystal 11 on the surface of SiC single crystal 9 and 10 (10 is a mixed crystal consisting of mixture of SiC single crystals having <10<19> and >=10<19> impurities concentration).

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明tfsic(シリコンカーバイド)インゴットの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a TFSIC (silicon carbide) ingot.

(ロ)従来の技術 SiC単結晶は物理的、化学的に安定であり、しかも高
温、放射線に耐える素材であるため、耐@境性牛辱体材
料としての応用が期待されている。
(b) Conventional technology SiC single crystal is physically and chemically stable and is a material that can withstand high temperatures and radiation, so it is expected to be used as an environmentally resistant material for cow humiliation.

なかでも、6H型のSiC単結晶は、室温で約3゜Oe
Vの禁制帯幅をもち、青色発光ダイオード用素材として
用いられている。
Among them, 6H type SiC single crystal has a temperature of about 3°Oe at room temperature.
It has a forbidden band width of V and is used as a material for blue light emitting diodes.

この上うなSiC単結晶のインゴットを成長させる場合
には、主に昇華去が採用されている。また、この昇蒙去
によってp形のSiC単結晶を成長させる方法としては
、予め不純物としてのAL。
In the case of growing SiC single crystal ingots, sublimation is mainly used. In addition, as a method for growing a p-type SiC single crystal by this elevation and removal, AL is added as an impurity in advance.

(1)5ミニクム)がドープされたSiC*材料を1〜
10 Torrの低圧下で加熱昇華させSiC単f9 
 発明が解決しようとする問題煮熱るに、上記方法では
、例えば不純物としてAtが1019/d 以上ドープ
されたS i C原材料のみを用いて成*を行なった場
合、成長したSiCインゴットは多結晶化してしまう。
(1) SiC* material doped with 5 min)
SiC single f9 is heated and sublimated under a low pressure of 10 Torr.
The problem that the invention seeks to solve is that in the above method, for example, when growth is performed using only a SiC raw material doped with At as an impurity of 1019/d or more, the grown SiC ingot becomes a polycrystalline ingot. It turns into

このため、Atが1017j以上ドープされたSiC単
結晶を製造することは困錐であった。
For this reason, it has been difficult to produce a SiC single crystal doped with 1017j or more of At.

祈る原因は明傭ではないが、原材料としてAtが1of
7j以上ドープされたSiCを用いる場合、成長初期の
SiC種結晶表面に発生する複数の成ると共に、Atp
子の供給量が多すぎるため上記成長棟を中心に成員する
島状の結晶間にALのみが存在する境界領域が発生する
ためであると考えられる。一方、Atのドープ量が10
声木満のSiCを原材料として用いる場合、上記した多
結晶化は生じない。尚、このような現象は不純物として
B%G畠等を用いた場合でも同様である。
Although the cause of prayer is not pure, At is 1of as a raw material.
When using SiC doped with 7j or more, a plurality of crystals are formed on the surface of the SiC seed crystal at the initial stage of growth, and Atp
It is thought that this is because the supply of children is too large, so that a boundary region where only AL exists is generated between the island-like crystals centered around the growth ridge. On the other hand, the amount of At doped is 10
When Mitsuru Koeki's SiC is used as a raw material, the above-mentioned polycrystallization does not occur. Incidentally, such a phenomenon is the same even when B%G Hatake or the like is used as an impurity.

に)問題点を解決するための手段 本発明は祈る点に麺みてなされたものであり、その博成
的特徴は、1054未満の不純物がドー成長させること
にある。
B) Means for Solving the Problems The present invention has been made with an eye on the matter, and its unique feature is that impurities of less than 1054 are allowed to grow.

(ホ)作 用 折る方決によれば、1019/d 以上の不純物がドー
プされたSiCはSiC単結晶表面の活性エネルギによ
り規則正しく上記表面に配列される。
(E) Effect According to the proposed method, SiC doped with an impurity of 1019/d or more is regularly arranged on the surface due to the active energy of the SiC single crystal surface.

