JPH01108104A - Fine powder of aluminum nitride - Google Patents

Fine powder of aluminum nitride

Info

Publication number
JPH01108104A
JPH01108104A JP26407787A JP26407787A JPH01108104A JP H01108104 A JPH01108104 A JP H01108104A JP 26407787 A JP26407787 A JP 26407787A JP 26407787 A JP26407787 A JP 26407787A JP H01108104 A JPH01108104 A JP H01108104A
Authority
JP
Japan
Prior art keywords
aluminum nitride
powder
nitride powder
fine powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26407787A
Other languages
Japanese (ja)
Inventor
Hiroaki Ueshimo
上霜 浩明
Eikichi Uchimura
内村 栄吉
Yoshiki Hashizume
良樹 橋詰
Yoshiteru Miyazawa
宮沢 吉輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP26407787A priority Critical patent/JPH01108104A/en
Publication of JPH01108104A publication Critical patent/JPH01108104A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To prevent the shrinkage cracking of a molded article of the titled powder formed by sheet-forming process and to obtain the titled fine powder having excellent stability to water, by treating the surface of AlN powder with a specific compound. CONSTITUTION:AlN powder is mixed or crushed in dry state in the presence of 0.05-5.0wt.% of a compound of formula CH2=CXY [X is (1-5C alkyl)aryl, benzyl or styryl; Y is H or X] (e.g. styrene) as a surface-treating agent and, as necessary, heated at <=300 deg.C in an inert atmosphere or in air to promote the polymerization of the surface-treating agent and obtain the titled fine powder.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は窒化アルミニウム微粉末に関する。[Detailed description of the invention] Industrial applications The present invention relates to fine aluminum nitride powder.

従来の技術 窒化アルミニウム焼結体は、アルミナの5〜10倍に達
する高い熱伝導率を有する絶縁性セラミックスであり、
IC基板材料や高温構造体として広く利用されつつある
Conventional technology Aluminum nitride sintered bodies are insulating ceramics with high thermal conductivity reaching 5 to 10 times that of alumina.
It is becoming widely used as an IC substrate material and high-temperature structure.

窒化アルミニウム焼結体は、原料窒化アルミニウム粉末
を焼結助剤と混合後ホットプレス法によって焼結するか
、又は原料窒化アルミニウム粉末に焼結助剤、有機バイ
ンダー、有機溶剤等を添加混合後当該混合物で成型体を
作製し、脱バインダーを行なった後不活性ガス中で常圧
焼結又は加圧焼結して製造される。混合物より成型体を
作製する方法としてはプレス成型法、シート成型法、射
出成型法等があるが、安価で大m生産が可能であり且つ
作業性が優れている等の理由でシート成型法が広く用い
られている。しかしながら、シート成型法では成型体を
通常低粘度で作製するため、作製直後の成型体には他の
成形法よりも多旦の有機溶剤が含まれており、脱バイン
ダーを行なう前に成型体から多量の有機溶剤を乾燥させ
る必要がある。このため、シート成型法で作製した成形
体では有機溶剤の乾燥時にひびや割れが生ずるという問
題がある。本発明の第一の目的は、上記した乾燥時のひ
びや割れの問題を改善することにある。
Aluminum nitride sintered bodies are produced by mixing raw aluminum nitride powder with a sintering aid and then sintering it using a hot press method, or by adding and mixing a sintering aid, an organic binder, an organic solvent, etc. to the raw aluminum nitride powder, and then sintering it. A molded body is made from the mixture, the binder is removed, and the molded body is then sintered under normal pressure or under pressure in an inert gas. There are press molding methods, sheet molding methods, injection molding methods, etc. for producing molded bodies from mixtures, but the sheet molding method is preferred because it is inexpensive, allows large scale production, and has excellent workability. Widely used. However, in the sheet molding method, the molded body is usually produced with a low viscosity, so the molded body immediately after production contains more organic solvent than other molding methods, and the molded body must be removed from the molded body before debinding. It is necessary to dry a large amount of organic solvent. For this reason, there is a problem in molded bodies produced by the sheet molding method that cracks and cracks occur when the organic solvent dries. The first object of the present invention is to improve the above-mentioned problems of cracking and cracking during drying.

