JPH01105312A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH01105312A
JPH01105312A JP26170887A JP26170887A JPH01105312A JP H01105312 A JPH01105312 A JP H01105312A JP 26170887 A JP26170887 A JP 26170887A JP 26170887 A JP26170887 A JP 26170887A JP H01105312 A JPH01105312 A JP H01105312A
Authority
JP
Japan
Prior art keywords
magnetic recording
oxide layer
recording medium
film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26170887A
Other languages
Japanese (ja)
Inventor
Takayuki Yagi
隆行 八木
Fumio Kishi
岸 文夫
Kenji Suzuki
謙二 鈴木
Hirotsugu Takagi
高木 博嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26170887A priority Critical patent/JPH01105312A/en
Publication of JPH01105312A publication Critical patent/JPH01105312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve a low friction characteristic, running stability, durability, rust preventing property, etc., by providing a Co-Ni oxide layer on a thin metallic film type magnetic recording layer provided on a magnetic base body. CONSTITUTION:The nonmagnetic base body 1 consists of a high-polymer film or glass, Al, etc. The thin metallic film type magnetic recording layer 2 is formed to 0.05-1.5mum film thickness on this base body 1. The Co-Ni oxide layer 3 is formed to 20-1,000Angstrom film thickness on the recording layer 2. The content of Ni with respect to Co in the oxide layer 3 is confined to 3-40%. The low friction characteristic, running stability, durability, rust preventing property, etc., of the magnetic recording medium are improved in such a manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、走行安定性等に優れた磁気記録媒体に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium with excellent running stability and the like.

〔従来の技術〕[Conventional technology]

最近、塗布型磁気記録媒体に代わって、高い保磁力と残
留磁束密度を有する金属薄膜型磁気記録媒体が注目され
ている。特に高密度記録を達成する方法として、磁気記
録媒体の膜面に垂直方向に磁化容易軸をもつ記録媒体を
用いて、厚み方向に信号を記録する垂直記録方式が提案
され(例えば岩崎ら 「複合異方性フィルムによる垂直
磁気記録J [S、Iwasaki et al、  
”Perpendicular MagneticRe
cording with a Composite 
Anisotropy Film”IEEE Tran
s、Magn、、 vol、MAG−15,05(19
79)] )、以後、その媒体として(:o−Cr膜、
Go−Ru膜、CaO膜等のco系合金薄膜の垂直磁気
記録媒体の研究が盛んである。
Recently, instead of coated magnetic recording media, metal thin film magnetic recording media having high coercive force and residual magnetic flux density have been attracting attention. In particular, as a method to achieve high-density recording, a perpendicular recording method has been proposed in which signals are recorded in the thickness direction using a recording medium with an axis of easy magnetization perpendicular to the film surface of the magnetic recording medium (for example, Iwasaki et al. Perpendicular magnetic recording using anisotropic film [S, Iwasaki et al.
”Perpendicular MagneticRe
coding with a Composite
Anisotropy Film”IEEE Tran
s, Magn,, vol, MAG-15,05(19
79)]), hereinafter, as the medium (: o-Cr film,
There is active research into perpendicular magnetic recording media of cobalt alloy thin films such as Go-Ru films and CaO films.

これらの磁気記録媒体では、特に磁気テープや磁気ディ
スクとして用いる場合、摩擦係数が小さく、円滑で安定
な走行性を示すこと、耐摩耗性に優れ、長時間にわたっ
て、安定走行を行なうこと、耐環境性があること、耐久
性があること等が強く要求される。
These magnetic recording media, especially when used as magnetic tapes or magnetic disks, must have a low coefficient of friction, exhibit smooth and stable running properties, be excellent in abrasion resistance, run stably for long periods of time, and be environmentally resistant. There is a strong demand for properties such as durability and durability.

これらの要求に加えて、高密度記録用の前記強磁性粉を
使用する磁気記録媒体や蒸着あるいはスパッタ薄膜を使
用する磁気記録媒体においては、表面の平滑化が進めら
れており、摩擦係数は増大する傾向にあるので、円滑で
安定な走行を図るべく、何らかの対策を必要とする。ま
たこれらの磁気記録媒体では金属が表面に露出している
こと等により発錆による劣化が認められることもある。
In addition to these demands, the surfaces of magnetic recording media using the above-mentioned ferromagnetic powder for high-density recording, as well as those using vapor-deposited or sputtered thin films, are becoming smoother, and the coefficient of friction is increasing. Therefore, some kind of countermeasure is required to ensure smooth and stable running. In addition, these magnetic recording media may exhibit deterioration due to rusting due to metal being exposed on the surface.