(へ)実施例 第1図は本発明の一実施例を説明するための断面図であ
り、(1)は内径が53の高純度グラフアイ′ト製のル
ツボ、 (2)I/i該ルツボ上に配されたガス集中手
段、(3)IIi該手攻に5P投された連通孔であり、
該連通孔の内径はルツボ(1)側から上方に向って徐々
に小さくなっている。14)にガス集中手段iZJ 上
忙配された蓋体、(5)は基板保持部であり、該保持部
は上記連□通孔(3)と対向する蓋体14)内面に形成
されている。(6)は例えばアチソン法により形成され
九SiC種結晶であり、核種結晶は保持部(5)表面に
固看されている。イア)はAtが101麺 以上ドープ
されたSiCからなる第1原材料であり、該原材料はル
ツボ(1)内部の側壁より0.5口部間して厨るルツボ
(1)内に収納されている。(8)はAAのドープ量が
1o 19A 未満のSiCからなる第2原材料であり
、該原材料は上記ルツボ11)の側壁と%1原材料17
)との間に充填されると共に第1原材料17)上にも堆
積されている。尚、祈る第1原材料(7)上の第2原材
料(8)の堆積厚みは15倒程度である。
(f) Example FIG. 1 is a sectional view for explaining an example of the present invention, (1) shows a crucible made of high-purity graphite with an inner diameter of 53 mm, (2) I/i A gas concentration means arranged on the crucible, (3) a communication hole in which 5P was thrown into the IIi move,
The inner diameter of the communication hole gradually decreases upward from the crucible (1) side. 14) is a lid disposed on the gas concentration means iZJ, and (5) is a substrate holding part, which is formed on the inner surface of the lid 14) facing the communication hole (3). . (6) is a nine-SiC seed crystal formed, for example, by the Acheson method, and the nuclide crystal is fixed on the surface of the holding part (5). Ia) is a first raw material made of SiC doped with 101 At or more, and the raw material is stored in a crucible (1) that is 0.5 mouths apart from the side wall of the crucible (1). There is. (8) is a second raw material made of SiC with an AA doping amount of less than 1o 19A , and this raw material is the side wall of the crucible 11) and the %1 raw material 17
) and is also deposited on the first raw material 17). The thickness of the second raw material (8) deposited on the first raw material (7) to be prayed is about 15 mm.

祈る状急において、種結晶温度220P守〜2400℃
、原材料温度2300〜2500℃、種結晶と糸材料と
の間の温度勾配5〜20℃/α、反応系内のガス圧1〜
10 Torrという条件下で原材料をJA−華させる
。尚、上記種結晶等の加熱はルツポイ1)周囲に巻回さ
れた高周波加熱コイル(図示せず)で行なう。
In a sudden situation, the seed crystal temperature is 220P to 2400℃.
, raw material temperature 2300~2500℃, temperature gradient between seed crystal and thread material 5~20℃/α, gas pressure in the reaction system 1~
The raw materials are JA-fermented under conditions of 10 Torr. The seed crystal and the like are heated by a high-frequency heating coil (not shown) wound around the heating element 1).