一方、窒化アルミニウム焼結体の物性が原料窒化アルミ
ニウム粉末の特性に大きく依存することは周知であり、
熱伝導率の高い焼結体を得るためには原料として高純度
で微細な窒化アルミニウム粉末を使用することが最も重
要であるとされている。特に、窒化アルミニウム粉末中
に不純物として含まれている酸素は焼結体の熱伝導率を
著しく低下させるため出来るだけ少なくすることが必要
である。
On the other hand, it is well known that the physical properties of aluminum nitride sintered bodies largely depend on the characteristics of the raw material aluminum nitride powder.
In order to obtain a sintered body with high thermal conductivity, it is said that it is most important to use highly purified and fine aluminum nitride powder as a raw material. In particular, oxygen contained as an impurity in the aluminum nitride powder must be reduced as much as possible since it significantly reduces the thermal conductivity of the sintered body.

窒化アルミニウム粉末は主に直接窒化法とアルミナ還元
法により製造され、何れの方法でも高純度で微細な窒化
アルミニウム粉末を製造することが可能である。しかし
ながら、窒化アルミニウム粉末は空気中の水分と容易に
反応して酸化物を生成するという性質があるため、貯蔵
中や取扱い作業中に窒化アルミニウム粉末中の不純物酸
素量が増大し、よって焼結体の熱伝導率が低下するとい
う問題もあった。本発明の第二の目的は、上記した問題
を解決すべく窒化アルミニウム粉末の水分に対する安定
性を改善することにある。
Aluminum nitride powder is mainly produced by the direct nitriding method and the alumina reduction method, and it is possible to produce highly pure and fine aluminum nitride powder by either method. However, since aluminum nitride powder has the property of easily reacting with moisture in the air to generate oxides, the amount of impurity oxygen in aluminum nitride powder increases during storage and handling, and this results in a sintered body. There was also the problem that the thermal conductivity of A second object of the present invention is to improve the stability of aluminum nitride powder against moisture in order to solve the above-mentioned problems.

発明が解決しようとする問題1、 上記した如く、本発明の目的は、シート成型法で成型体
を作製する際乾燥時にひびや割れを生ずることなく、水
分に対して安定であり且つ高Il1度で微細な窒化アル
ミニウム粉末を提供することにある。
Problem 1 to be Solved by the Invention As mentioned above, the object of the present invention is to produce a molded product using a sheet molding method without causing cracks or cracks during drying, stable against moisture, and having a high Il1 degree. Our goal is to provide fine aluminum nitride powder.

を 決するための手段 本発明の特徴は、窒化アルミニウム粉末の表面を特定の
表面処理剤で処理して、窒化アルミニウム粉末の表面に
表面処理剤が吸着した皮膜を形成させることにある。こ
うして皮膜を形成することにより、窒化アルミニウム粉
末の表面と成型体作製時に使用される有機バインダーと
の濡れが極めて良くなり、シート成型法により成型体を
作製する際の乾燥工程でのひびや割れの問題が改善され
る。更に、この皮膜により窒化アルミニウム粉末の表面
が保護されるため、水分に対する安定性も改善される。
A feature of the present invention is that the surface of aluminum nitride powder is treated with a specific surface treatment agent to form a film in which the surface treatment agent is adsorbed on the surface of the aluminum nitride powder. By forming a film in this way, wetting of the surface of the aluminum nitride powder with the organic binder used when making the molded body is extremely good, and this prevents cracks and cracks during the drying process when making the molded body using the sheet molding method. The problem will be improved. Furthermore, since this film protects the surface of the aluminum nitride powder, its stability against moisture is also improved.

本発明で使用される特定の表面処理剤は、式0式% を有する化合物である。上記式中、Xはアリール基、炭
素数1〜5のアルキル置換基を有するアリール基、ベン
ジル基、炭素数1〜5のアルキル置換基を有するベンジ
ル基、スチリル基又は炭素数1〜5のアルキル置換基を
有するスチリル基であり、Yは水素原子又はXである。
Particular surface treatment agents for use in the present invention are compounds having the formula: In the above formula, It is a styryl group having a substituent, and Y is a hydrogen atom or X.