高密度記録媒体においては、以上述べた問題点を克服し
、走行安定性、走行円滑性、耐久性が一段と強く要求さ
れる。
High-density recording media are required to overcome the above-mentioned problems and have even stronger requirements for running stability, running smoothness, and durability.

このような問題点の解決策として、従来よりシリコンオ
イル、フッ素オイル等の易滑剤を磁性層に練り込んだり
、その表面に塗布することが行なわれてきた。また、特
定の目的に応じた被膜層をトップコートすることも行な
われてきた。
As a solution to these problems, it has conventionally been done to incorporate lubricants such as silicone oil and fluorine oil into the magnetic layer or to coat the surface thereof. Additionally, topcoating with a film layer tailored to a specific purpose has also been practiced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来公知の方法では、易滑剤を均一に混
合または塗布し難く、易滑その他の効果が使用するにつ
れて低下し、耐久性がないために、満足すべきものでは
ない。また、被膜が厚くなると、スペーシングロスによ
る出力低下が生じる。
However, the conventionally known methods are not satisfactory because it is difficult to mix or apply the lubricant uniformly, the lubricant and other effects deteriorate with use, and the lubricant is not durable. Further, when the coating becomes thick, output decreases due to spacing loss.

このように、薄くて持続性があり、かつ所定の効果をも
つ被膜を形成するには困難であった。
As described above, it has been difficult to form a thin, durable film that has a desired effect.

本発明は、上述したような従来技術の欠点に鑑みなされ
たものであり、低摩擦性、走行安定性、耐久性、防錆性
等を改善すべく、新規な磁気記録媒体を提供することを
目的とする。
The present invention was made in view of the above-mentioned shortcomings of the prior art, and aims to provide a new magnetic recording medium with improved low friction, running stability, durability, rust prevention, etc. purpose.

〔問題点を解決するための手段〕[Means for solving problems]

かかる目的に対して、本発明者は、磁気記録媒体の磁性
層表面にGo−Ni酸化物層を形成することにより非常
に優れた効果を発揮することを見い出した。すなわち、
本発明の磁気記録媒体は、非磁性基体上に金属薄膜型磁
気記録層を有し、さらにその上にCoNi酸化物を有す
るものである。
For this purpose, the present inventors have discovered that very excellent effects can be achieved by forming a Go--Ni oxide layer on the surface of the magnetic layer of a magnetic recording medium. That is,
The magnetic recording medium of the present invention has a metal thin film type magnetic recording layer on a nonmagnetic substrate, and further has CoNi oxide thereon.

以下、図面を参照して本発明を説明する。The present invention will be described below with reference to the drawings.

第1図は本発明の磁気記録媒体の構成図である。非磁性
基体1はポリエステル、ポリイミド、ポリアミドアセテ
ート等の高分子フィルムあるいはガラス、八1などであ
る。金属薄膜型磁気記録層2は、Fe、 Go、 Ni
、 Go−Ni 、 Go−Cr合金等の磁性層であり
、真空蒸着、スパッタリング、イオンブレーティング、
メツキ等の手法で形成する。磁気記録層2の膜厚は0.
05p〜1.5−の範囲が良い。
FIG. 1 is a block diagram of the magnetic recording medium of the present invention. The nonmagnetic substrate 1 is a polymer film such as polyester, polyimide, polyamide acetate, or glass. The metal thin film magnetic recording layer 2 is made of Fe, Go, Ni
, Go-Ni, Go-Cr alloy, etc., using vacuum evaporation, sputtering, ion blating,
Formed using the method of Metsuki et al. The thickness of the magnetic recording layer 2 is 0.
The range of 05p to 1.5- is good.