祈る条件下で原材料を昇華させる場合、第1原材P)1
7>がqPJ2原材料(8)により被覆され、かつ第2
原材料(8)の方が加熱源である1M熱コイルに近いた
め、まず、第2原材料(8)のみが昇華し、第2図に示
す即く種結晶+6)表面にAtドープ濃度が1017−
未満の第1SiC単結晶19)が成長する。その1後、
上記第2fA材料(8)の!+第により第1原材料(7
)表面が蕗出すると、第1M材料(7)も井第し始める
ため、上記第1SiC$結晶(9)表面にAtドープ濃
度がtol論 未満のSiC単結晶(低濃度結晶)とA
all口の収兼時、最初は第2原材料(8)の昇華量が
大きいため、低濃度結晶の比率が高い混晶αGが成長す
るが、ty、長中に第2原材料(8)の昇華量が試夕し
ていくのに対し、第1原材料171の昇傘量は徐々に大
きくなり、ついには第2原材料(8)が全て昇華しつく
シ、第1原材料(71のみが昇華することとなるので、
混晶t101は第1SiC単結晶(9)より成長方向(
第2図中、下方向)に向って余々に高濃度結晶の比率が
高くなる。更に区長を続けると、¥J1原材fjf17
1のみが昇華することとなるので、混晶1101表面に
Atドープ11度が101−以上の第25iC単結晶α
1)が成長することとなる。従って、所る第2SiC準
結晶l11)の成長を長時間続けることによりAAが1
019/1以上ドープされたSiCインゴットを製造で
きる。   − このようにA4ドープ濃度が1019/1未病の第1S
鉦C単結晶(9)上にAtドープ濃度が1019/1以
上のSiC結晶を区長させた場合、所るSiC結晶が多
結晶化しない理由は、明確ではないが、上記5iCFi
晶が成長される第1SiC単結晶(9)表面が活性であ
るため、祈る活性エネルギにより10’7j 以上のA
LがドープされたSiCが規則正しく配列されるためで
あると推察される。
When sublimating raw materials under the desired conditions, the first raw material P)1
7> is coated with the qPJ2 raw material (8), and the second
Since the raw material (8) is closer to the 1M thermal coil that is the heating source, only the second raw material (8) sublimes first, and the At doping concentration is 1017- on the surface of the seed crystal +6) shown in Figure 2.
The first SiC single crystal 19) is grown. After that one,
Of the second fA material (8) above! + 1st raw material (7
) When the surface is exposed, the first M material (7) also begins to deteriorate, so the SiC single crystal (low concentration crystal) with an At doping concentration of less than 100 nm on the surface of the first SiC$ crystal (9) and the A
At the time of collection, the amount of sublimation of the second raw material (8) is large at first, so a mixed crystal αG with a high proportion of low-concentration crystals grows, but during ty, the sublimation of the second raw material (8) While the amount of the first raw material 171 increases, the amount of the first raw material 171 gradually increases until all of the second raw material (8) sublimates, and only the first raw material (71) sublimates. Therefore,
The mixed crystal t101 is grown in the growth direction (
In FIG. 2, the ratio of highly concentrated crystals becomes excessively high toward the bottom (in the downward direction). If you continue to be the ward chief, ¥J1 raw materials fjf17
1 will sublimate, so the 25th iC single crystal α with At doping 11 degrees of
1) will grow. Therefore, by continuing the growth of a certain second SiC quasicrystal l11) for a long time, AA becomes 1
A SiC ingot doped with 019/1 or higher can be produced. - In this way, the A4 doping concentration is 1019/1 in the 1st S
Although it is not clear why some SiC crystals do not become polycrystalline when a SiC crystal with an At doping concentration of 1019/1 or more is formed on the C single crystal (9), the above 5iCFi
Since the surface of the first SiC single crystal (9) on which the crystal is grown is active, the activation energy increases the A of 10'7j or more.
It is presumed that this is because the L-doped SiC is regularly arranged.

尚、本実施例では、ルツボ(1)中において第2yA材
料18)を第1原材料(7)の周囲を仮積する如く配し
たが、単に第1原材料+7)をルツボ(1)底部に配し
、その上に′P;2原材料(8)を配しても本実施例と
同様にht?−プ濃度が101ぞ以上のSiC単結晶を
成長させることができる。また、本人地側では不純物と
してAtを用い友が、不純物としてB。
In this example, the second yA material 18) was placed in the crucible (1) so as to temporarily accumulate around the first raw material (7), but the first raw material + 7) was simply placed at the bottom of the crucible (1). However, even if 'P;2 raw material (8) is placed on top of it, ht? - It is possible to grow a SiC single crystal with a concentration of 101 or more. In addition, the principal's side uses At as an impurity, and the friend uses B as an impurity.