本発明において表面処理剤として使用される化合物とし
ては、スチレン、α−メチルスチレン。
Examples of compounds used as a surface treatment agent in the present invention include styrene and α-methylstyrene.

O−メチルスチレン、11−メチルスチレン、p−メチ
ルスチレン、m−エチルスチレン、p−エチルスチレン
、0−イソプロピルスチレン、l−イソプロピルスチレ
ン、p−イソプロピルスチレン。
O-methylstyrene, 11-methylstyrene, p-methylstyrene, m-ethylstyrene, p-ethylstyrene, 0-isopropylstyrene, l-isopropylstyrene, p-isopropylstyrene.

2.4−ジメチルスチレン、3,4−ジメチルスチレン
2,4-dimethylstyrene, 3,4-dimethylstyrene.

フェニルプロピレン、トリルプロピレン、キシリルプロ
ピレン、ジフェニルエチレン、フェニルブ   □タジ
エン、トリルブタジェン、キシリルブタジェン又はその
混合物が挙げられる。特にスチレン。
Examples include phenylpropylene, tolylpropylene, xylylpropylene, diphenylethylene, phenylbutadiene, tolylbutadiene, xylylbutadiene, or mixtures thereof. Especially styrene.

メチルスチレンが好ましく使用される。Methylstyrene is preferably used.

上記した如く窒化アルミニウム粉末の表面を表面処理剤
で処理すると、窒化アルミニウム粉末の表面に該表面処
理剤が吸着後重合若しくは共重合した有機皮膜が形成さ
れるが、窒化アルミニウム粉末の表面に形成された有様
皮膜は脱バインダー工程で速やかに分解、揮散すること
が望ましい。
When the surface of aluminum nitride powder is treated with a surface treatment agent as described above, an organic film is formed on the surface of the aluminum nitride powder by adsorption and polymerization or copolymerization of the surface treatment agent. It is desirable that the film is quickly decomposed and volatilized during the binder removal process.

有機皮膜が脱バインダー工程で分解されることなく炭化
した場合には、焼結体中に炭素が残留し、焼結体の熱伝
導率が低下するからである。萌記皮膜の数平均分子借は
10,000以下が好ましい。
This is because if the organic film is carbonized without being decomposed in the binder removal step, carbon remains in the sintered body and the thermal conductivity of the sintered body decreases. The number average molecular weight of the Moeki film is preferably 10,000 or less.

本発明では、窒化アルミニウム粉末の重量に対して0.
05〜5,0重量%の上記表面処理剤を使用する。表面
処理剤の使用量がo、osam%未満では上記した効果
が所望通りに得られず、一方5,0重量%を越えると窒
化アルミニウム粉末−が凝集し、粒子を均一に分散させ
ることが困難となるので好ましくない。
In the present invention, 0.0% based on the weight of aluminum nitride powder.
0.05 to 5.0% by weight of the above surface treatment agent is used. If the amount of surface treatment agent used is less than 0.0% by weight, the above-mentioned effects cannot be obtained as desired, while if it exceeds 5.0% by weight, the aluminum nitride powder will aggregate and it will be difficult to uniformly disperse the particles. This is not desirable.

本発明の窒化アルミニウム微粉末の製造方法は特に限定
されないが、例えば上記した表面処理剤の存在下で窒化
アルミニウム粉末を乾式混合又は乾式粉砕する方法があ
る。窒化アルミニウム粉末を乾式粉砕する場合には、上
記表面処理剤が粉末粒子間及び粉末粒子と粉砕機内壁若
しくは粉砕媒体間の付着を防止し、粉砕効率を向上させ
る作用を発揮する。また、粉砕により新表面が形成され
ると新表面に表面処理剤が速やかに吸着して皮膜を形成
し、窒化アルミニウム粉末の酸化を抑制するという作用
も発揮する。なお、窒化アルミニウム粉末を乾式混合又
は乾式粉砕するとき、イツトリウム化合物やカルシウム
化合物のような焼結助剤及び表面処理剤を溶解9分散さ
せるための有機溶剤を共存させてもよい。
The method for producing the fine aluminum nitride powder of the present invention is not particularly limited, but for example, there is a method of dry mixing or dry pulverizing aluminum nitride powder in the presence of the above-mentioned surface treatment agent. When dry-pulverizing aluminum nitride powder, the surface treatment agent has the effect of preventing adhesion between powder particles and between powder particles and the inner wall of the pulverizer or the pulverizing medium, thereby improving the pulverizing efficiency. Furthermore, when a new surface is formed by pulverization, the surface treatment agent is quickly adsorbed to the new surface to form a film, which also exerts the effect of suppressing oxidation of the aluminum nitride powder. Note that when dry mixing or dry grinding the aluminum nitride powder, an organic solvent for dissolving and dispersing a sintering aid such as a yttrium compound or a calcium compound and a surface treatment agent may be present.