さらに、Go−Ni酸化物層3を反応性真空蒸着、反応
性スパッタ法等により形成する。Go−Ni酸化膜の膜
厚は20〜1000人が適当である。20Å以下では、
膜がはがれやすく、耐久性がない。
Furthermore, a Go-Ni oxide layer 3 is formed by reactive vacuum evaporation, reactive sputtering, or the like. The appropriate thickness of the Go-Ni oxide film is 20 to 1000. Below 20 Å,
The film peels off easily and is not durable.

1000Å以上ではスペーシングが大きくなり出力が低
下する。更に言えば、特に50〜300人が好ましい。
If the thickness exceeds 1000 Å, the spacing becomes large and the output decreases. Furthermore, 50 to 300 people is particularly preferable.

また、耐環境性に関し、Go−Ni酸化物層3が防錆性
を有するためには、Go−Ni酸化物層3のGoに対す
るNi含有率が3重量%以上となることが好ましい。し
かし、Ni含有率が40重量%を越えると、膜の耐久性
が弱くなり、はがれやすくなるので問題である。したが
って、Go−Ni酸化物層3のcoに対するNi含有率
は3〜40重量%の範囲が適当である。更に言えば、特
に5〜30重量%が好ましい。
Regarding environmental resistance, in order for the Go-Ni oxide layer 3 to have rust prevention properties, it is preferable that the Ni content with respect to Go in the Go-Ni oxide layer 3 is 3% by weight or more. However, if the Ni content exceeds 40% by weight, the durability of the film becomes weak and it becomes easy to peel off, which is a problem. Therefore, the Ni content relative to co in the Go-Ni oxide layer 3 is suitably in the range of 3 to 40% by weight. More specifically, 5 to 30% by weight is particularly preferred.

同様に、耐環境性に関し、CoNi酸化物層が防錆性を
有するためには、CoNi酸化物層3のCoNiに対す
る酸素含有率が40at%以上となることが好ましい。
Similarly, regarding environmental resistance, in order for the CoNi oxide layer to have rust prevention properties, the oxygen content of the CoNi oxide layer 3 relative to CoNi is preferably 40 at % or more.

しかし、Ni含有率が80at%を越えると、膜の結晶
構造が乱れ、膜の耐久性が弱くなり、はがれやすくなる
ので問題である。40〜80at%が適当であり、特に
50〜75at%が好ましい。
However, if the Ni content exceeds 80 at %, the crystal structure of the film is disturbed, the durability of the film is weakened, and it becomes easy to peel off, which is a problem. A suitable content is 40 to 80 at%, particularly preferably 50 to 75 at%.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 幅広テープの連続スパッタ成膜装置(キャン温度120
℃に設定)によって、50u+厚のポリイミドフィルム
表面に、裏打ち層のパーマロイ(Ni78重量%)膜を
0.5μ形成し、その上にG。
Example 1 Continuous sputtering film forming apparatus for wide tape (can temperature 120
℃) to form a 0.5 μm permalloy (Ni 78% by weight) film as a backing layer on the surface of a 50 μ+ thick polyimide film, and then apply G on it.

80重量%−Cr20重量%の垂直磁化膜を0.3μ形
成した。さらに、その上にCoターゲット(φ5インチ
)上にNiシート(10xlOx厚さ1mm)をスポッ
ト溶接したGo−Niターゲットを用いて、下記の成膜
条件により、Go−Ni酸化物層を0.02μs形成し
た。Go−Ni酸化物層のCoに対するNi含有率は、
Goターゲット上にスポット溶接されたNiシートの数
を変えることにより制御した。こうした制御によって、
Ni含有率が3.5.11.22.30.41.49重
量%である7種類の試料1〜7を作製した。なお、Ni
含有率はEPMAにより分析した。
A perpendicular magnetization film of 80% by weight and 20% by weight of Cr was formed to have a thickness of 0.3 μm. Furthermore, using a Go-Ni target in which a Ni sheet (10xlOx 1 mm thick) was spot-welded on a Co target (φ5 inch), a Go-Ni oxide layer was deposited for 0.02 μs under the following film formation conditions. Formed. The Ni content relative to Co in the Go-Ni oxide layer is
It was controlled by varying the number of Ni sheets spot welded onto the Go target. With this control,
Seven types of samples 1 to 7 were prepared, each having a Ni content of 3.5, 11.22, 30.41.49% by weight. In addition, Ni
The content was analyzed by EPMA.

