JPS63113926A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS63113926A
JPS63113926A JP26114286A JP26114286A JPS63113926A JP S63113926 A JPS63113926 A JP S63113926A JP 26114286 A JP26114286 A JP 26114286A JP 26114286 A JP26114286 A JP 26114286A JP S63113926 A JPS63113926 A JP S63113926A
Authority
JP
Japan
Prior art keywords
recording medium
thin film
film
molecular weight
ferromagnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26114286A
Other languages
Japanese (ja)
Inventor
Nobuyuki Saito
信之 斉藤
Kenji Suzuki
謙二 鈴木
Hirotsugu Takagi
高木 博嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26114286A priority Critical patent/JPS63113926A/en
Publication of JPS63113926A publication Critical patent/JPS63113926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a recording medium having good running durability by providing an org. compd. which is an acryl ester compd. polymer contg. a perfluoroalkyl groups and >=50% of which is >=4,000mol.wt. on a thin ferromagnetic metallic film. CONSTITUTION:The thin ferromagnetic metallic film 2 is formed on a nonmagnetic substrate 1 and further, a top coat 3 consisting of the acryl ester compd. polymer contg. the perfluoroalkyl groups is formed on the film 2. Glass, Al or a high-polymer supporting base material of acrylic, etc. is formed to 5-100mum thickness as the substrate 1. The thin ferromagnetic metallic film 2 is formed of Fe, Ni, etc., to 0.05-1.0mum thickness by a sputtering method or the like. The top coat layer 3 has the org. compd. which is the acryl ester compd. polymer contg. the perfluoroalkyl group and >=50% of which is >=4,000 mol.wt. The recording medium having the excellent recording and reproducing characteristics and the satisfactory performance even in the corrosion resistance, repetitive running durability and environmental resistance is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐久性、耐環境性に優れた磁気記録媒体、特に
高密1度記録用の薄膜堆積型磁気記録媒体に関する。 〔従来の技術〕 従来より、通常はポリエステル等のプラスチックフィル
ムからなる非磁性支持体の上に、強磁性微粒子を高分子
結合剤中に均一に分散せしめた磁性層を有する塗布型磁
気記録媒体が広く用いられ、また近年は金属等の薄膜を
蒸着・スパッタリング等の方法で非磁性支持体上に形成
せしめた、強磁性薄膜型磁気記録媒体の開発が進められ
ており、−部実用化しているものもある。こうした強磁
性薄膜型磁気記録媒体は、塗布型磁気記録媒体に比べ記
録密度を飛躍的に向上することが可能であることから高
密度記録媒体として脚光を浴びている。 しかしながら、強磁性金属薄膜層がCo−Ni合金やC
o−Cr合金等に代表される従来からの強磁性金属型磁
気記録媒体は、耐食性及び耐摩耗性の点で実用上問題が
あった。すなわち、Co−Ni等の強磁性金属膜はそれ
自体に耐食性がなく、また高密度化の要請から強磁性金
属膜表面を平坦化することに伴い、耐摩耗性が劣化する
という問題があった。こうした問題を解決するために、
合金膜表面を酸化処理するもの(例えば、特開昭53−
85403号)、窒化物の保護層を設けるもの(例えば
、特開昭57−167134号)、各種有機材料を表面
被覆するもの(例えば、特開昭57−123536号)
などが検討されている。 しかし、強磁性金属膜上に上記滑剤を被覆したVTRテ