窒化アルミニウム微粉末の皮膜性能を更に向上させるべ
く、上記の如くして得られた窒化アルミニウム微粉末を
不活性雰囲気中又は空気中で300℃以下の温度で加熱
して表面処理剤の重合反応を促進させてもよい。
In order to further improve the film performance of the fine aluminum nitride powder, the fine aluminum nitride powder obtained as described above was heated at a temperature of 300°C or less in an inert atmosphere or in air to induce a polymerization reaction of the surface treatment agent. It may be promoted.

実施例 以下、本発明の非限定的実施例を示す。Example Below, non-limiting examples of the invention are presented.

なお、下記実施例で実施した試験項目及び試験方法は次
の通りである。
The test items and test methods carried out in the following examples are as follows.

■平均粒子径 窒化アルミニウム粉末を分散媒中に超音波分散させた後
■島津製作所製遠心沈降式粒度分布測定装置5A−CF
2−20型で測定した。
■Average particle size After aluminum nitride powder is ultrasonically dispersed in a dispersion medium ■Centrifugal sedimentation type particle size distribution measuring device 5A-CF manufactured by Shimadzu Corporation
Measured using a 2-20 model.

■不純物酸素量 ■堀場製作所製セラミックス中酸素窒素分析計EHGA
−2800で測定した。
■Impurity oxygen amount■Horiba, Ltd. ceramic oxygen nitrogen analyzer EHGA
Measured at -2800.

0表面処理剤の吸@沿 (11柳本製作所製元素分析装置CHNコーダーHT−
3型で炭素量を測定し、添加した表面処理剤に換算して
求めた。
0 Suction of surface treatment agent (11 Elemental analyzer CHN coder HT- manufactured by Yanagimoto Manufacturing
The amount of carbon was measured using Type 3 and calculated in terms of the amount of surface treatment agent added.

■吸着物質の定性 日本分光工業側製赤外吸収光分析器IR−810を用い
て分析した。
(2) Qualitative properties of adsorbed substances Analyzed using an infrared absorption light analyzer IR-810 manufactured by JASCO Corporation.

■吸着物質の平均分子量 日本ウォーターズ■液体クロマトグラフィーで測定した
■Average molecular weight of adsorbed substance Measured by Nippon Waters ■Liquid chromatography.

(実施例1) 平均粒子径5.5#I、不純物酸素ff10.70重量
%の窒化アルミニウム粉末に0.51 ffi%のスチ
レンを添加し、磁製ポット、磁製ボールを用いて振動ミ
ルで15時間粉砕した。
(Example 1) Styrene of 0.51 ffi% was added to aluminum nitride powder with an average particle size of 5.5 #I and an impurity oxygen ff of 10.70% by weight, and the mixture was heated in a vibrating mill using a porcelain pot and a porcelain ball. It was ground for 15 hours.

得られた窒化アルミニウム粉末の平均粒子径は1.4I
IIR,不純物酸素量は1.05重量%であった。粒子
表面に吸着している物質は数平均分子ffi 2000
のスチレン重合体であり、その吸着mは0,5重量%で
あった。
The average particle size of the obtained aluminum nitride powder was 1.4I
IIR, the amount of impurity oxygen was 1.05% by weight. The substance adsorbed on the particle surface has a number average molecular ffi 2000
styrene polymer, and its adsorption m was 0.5% by weight.