ターゲット二Coφ5インチターゲット+Ni1Ox 
10x厚さ1  mmシート 基体とターゲット間隔:55mm 予備排気圧カニ 4X 10−’Pa 導入アルゴン圧:0.4Pa 導入酸素流量: 3. Occ/ minスパッタ投入
電カニ0.3KW 成膜速度:1080人/min 膜厚:300人 比較例1 比較のために表面にGo−Ni酸化物層を形成しない他
は、実施例1と同様な媒体を作製した。
Target 2 Coφ5 inch target + Ni1Ox
10 x thickness 1 mm Sheet substrate and target spacing: 55 mm Pre-exhaust pressure 4 x 10-'Pa Introduced argon pressure: 0.4 Pa Introduced oxygen flow rate: 3. Occ/min sputtering power input crab 0.3KW Film formation rate: 1080 people/min Film thickness: 300 people Comparative Example 1 For comparison, the same method as Example 1 was used except that a Go-Ni oxide layer was not formed on the surface. A medium was prepared.

比較例2 Go−Ni酸化物層の代わりに、Co酸化物層を形成し
た他は、実施例1と同様な媒体を作製した。
Comparative Example 2 A medium similar to Example 1 was produced except that a Co oxide layer was formed instead of the Go-Ni oxide layer.

(評価) これらサンプルをテープ状にして、トップコートとして
の低摩擦効果を、動摩擦係数μの測定によって、評価し
た。その結果を第1表に示す。
(Evaluation) These samples were made into tapes, and the low friction effect as a top coat was evaluated by measuring the coefficient of dynamic friction μ. The results are shown in Table 1.

動摩擦係数μは、化学技法R50−25(1980)記
載の方法に従って測定した。すなわち、第2図に示すよ
うに、磁気テープ5を磁気ヘッドに相当する摩耗輪4に
磁性層側を内側として巻き掛け、一端に分銅7をつるし
、他端をロードセル6に固定する。そして、摩擦輪4を
回転させ、磁気テープの摩擦力をロードセル6にて検出
した。
The dynamic friction coefficient μ was measured according to the method described in Kagaku Techniques R50-25 (1980). That is, as shown in FIG. 2, a magnetic tape 5 is wound around a wear ring 4 corresponding to a magnetic head with the magnetic layer side facing inside, a weight 7 is suspended from one end, and the other end is fixed to a load cell 6. Then, the friction wheel 4 was rotated, and the friction force of the magnetic tape was detected by the load cell 6.

摩擦力をT、分銅の重さをWとすると、次式からμを求
めた。
Assuming that the frictional force is T and the weight of the weight is W, μ was determined from the following equation.

μ=(1/π)・zn(’r/w) 第1表 本発明のGo−Ni酸化物層を設けた磁気記録媒体は、
Go−Ni酸化物層のない媒体に比べて半分以下の摩擦
係数しか示さず、きわめて低摩擦性のものであることが
わかる。
μ=(1/π)・zn('r/w) Table 1 The magnetic recording medium provided with the Go-Ni oxide layer of the present invention is:
It can be seen that the friction coefficient is less than half that of the medium without the Go-Ni oxide layer, indicating extremely low friction.

次に、これらの媒体を47mmφの磁気ディスクにして
、耐環境効果を高温高湿下でのドロップアウト数の測定
によって評価した。評価は、具体的には、垂直記録媒体
専用の記録再生装置を用い、3600 rpm 、サン
プリング周波数(輝度信号)7.16MHzで画像を録
画したディスクを50℃、70%の高温高湿槽内に24
時間放置し、前記記録再生装置にて再生画像のドロップ
アウト数を調べることによって行なった。
Next, these media were made into magnetic disks with a diameter of 47 mm, and the environmental resistance effect was evaluated by measuring the number of dropouts under high temperature and high humidity conditions. Specifically, the evaluation was carried out using a recording and reproducing device dedicated to vertical recording media, and a disk on which images were recorded at 3600 rpm and a sampling frequency (luminance signal) of 7.16 MHz was placed in a high temperature and high humidity tank at 50°C and 70%. 24
This was done by allowing the test to stand for a period of time and checking the number of dropouts in the reproduced image using the recording/reproducing device.