ープは、繰り返し走行の初期の段階で再生画像が短い時
間ちらつ(、すなわちヘッド目づまりが起こっており、
耐久性が十分といえない。 また耐食性向上についても上記表面被覆などの改善方法
は高湿度中の長時間放置やその他結露しやすい状態にな
った一時、十分な耐食性が保証されなかった。 〔発明が解決しようとする問題点〕 本発明は、上述した従来の磁気記録媒体の欠点を克服し
、優れた記録再生特性を有するとともに、耐食性、繰り
返し走行耐久性、耐環境性についても実用的に十分な性
能を有する磁気記録媒体を提供することを目的とする。 〔問題点を解決するための手段〕 本発明は、非磁性基体に積層された強磁性金属薄膜上に
、パーフロロアルキル基を含有するアクリルエステル化
合物重合体で、50%以上が分子量4000以上である
有機化合物を有することを特徴とする磁気記録媒体であ
る。 以下、図面を参照して本発明の磁気記録媒体を説明する
。以下の記載において、量比は特に断らない限り重量基
準とする。 第1図は、本発明の磁気記録媒体の一例を示す模式図で
、非磁性基体l上に強磁性金属薄膜2が形成され、更に
強磁性金属薄膜2上にパーフロロアルキル基を含有する
アクリルエステル化合物重合体によるトップコート3が
形成されている。第2図は本発明の磁気記録媒体の別の
例を示す図で、強磁性金属薄膜2とトップコート3の間
に中間層4が形成されている。 本発明の磁気記録媒体の非磁性基体1としては、ガラス
、アルミニウム、表面酸化処理アルミニウム等の外に、
高分子支持基材としてポリエステル、セルロース、アク
リル、ポリアミド、ポリイミド、ポリアミドイミド、ポ
リオレフィン、ポリフロロオレフィン、ピリ塩化ビニル
、ポリ酢酸ビニル、塩化ビニル/酢酸ビニルコポリマー
、ポリ塩化ビニリデン、ポリカーボネート、フェノール
樹脂、ポリエーテルサルフオン、ポリエーテルエーテル
ケトン、ポリアセクール、ポリフェニレンオキサイド、
ポリフェニレンサルファイド等が挙げられる。 非磁性基体lの厚みとしては5〜100μmが好ましい
。 非磁性基体1上に積層する強磁性金属薄膜2としてはF
e、 Ni、 Co、 Fe−Co、 Co−Ni、 
Co−Cr。 Co−P、  Fe−Co−B、  Co−N1−P、
  Co−V。 Co−Re、 Co−Pt等が挙げられる。さらに強磁
性金属薄膜と非磁性基体との間に特性向上のためのFe
−Ni系や非晶質透磁率材料であるCo−Zr系、Fe
−P−C系、Co−3i−B系等やAf、  Cr。 Ti、  Ge等の非磁性金属薄膜等の中間膜を設けて
もよい。強磁性金属薄膜の厚さは0.05〜1.0μm
が好ましい。非磁性基体上に強磁性金属薄膜を形成する
には例えばスパッタリング法、電子ビーム蒸着法などの
公知の方法を挙げることができる。 高密度記録が可能であるという観点からは、強磁性金属
薄膜層2の材料としてはCo−Cr合金、中でもCrが
15〜23wt%のCo−Cr合金が優れている。この
理由は前記組織のCo−Cr合金は膜面垂直方向に磁化
容易軸を有する垂直磁化膜となり、面内記録方式欠点で
ある反磁界の影響がなく、木質的に高密度記録が可能で
ある点である。Co−Cr合金を強磁性金属薄膜に使用
する場合、大きな保磁力を得るために高温で膜作製をす
る必要があり、非磁性基体には耐熱性が要求される。こ
の場合、非磁性基体としては、耐熱性の優れているポリ
イミドが良く、中でもパラフェニレンジアミン(PPD
)あるいはPPDとジアミノジフェニルエーテル(D 
A’ D E )のジアミン成分と、ビフェニルテトラ
カルボン酸二無水物(BPDA)およびピロメリット酸
二無水物(PNDA)からなるテトラカルホン酸成分と
の共重合ポリイミドが優れている。この共重合ポリイミ
ドフィルムは、耐熱性および引張り強度が高く弾性率も
300〜900 k g / m m2と磁気記録媒体
用ベースフィルムとして適度な値を有する。さらにこの
共重合ポリイミドフィルムは、熱膨張係数が1〜3 X
 10−’、cm / cm / ℃の範囲で調節可能
であり、強磁性金属薄膜との熱膨張差や成膜時に発生す
る内部応力により生ずる媒体カールを防止することがで
きる。 ポリイミド製非磁性基体1の機械的及び熱的性質などを
上述の磁気記録媒体にとって好適にするためには、芳香
族ポリアミック酸を生成するために使用されているジア
ミン成分は、全ジアミン成分に対して約40〜95モル
%、特に45〜90モル%範囲の使用量割合のPPl7
と、全ジアミン成分に対して約5〜60モル%、特に1
0〜55モル%の使用量割合のDADEとの2成分から
なることが好ましい。また、芳香族ポリアミック酸を生
成するためのテトラカルボン酸成分は、全テトラカルボ
ン酸成分に対して約10〜90モル%、特に15〜85
モル%の使用量割合のBPDAと、全テトラカルボン酸
成分に対して約10〜90モル%、特に、15〜85モ
ル%の使用量割合のPMDAとからなることが好ましい
。 中間層4としては、酸化物、窒化物、ホウ化物、炭化物
、硫化物、リン化物、フッ化物、金属膜、カーボン膜な
ど公知のものが用いられる。その製法としては、スパッ
タリング法、真空蒸着法、もしくはイオンブレーティン
グ法等の物理堆積法やCVDなどの化学的堆積法、プラ
ズマ処理あるいはイオン注入等によ°り強磁性金属薄膜
表面を改質させた層を形成する方法などが挙げられる。 中間層4の厚みとしては30〜1000人が好ましく、
更に好ましくは50〜300Aである。厚みを厚くすれ
ば、保護耐久機能は向上するがスペーシングロスも太き
(なり、再生信号出力が低下し好ましくない。薄すぎる
と保護機能が低下し、耐久性も減る場合もあり好ましく
ない。 CoCr合金強磁性金属薄膜上に成膜する中間層4の材