得られた窒化アルミニウム微粉末を50℃、相対湿度8
0%の雰囲気中に1週間放置する耐湿性試験を行なった
ところ、放置後の不純物酸素量は1.40重量%であっ
た。
The obtained aluminum nitride fine powder was heated at 50°C and relative humidity 8.
When a moisture resistance test was conducted in which the sample was left in a 0% atmosphere for one week, the amount of impurity oxygen after being left was 1.40% by weight.

上記した窒化アルミニウム微粉末に、該粉末に対し2.
0重1%の酸化イツトリウム(焼結助剤)、0.21f
fi%のソルビタンモノオレエート(分散剤)、5,0
重量%のジブチルフタレート(可塑剤)、7.0Iff
i%のポリビニルブチラール(有機バインダー)並びに
各12重重但のメチルエチルケトン、トルエン及びエタ
ノール(溶媒)を添加し、これらを磁製ボールミル、[
jボールを用いてaO時間混合してスラリー状混合物を
得た。得られたスラリーを真空中に2時間静置し、脱泡
及び溶剤の一部を揮散させた後、ドクターブレードで厚
さ0.7網2幅10aR,長さ20cIRのシート成型
体を作製した。
Add 2. to the aluminum nitride fine powder described above.
0 wt 1% yttrium oxide (sintering aid), 0.21f
fi% sorbitan monooleate (dispersant), 5,0
Weight % dibutyl phthalate (plasticizer), 7.0Iff
i% of polyvinyl butyral (organic binder) and 12% each of methyl ethyl ketone, toluene and ethanol (solvent) were added, and these were milled in a porcelain ball mill, [
A slurry-like mixture was obtained by mixing for a time using a j-ball. The obtained slurry was left standing in a vacuum for 2 hours to defoam and volatilize part of the solvent, and then a sheet molded body with a thickness of 0.7 mesh, 2 widths of 10aR, and a length of 20cIR was produced using a doctor blade. .

得られた成形体を室温で12時間乾燥させても、成型体
の表面にひびも割れも認められなかった。
Even when the obtained molded product was dried at room temperature for 12 hours, no cracks or cracks were observed on the surface of the molded product.

(実施例2) 実施例1で粉砕して得られた粉末を空気中、200℃で
2時間加熱した。
(Example 2) The powder obtained by pulverization in Example 1 was heated in air at 200° C. for 2 hours.

得られた窒化アルミニウム粉末の平均粒子径は1.47
m、不純物酸素量は1.05重量%であった。粒子表面
に吸着している物質は平均分子量6500のスチレン重
合体であり、その吸着但は0.5重量%であった。
The average particle size of the obtained aluminum nitride powder was 1.47
m, the amount of impurity oxygen was 1.05% by weight. The substance adsorbed on the particle surface was a styrene polymer with an average molecular weight of 6,500, and its adsorption amount was 0.5% by weight.

得られた窒化アルミニウム微粉末について実施例1と同
様の方法で耐湿性試験を行なったところ、放置後の不純
物酸素mは1.30重量%であった。
A moisture resistance test was conducted on the obtained aluminum nitride fine powder in the same manner as in Example 1, and the impurity oxygen m after standing was 1.30% by weight.

また、得られた窒化アルミニウム微粉末から実施例1と
同様にして作製した成型体を室温で12時間乾燥させて
も、成型体の表面にひびも割れも認められなかった。
Further, even when a molded body produced from the obtained aluminum nitride fine powder in the same manner as in Example 1 was dried at room temperature for 12 hours, no cracks or cracks were observed on the surface of the molded body.

(実施例3〜6) 平均粒子径5.5/la、不純物酸素量0.10重量%
の窒化アルミニウム粉末に各種表面処理剤を添加し、実
施例1と同様にして粉砕して得た窒化アルミニウム微粉
末の特性を表1に示す。
(Examples 3 to 6) Average particle diameter 5.5/la, impurity oxygen amount 0.10% by weight
Table 1 shows the properties of aluminum nitride fine powder obtained by adding various surface treatment agents to aluminum nitride powder and pulverizing it in the same manner as in Example 1.

得られた窒化アルミニウム微粉末について実施例1と同
様の方法で耐湿性試験を行なった俊の不純物酸素量及び
得られた窒化アルミニウム微粉末から実施例1と同様に
して作製した成型体のひび/割れの有無を表1に示す。
The obtained aluminum nitride fine powder was subjected to a moisture resistance test in the same manner as in Example 1. Table 1 shows the presence or absence of cracks.