G*、Sc等を用いても同様な結果が得られる。Similar results can be obtained using G*, Sc, etc.

(ト)発明の効果 本発明によれば、不純物が1019/d 以上ドープさ
れたSiCインゴットを多紹晶化を招くことなく製造す
ることができる。
(g) Effects of the Invention According to the present invention, a SiC ingot doped with impurities of 1019/d or more can be produced without causing polymorphism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための断面図、%
2図は零犬迩例に2けるSiC結晶の成長m程を説明す
るためのFfr面図である。 t6)−S i C種結晶、イア)・・・第1原材料(
10′9/cd払との不純物がドープされたSiC*材
料)、181・・・協2原材料< 1o+7#氷壜の不
純物がドープされたSiC原材料)
FIG. 1 is a sectional view for explaining one embodiment of the present invention.
FIG. 2 is an Ffr plane view for explaining the growth rate of SiC crystal in Example 2. t6)-S i C seed crystal, Ia)...first raw material (
SiC* material doped with impurities with 10'9/cd payment), 181...Kyo 2 raw material <1o+7# SiC raw material doped with impurities of ice bottle)

Claims (1)

【特許請求の範囲】[Claims] (1)10^1^9/cm^3未満の不純物がドープさ
れたSiC原材料を昇華させることによりSiC種結晶
上にSiC単結晶を成長させた後、続けて10^1^9
cm^3以上の不純物がドープされたSiC原材料を昇
華させ上記SiC単結晶表面にさらにSiC単結晶を成
長させることを特徴とするSiCインゴットの製造方法
(1) After growing a SiC single crystal on a SiC seed crystal by sublimating a SiC raw material doped with impurities of less than 10^1^9/cm^3,
A method for producing an SiC ingot, which comprises sublimating a SiC raw material doped with impurities of cm^3 or more to further grow a SiC single crystal on the surface of the SiC single crystal.
JP26300287A 1987-10-19 1987-10-19 Production of sic ingot Pending JPH01108200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26300287A JPH01108200A (en) 1987-10-19 1987-10-19 Production of sic ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26300287A JPH01108200A (en) 1987-10-19 1987-10-19 Production of sic ingot

Publications (1)

Publication Number Publication Date
JPH01108200A true JPH01108200A (en) 1989-04-25

Family

ID=17383529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26300287A Pending JPH01108200A (en) 1987-10-19 1987-10-19 Production of sic ingot

Country Status (1)

Country Link
JP (1) JPH01108200A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994023096A1 (en) * 1993-04-01 1994-10-13 Siemens Aktiengesellschaft DEVICE AND PROCESS FOR PRODUCING SiC SINGLE CRYSTALS
WO2006062955A1 (en) * 2004-12-08 2006-06-15 Cree, Inc. Process for producing high quality large size silicon carbide crystals
JP2006290635A (en) * 2005-04-05 2006-10-26 Nippon Steel Corp Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
WO2006113657A1 (en) * 2005-04-19 2006-10-26 Ii-Vi Incorporated Method of and system for forming sic crystals having spatially uniform doping impurities
JP2008074663A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP2009102196A (en) * 2007-10-23 2009-05-14 Denso Corp Method for manufacturing silicon carbide single crystal substrate
JP2009256155A (en) * 2008-04-21 2009-11-05 Nippon Steel Corp Silicon carbide single crystal ingot and production method of the same
JP2012030994A (en) * 2010-07-29 2012-02-16 Denso Corp Apparatus and method for producing silicon carbide single crystal
WO2019095632A1 (en) * 2017-11-14 2019-05-23 山东天岳先进材料科技有限公司 Method for preparing semi-insulating silicon carbide single crystal
US10525857B2 (en) 2015-07-08 2020-01-07 Toyota Boshoku Kabushiki Kaisha Vehicle seat