料としては、酸化コバルトが中でも好適である。 酸化コバルトの中間層4は、所定圧の酸素を含む不活性
ガス中でのスパッタリング法、希薄酸素下での真空蒸着
法、もしくはイオンブレーティング法等の物理蒸着法、
あるいはCo合金強磁性金属薄膜表面のプラズマ酸化処
理によって、強磁性金属薄膜の表面に直接堆積形成ある
いは酸化層形成をしている。酸化コバルト層は磁気記録
層とヘッドとの凝着を防ぎ、耐摩耗性の向上に極めて有
効である。 酸化コバルトの中間層4は、磁気記録層2の保護に大き
な役割を果たすものであり、さらに、金属ヘッド、フェ
ライトヘッド等とのなじみにも良(、表面の摩擦係数も
低下する。殊に酸化コバルト層の最表部がCo3O4で
ある時、その効果が著しい。 本発明でトップコート3に使用するパーフロロアルキル
基を含有するアクリルエステル化合物とは、パーフロロ
アルキル基を含有するアクリル酸又はメタクリル酸のエ
ステルおよびその誘導体のオリゴマー、ポリマー誘導体
である。 例を挙げると、 (i)  CH2=CHCoO(CH2)nR1(ii
)  CH2=C(CH,)Coo  (CH2)。R
[Industrial Field of Application] The present invention relates to a magnetic recording medium having excellent durability and environmental resistance, and particularly to a thin film deposition type magnetic recording medium for high-density one-time recording. [Prior Art] Conventionally, coated magnetic recording media have been developed which have a magnetic layer on which ferromagnetic fine particles are uniformly dispersed in a polymeric binder on a non-magnetic support usually made of a plastic film such as polyester. It is widely used, and in recent years, ferromagnetic thin-film magnetic recording media, in which a thin film of metal or the like is formed on a non-magnetic support by methods such as vapor deposition or sputtering, have been developed, and some have been put into practical use. There are some things. These ferromagnetic thin film magnetic recording media are attracting attention as high-density recording media because they can dramatically improve recording density compared to coated magnetic recording media. However, if the ferromagnetic metal thin film layer is Co-Ni alloy or C
Conventional ferromagnetic metal magnetic recording media such as o-Cr alloys have had practical problems in terms of corrosion resistance and wear resistance. In other words, a ferromagnetic metal film such as Co-Ni does not have corrosion resistance by itself, and as the surface of the ferromagnetic metal film is flattened due to the demand for higher density, the wear resistance deteriorates. . In order to solve these problems,
Those in which the surface of the alloy film is oxidized (for example, JP-A-53-
85403), those with a protective layer of nitride (e.g., JP-A-57-167134), and those whose surface is coated with various organic materials (e.g., JP-A-57-123536).
etc. are being considered. However, with VTR tapes in which the lubricant is coated on a ferromagnetic metal film, the reproduced image flickers for a short time (i.e., the head is clogged) in the early stages of repeated running.