実施例および比較例のサンプルの数の結果を第3図に示
す。破線は高温高湿槽内へ放置する前の初期ドロップア
ウト数である。第3図に示すように、Niを含有しない
Go酸化物膜ではドロップアウト数は4倍に増える。N
i含有率が3重量%以上になると、ドロップアウト数の
増加は1.5倍以下となり、商品的有価性の高い耐環境
性を有する磁気記録媒体が得られるが、Ni含有率が4
0重量%を越えると、しだいにドロップアウト数が増し
、49重量%では初期ドロップアウト数の8倍以上に増
す。
The results of the number of samples of Examples and Comparative Examples are shown in FIG. The broken line is the initial number of dropouts before leaving in the high temperature and high humidity tank. As shown in FIG. 3, the number of dropouts increases four times in the Go oxide film that does not contain Ni. N
When the Ni content is 3% by weight or more, the increase in the number of dropouts is 1.5 times or less, and a magnetic recording medium with high environmental resistance and commercial value can be obtained.
When it exceeds 0% by weight, the number of dropouts gradually increases, and at 49% by weight, it increases to more than 8 times the initial number of dropouts.

このことから、Go−Ni酸化物層のGoに対するNi
含有率が3〜40重量%の範囲で、磁性層の磁気記録特
性の性能を充分に発揮でき、耐環境性の優れた磁気記録
媒体を得ることが可能であることが明らかになった。
From this, it can be seen that Ni for Go in the Go-Ni oxide layer
It has been revealed that when the content is in the range of 3 to 40% by weight, the magnetic recording properties of the magnetic layer can be fully exhibited and a magnetic recording medium with excellent environmental resistance can be obtained.

実施例2 磁気テープの連続成膜装置により、10u厚のポリイミ
ドフィルムの表面にGo80重量%−〇r20重量%の
垂直磁化膜をスパッタ法により、0.3鱗形成し、その
上に実施例1と同成膜条件にてGo78重量%−Ni2
2重量%の酸化物層を形成した。こうして、Go−Ni
酸化物層の厚さが30人、50人、100人、300人
、500人、700人である6種類の試料を作製した。
Example 2 A perpendicularly magnetized film of 80% by weight of Go and 20% by weight of R was formed in 0.3 scales on the surface of a 10u thick polyimide film by sputtering using a continuous film forming apparatus for magnetic tape, and Example 1 Go78wt%-Ni2 under the same film formation conditions as
A 2% by weight oxide layer was formed. Thus, Go-Ni
Six types of samples were prepared with oxide layer thicknesses of 30, 50, 100, 300, 500, and 700.

比較例3 磁性層表面層上へのGo−Ni酸化物層の形成を省いた
以外は、実施例2と同様にして、磁気記録媒体を作製し
た。
Comparative Example 3 A magnetic recording medium was produced in the same manner as in Example 2, except that the formation of the Go-Ni oxide layer on the surface layer of the magnetic layer was omitted.

(評価) 実施例で得られた試料の6個について、比較例2で得ら
れた磁気記録媒体の出力をOdBとして、4、5 MH
zの相対出力を測定した。また、市販のVH3型VTR
を用いてスチールライフを測定し耐摩耗性の試験を実施
した。
(Evaluation) For six samples obtained in Example, the output of the magnetic recording medium obtained in Comparative Example 2 was OdB, and 4.5 MH
The relative power of z was measured. In addition, commercially available VH3 type VTR
The steel life was measured using the following method and a wear resistance test was conducted.