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707446A (en) * 1993-04-01 1998-01-13 Siemens Aktiengesellschaft Device for producing SiC single crystals
WO1994023096A1 (en) * 1993-04-01 1994-10-13 Siemens Aktiengesellschaft DEVICE AND PROCESS FOR PRODUCING SiC SINGLE CRYSTALS
WO2006062955A1 (en) * 2004-12-08 2006-06-15 Cree, Inc. Process for producing high quality large size silicon carbide crystals
US7563321B2 (en) 2004-12-08 2009-07-21 Cree, Inc. Process for producing high quality large size silicon carbide crystals
JP4585359B2 (en) * 2005-04-05 2010-11-24 新日本製鐵株式会社 Method for producing silicon carbide single crystal
JP2006290635A (en) * 2005-04-05 2006-10-26 Nippon Steel Corp Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
WO2006113657A1 (en) * 2005-04-19 2006-10-26 Ii-Vi Incorporated Method of and system for forming sic crystals having spatially uniform doping impurities
US7608524B2 (en) 2005-04-19 2009-10-27 Ii-Vi Incorporated Method of and system for forming SiC crystals having spatially uniform doping impurities
US8216369B2 (en) 2005-04-19 2012-07-10 Ii-Vi Incorporated System for forming SiC crystals having spatially uniform doping impurities
JP2008074663A (en) * 2006-09-21 2008-04-03 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP2009102196A (en) * 2007-10-23 2009-05-14 Denso Corp Method for manufacturing silicon carbide single crystal substrate
JP2009256155A (en) * 2008-04-21 2009-11-05 Nippon Steel Corp Silicon carbide single crystal ingot and production method of the same
JP2012030994A (en) * 2010-07-29 2012-02-16 Denso Corp Apparatus and method for producing silicon carbide single crystal
US10525857B2 (en) 2015-07-08 2020-01-07 Toyota Boshoku Kabushiki Kaisha Vehicle seat
WO2019095632A1 (en) * 2017-11-14 2019-05-23 山东天岳先进材料科技有限公司 Method for preparing semi-insulating silicon carbide single crystal

Similar Documents

Publication Publication Date Title
JP4530542B2 (en) Production of bulk single crystals of aluminum nitride, silicon carbide, and aluminum nitride: silicon carbide alloys
KR101070412B1 (en) Method of manufacturing silicon carbide single crystal
US3956032A (en) Process for fabricating SiC semiconductor devices
US5441011A (en) Sublimation growth of single crystal SiC
WO2007094155A1 (en) PROCESS FOR PRODUCING SiC SINGLE CRYSTAL
US3129061A (en) Process for producing an elongated unitary body of semiconductor material crystallizing in the diamond cubic lattice structure and the product so produced
JPH01108200A (en) Production of sic ingot
JPH0791153B2 (en) Method for producing α-SiC single crystal
US3162507A (en) Thick web dendritic growth
JP3087065B1 (en) Method for growing liquid phase of single crystal SiC
JPH0645519B2 (en) Method for growing p-type SiC single crystal
JPH10259100A (en) Production of garium-arsenic single crystal
US4614672A (en) Liquid phase epitaxy (LPE) of silicon carbide
JP2680617B2 (en) Method for growing silicon carbide single crystal
JPH06298600A (en) Method of growing sic single crystal
JPH06191998A (en) Method for growing silicon carbide single crystal and device for growing the same
JPS6226569B2 (en)
JPH02289484A (en) Growing device for single crystal
JPS6350393A (en) Growth method for sic single crystal
JPS6385097A (en) Method for growth of sic single crystal
JP3937700B2 (en) Method for producing GaAs semiconductor single crystal doped with conductive impurities
JPS59137400A (en) P type gallium arsenide single crystal with low dislocation density and its manufacture
JP3250409B2 (en) Vertical crystal growth method and crystal growth vessel used therein
JPS627693A (en) Device for growing compound semiconductor single crystal
JPH04187585A (en) Device of growing crystal