It cannot be said that the durability is sufficient. In addition, with regard to improving corrosion resistance, the methods for improving corrosion resistance, such as the above-mentioned surface coating, did not guarantee sufficient corrosion resistance when the product was left in high humidity for a long time or in other conditions where dew condensation was likely to occur. [Problems to be Solved by the Invention] The present invention overcomes the drawbacks of the conventional magnetic recording medium described above, has excellent recording and reproducing characteristics, and has practical properties in terms of corrosion resistance, repeated running durability, and environmental resistance. The purpose of the present invention is to provide a magnetic recording medium with sufficient performance. [Means for Solving the Problems] The present invention provides an acrylic ester compound polymer containing perfluoroalkyl groups, in which 50% or more has a molecular weight of 4000 or more, on a ferromagnetic metal thin film laminated on a non-magnetic substrate. A magnetic recording medium characterized by containing a certain organic compound. The magnetic recording medium of the present invention will be explained below with reference to the drawings. In the following description, quantitative ratios are based on weight unless otherwise specified. FIG. 1 is a schematic diagram showing an example of the magnetic recording medium of the present invention, in which a ferromagnetic metal thin film 2 is formed on a nonmagnetic substrate l, and an acrylic material containing perfluoroalkyl groups is further formed on the ferromagnetic metal thin film 2. A top coat 3 made of an ester compound polymer is formed. FIG. 2 is a diagram showing another example of the magnetic recording medium of the present invention, in which an intermediate layer 4 is formed between a ferromagnetic metal thin film 2 and a top coat 3. As the non-magnetic substrate 1 of the magnetic recording medium of the present invention, in addition to glass, aluminum, surface oxidized aluminum, etc.
Polyester, cellulose, acrylic, polyamide, polyimide, polyamideimide, polyolefin, polyfluoroolefin, pyrivinyl chloride, polyvinyl acetate, vinyl chloride/vinyl acetate copolymer, polyvinylidene chloride, polycarbonate, phenolic resin, polyvinyl acetate, polyvinyl chloride/vinyl acetate copolymer, Ether sulfone, polyether ether ketone, polyacecool, polyphenylene oxide,
Examples include polyphenylene sulfide. The thickness of the nonmagnetic substrate 1 is preferably 5 to 100 μm. The ferromagnetic metal thin film 2 laminated on the nonmagnetic substrate 1 is F.
e, Ni, Co, Fe-Co, Co-Ni,
Co-Cr. Co-P, Fe-Co-B, Co-N1-P,
Co-V. Examples include Co-Re and Co-Pt. Furthermore, Fe is added between the ferromagnetic metal thin film and the non-magnetic substrate to improve properties.
-Ni series, Co-Zr series which is an amorphous magnetic permeability material, Fe
-P-C system, Co-3i-B system, etc., Af, Cr. An intermediate film such as a thin film of a nonmagnetic metal such as Ti or Ge may be provided. The thickness of the ferromagnetic metal thin film is 0.05 to 1.0 μm
is preferred. For forming a ferromagnetic metal thin film on a nonmagnetic substrate, known methods such as sputtering and electron beam evaporation can be used. From the viewpoint of enabling high-density recording, a Co--Cr alloy, especially a Co--Cr alloy containing 15 to 23 wt% Cr, is excellent as a material for the ferromagnetic metal thin film layer 2. The reason for this is that the Co-Cr alloy with the above-mentioned structure forms a perpendicularly magnetized film with an axis of easy magnetization perpendicular to the film surface, and there is no effect of demagnetizing field, which is a disadvantage of the longitudinal recording method, and high-density recording is possible due to woody structure. It is a point. When a Co-Cr alloy is used for a ferromagnetic metal thin film, it is necessary to prepare the film at a high temperature in order to obtain a large coercive force, and the nonmagnetic substrate is required to have heat resistance. In this case, the non-magnetic substrate is preferably polyimide, which has excellent heat resistance, especially paraphenylenediamine (PPD).
) or PPD and diaminodiphenyl ether (D
A copolymerized polyimide of a diamine component (A'DE) and a tetracarphonic acid component consisting of biphenyltetracarboxylic dianhydride (BPDA) and pyromellitic dianhydride (PNDA) is excellent. This copolyimide film has high heat resistance and tensile strength, and has an elastic modulus of 300 to 900 kg/mm2, which is an appropriate value as a base film for magnetic recording media. Furthermore, this copolymerized polyimide film has a coefficient of thermal expansion of 1 to 3
It can be adjusted in the range of 10-', cm/cm/°C, and can prevent medium curl caused by the difference in thermal expansion with the ferromagnetic metal thin film or internal stress generated during film formation. In order to make the mechanical and thermal properties of the polyimide nonmagnetic substrate 1 suitable for the above-mentioned magnetic recording medium, the diamine component used to produce the aromatic polyamic acid must be in proportion to the total diamine component. PPl7 in a usage proportion of about 40 to 95 mol %, especially in the range of 45 to 90 mol %.