第2表はその結果である。比較例2に示すように磁性層
表面にGo−Ni酸化物層を設けない場合、スチールラ
イフは5分と短く耐摩耗性が悪い。C0−Ni酸化物層
の厚みが50Å以上になると、スチールライフは長くな
り、商品的有価性の高い耐摩耗性を有する磁気記録媒体
が得られるが、酸化物層の厚みが300Å以上になると
、相対出力が、しだいに低下し、500人では本来の出
力の2分の1に低下してしまう。このことから酸化層の
厚みが50人〜300人の範囲で、磁性記録特性の性能
を十分に発揮でき、耐摩耗性の優れた磁気記録媒体を得
ることが可能であることが明らかになった。
Table 2 shows the results. As shown in Comparative Example 2, when the Go-Ni oxide layer is not provided on the surface of the magnetic layer, the steel life is as short as 5 minutes and the wear resistance is poor. When the thickness of the C0-Ni oxide layer becomes 50 Å or more, the steel life becomes longer and a magnetic recording medium with high wear resistance and commercial value can be obtained. However, when the thickness of the oxide layer becomes 300 Å or more, The relative output gradually decreases, and for 500 people, the output decreases to one-half of the original output. From this, it has become clear that when the thickness of the oxide layer is in the range of 50 to 300 mm, it is possible to fully demonstrate the performance of magnetic recording properties and obtain a magnetic recording medium with excellent wear resistance. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、金属薄膜型磁気記録層上にGo−
Ni酸化物層をトップコート層として形成することによ
り、低摩擦性、耐環境性、耐摩耗性が向上し、走行性に
優れる磁気記録媒体を提供することが可能になった。
As explained above, Go-
By forming the Ni oxide layer as a top coat layer, it has become possible to provide a magnetic recording medium with improved low friction, environmental resistance, and wear resistance, and excellent running performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の構成を示す図、第2図
は摩擦係数測定装置の略図、第3図は実施例および比較
例のドロップアウト数を示す図である。 1:非磁性基体 2:金属薄膜型磁気記録層 3 : Go−Ni酸化物層 4;摩耗輪(ドラム)5
:テープ6:張力検出器 7:重り 特許出願人  キャノン株式会社
FIG. 1 is a diagram showing the configuration of the magnetic recording medium of the present invention, FIG. 2 is a schematic diagram of a friction coefficient measuring device, and FIG. 3 is a diagram showing the number of dropouts in Examples and Comparative Examples. 1: Nonmagnetic substrate 2: Metal thin film type magnetic recording layer 3: Go-Ni oxide layer 4: Wear ring (drum) 5
: Tape 6: Tension detector 7: Weight Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1)非磁性基体上に、金属薄膜型磁気記録層を有し、さ
らにその上にCo−Ni酸化物層を有することを特徴と
する磁気記録媒体。 2)Co−Ni酸化物層のCoに対するNiの含有量が
、3〜40重量%である特許請求の範囲第1項記載の磁
気記録媒体。
[Claims] 1) A magnetic recording medium comprising a metal thin film type magnetic recording layer on a nonmagnetic substrate, and further having a Co--Ni oxide layer thereon. 2) The magnetic recording medium according to claim 1, wherein the content of Ni relative to Co in the Co-Ni oxide layer is 3 to 40% by weight.
JP26170887A 1987-10-19 1987-10-19 Magnetic recording medium Pending JPH01105312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26170887A JPH01105312A (en) 1987-10-19 1987-10-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26170887A JPH01105312A (en) 1987-10-19 1987-10-19 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01105312A true JPH01105312A (en) 1989-04-21

Family

ID=17365603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26170887A Pending JPH01105312A (en) 1987-10-19 1987-10-19 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01105312A (en)

Similar Documents

Publication Publication Date Title
US4711810A (en) Magnetic medium for horizontal magnetization recording and method for making same
US4816351A (en) Magnetic recording medium
US4643915A (en) Process for producing magnetic recording medium
JPH01105312A (en) Magnetic recording medium
JPS63102014A (en) Magnetic recording medium
JPS61229229A (en) Magnetic recording medium
JPS61278014A (en) Magnetic recording medium
JPH0750009A (en) Magnetic recording medium
JPS61294635A (en) Magnetic recording medium
JPS63102017A (en) Magnetic recording medium
JPS6174129A (en) Magnetic recording medium
JPS63102023A (en) Magnetic recording medium
JPS61229228A (en) Magnetic recording medium
JPH04337519A (en) Magnetic recording medium
JPS61246915A (en) Magnetic recording medium
JPH03102615A (en) Magnetic recording medium
JPS61271616A (en) Magnetic recording medium
JPS63113925A (en) Magnetic recording medium
JPH04232613A (en) Magnetic recording medium and its manufacture
JPS61196424A (en) Magnetic recording medium
JPS63113926A (en) Magnetic recording medium
JPH10247312A (en) Magnetic recording medium
JPH01317222A (en) Magnetic recording medium
JPS6334721A (en) Magnetic recording medium
JPH03102616A (en) Magnetic recording medium