(比較例1) 平均粒子径2.0−1不純物酸素量1.30重グ%の窒
化アルミニウム粉末に表面処理を施さずに、実施例1と
同様の方法で耐湿性試験を行なったところ、放置後の不
純物酸素量は1.50重9%であった。
(Comparative Example 1) A moisture resistance test was conducted in the same manner as in Example 1 without surface treatment on aluminum nitride powder with an average particle size of 2.0-1 and an impurity oxygen content of 1.30 wt%. The amount of impurity oxygen after standing was 1.50% by weight and 9%.

また、窒化アルミニウム粉末から実施例1と同様にして
作製した成型体を室温で12時間乾燥させたところ、成
型体の表面に割れが認められた。
Furthermore, when a molded body produced from aluminum nitride powder in the same manner as in Example 1 was dried at room temperature for 12 hours, cracks were observed on the surface of the molded body.

(比較例2) 平均粒子径2.07J1不純物酸素量1.30重D%の
窒化アルミニウム粉末に表面処理剤としてイソプロピル
アルコールを添加し、実施例1と同様にして窒化アルミ
ニウム微粉末を得た。
(Comparative Example 2) Isopropyl alcohol was added as a surface treatment agent to aluminum nitride powder having an average particle diameter of 2.07J1 and an impurity oxygen content of 1.30% by weight, and a fine aluminum nitride powder was obtained in the same manner as in Example 1.

得られた窒化アルミニウム粉末の平均粒子径は2.0−
1不純物酸素量は1.32重発見であった。粒子表面に
吸着している物質は数平均分子量42の物質であり、そ
の吸M但は1.0重量%であった。
The average particle size of the obtained aluminum nitride powder was 2.0-
The amount of 1 impurity oxygen was found to be 1.32 times. The substance adsorbed on the particle surface had a number average molecular weight of 42, and its M absorption was 1.0% by weight.

得られた窒化アルミニウム微粉末について実施例1と同
様の方法で耐湿性試験を行なったところ、放置後の不純
物酸素量は8.23重発気であった。
When the obtained aluminum nitride fine powder was subjected to a moisture resistance test in the same manner as in Example 1, the amount of impurity oxygen after standing was 8.23 times atom.

また、得られた窒化アルミニウム微粉末から実施例1と
同様にして作製した成型体を室温で12時間乾燥させた
ところ、成型体の表面に割れが認められた。
Furthermore, when a molded body produced from the obtained aluminum nitride fine powder in the same manner as in Example 1 was dried at room temperature for 12 hours, cracks were observed on the surface of the molded body.

(比較例3〜4) 平均粒子径5,5p、不純物酸素量0.70重9%の窒
化アルミニウム粉末に各種表面処理剤を添加し、実施例
1と同様にして粉砕して得た窒化アルミニウム微粉末の
特性を表1に示す。
(Comparative Examples 3 to 4) Aluminum nitride obtained by adding various surface treatment agents to aluminum nitride powder with an average particle size of 5.5p and an impurity oxygen content of 0.70% by weight and pulverizing it in the same manner as in Example 1. Table 1 shows the properties of the fine powder.

1qられた窒化アルミニウム微粉末について実施例1と
同様の方法で耐湿性試験を行なった後の不純物酸素O及
び得られた窒化アルミニウム微粉末から実施例1と同様
にして作製した成型体のひび/割れの有無を表1に示す
After conducting a moisture resistance test on the obtained aluminum nitride fine powder in the same manner as in Example 1, cracks in a molded body made from the impurity oxygen O and the obtained aluminum nitride fine powder in the same manner as in Example 1 were observed. Table 1 shows the presence or absence of cracks.

手続補正書 昭和62年1り月/ソ日 1、事件の表示   昭和62年特許願第264077
号2、発明の名称   窒化アルミニウム微粉末3、補
正をする者 事件との関係  特許出願人 名 称    東洋アルミニウム株式会社4、代 理 
人   東京都新宿区新宿1丁目1番14号 山田ビル
(郵便香り160)  電話(03)  354−86
235、補正命令の日付   自 発 8、補正の内容 (1〉  明細書中、第14頁第4〜5行目の「実施例
1と同様にして」とあるをr V型ブレンダー内で5時
間混練することにより」と補正する。
Procedural Amendment January 1988/Soviet Union Day 1, Case Description 1988 Patent Application No. 264077
No. 2, Title of the invention Aluminum nitride fine powder 3. Relationship with the amended person's case Name of patent applicant Name Toyo Aluminum Co., Ltd. 4, Agent
Person Yamada Building, 1-1-14 Shinjuku, Shinjuku-ku, Tokyo (Postal Kaori 160) Telephone (03) 354-86
235. Date of amendment order Vol. 8. Contents of amendment (1) In the specification, page 14, lines 4 to 5, the phrase "in the same manner as in Example 1" was replaced with the following: 5 hours in a V-type blender. By kneading.''

Claims (1)

【特許請求の範囲】[Claims] (1)窒化アルミニウム粉末の表面を式 CH_2=CXY (式中、Xはアリール基、炭素数1〜5のアルキル置換
基を有するアリール基、ベンジル基、炭素数1〜5のア
ルキル置換基を有するベンジル基、スチリル基又は炭素
数1〜5のアルキル置換基を有するスチリル基であり、
Yは水素原子又はXである) を有する化合物0.05〜5.0重量%で処理してなる
窒化アルミニウム微粉末。
(1) The surface of the aluminum nitride powder has the formula CH_2=CXY (wherein, A benzyl group, a styryl group, or a styryl group having an alkyl substituent having 1 to 5 carbon atoms,
A fine aluminum nitride powder treated with 0.05 to 5.0% by weight of a compound having Y is a hydrogen atom or
JP26407787A 1987-10-20 1987-10-20 Fine powder of aluminum nitride Pending JPH01108104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26407787A JPH01108104A (en) 1987-10-20 1987-10-20 Fine powder of aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26407787A JPH01108104A (en) 1987-10-20 1987-10-20 Fine powder of aluminum nitride

Publications (1)

Publication Number Publication Date
JPH01108104A true JPH01108104A (en) 1989-04-25

Family

ID=17398196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26407787A Pending JPH01108104A (en) 1987-10-20 1987-10-20 Fine powder of aluminum nitride

Country Status (1)

Country Link
JP (1) JPH01108104A (en)

Similar Documents

Publication Publication Date Title
US5508110A (en) Method of making moisture resistant aluminum nitride powder and powder produced thereby
JPH0450107A (en) Aluminum nitride granule and production thereof
US5601874A (en) Method of making moisture resistant aluminum nitride powder and powder produced thereby
JPH01108104A (en) Fine powder of aluminum nitride
JP2539018B2 (en) Al Lower 2 O Lower 3 Base ceramics
JPH04214067A (en) Injection composition for production of ceramic base tape and use thereof
JP5132034B2 (en) High resistivity silicon carbide sintered body
JPS623065A (en) Manufacture of magnesia ceramic
JPH04500499A (en) Improving thermal conductivity of aluminum nitride with vapor phase carbon
JPH01270566A (en) Alumina sintered material
WO1992007805A1 (en) Aluminum nitride sinter and production thereof
JP2654108B2 (en) Manufacturing method of aluminum nitride sintered body
JPS62292611A (en) Production of glassy carbon film
JPS63151607A (en) Production of fine aluminum nitride powder
JPH04317402A (en) Aluminum nitride power and its production
JPS6328873B2 (en)
JPH0512299B2 (en)
JPS5834427B2 (en) Manufacturing method of silicon nitride sintered body
JPH1025160A (en) Aluminum nitride sintered material
JP2959402B2 (en) High strength porcelain
JPH05294729A (en) Silicon nitride-based spherical sintered compact and tis production
JPH03197334A (en) Production of glass of silicon oxycarbonate from siloxanol-treated colloidal silica
JPH07267742A (en) Production of aluminum nitride green sheet
JPH0920564A (en) Green sheet of aluminum nitride
JPH03290357A (en) Production of whisker-reinforced al2o3-zro2 composite sintered compact