and about 5 to 60 mol%, especially 1
It is preferable to consist of two components with DADE in a usage ratio of 0 to 55 mol%. Further, the tetracarboxylic acid component for producing the aromatic polyamic acid is about 10 to 90 mol%, especially 15 to 85% by mole based on the total tetracarboxylic acid component.
Preferably, it comprises BPDA in an amount of mol % and PMDA in an amount of about 10 to 90 mol %, in particular 15 to 85 mol %, based on the total tetracarboxylic acid component. As the intermediate layer 4, known materials such as oxides, nitrides, borides, carbides, sulfides, phosphides, fluorides, metal films, carbon films, etc. are used. The manufacturing method involves modifying the surface of the ferromagnetic metal thin film using physical deposition methods such as sputtering, vacuum evaporation, or ion blating, chemical deposition such as CVD, plasma treatment, or ion implantation. Examples include a method of forming a layer. The thickness of the middle layer 4 is preferably 30 to 1000 people,
More preferably, it is 50-300A. If the thickness is increased, the protective durability function will be improved, but the spacing loss will also be increased (which is undesirable because the reproduction signal output will be lowered).If it is too thin, the protective function will be decreased and the durability may also be reduced, which is undesirable. Cobalt oxide is particularly suitable as a material for the intermediate layer 4 formed on the CoCr alloy ferromagnetic metal thin film.The cobalt oxide intermediate layer 4 is formed by sputtering in an inert gas containing oxygen at a predetermined pressure. Vacuum deposition method under diluted oxygen or physical vapor deposition method such as ion brating method,
Alternatively, the surface of the Co alloy ferromagnetic metal thin film is subjected to plasma oxidation treatment to directly deposit or form an oxide layer on the surface of the ferromagnetic metal thin film. The cobalt oxide layer prevents adhesion between the magnetic recording layer and the head and is extremely effective in improving wear resistance. The cobalt oxide intermediate layer 4 plays a major role in protecting the magnetic recording layer 2, and is also good for compatibility with metal heads, ferrite heads, etc. (and also reduces the surface friction coefficient. The effect is remarkable when the outermost part of the cobalt layer is Co3O4.The acrylic ester compound containing a perfluoroalkyl group used for the top coat 3 in the present invention is acrylic acid or methacrylic acid containing a perfluoroalkyl group. These are oligomers and polymer derivatives of acid esters and their derivatives. Examples include: (i) CH2=CHCoO(CH2)nR1(ii)
) CH2=C(CH,)Coo (CH2). R

【(iii)CH2=C(CF3)Coo  (CH2
)  n(iv)CH2=C(C1’T3)CoO(C
H2)nR+等のモノマーを重合させたポリマー、オリ
ゴマー、ポリマーである。但し、上記(i)〜(iv)
のnは1〜10が好ましい。Rrはパーフルオロアルキ
ル基を示す。Rrの炭素数は2〜15が好ましい。この
うち(CH2)。は、n−(ノルマル)型の直鎖型、i
s。 −型、tert−型の分鎖型であってもよい。また、(
CH2)nの一部にヒドロキシ基、カルボキシル基、ア
ミノ基、アミド基、スルホン酸基、リン酸基などを有し
ていてもよい。磁気記録媒体のトップコート3としては
、パーフロロアルキル基含有アクリルエステル化合物重
合体のうち分子量の大きいものが多(含まれることが好
ましく、特に4000以上の分子量の成分を多く含む場
合有効である。すなわち、パーフロロアルキル基含有ア
クリルエステル化合物重合体の半分以上(50%以上)
が分子量4000以上、更には8000以上の分子で占
められていることが好ましい。 分子i 4000以上の分子が50%以上のアクリルエ
ステル化合物重合体とは、分子量分布の中心が4000
以上である場合、あるいは4000以上の高分子量成分
と、4000以下の低分子量成分の混合物で、4000
以上の成分比率の大きい場合のものがある。 分子量が4000以下のアクリルエステル化合物重合体
を主成分とする場合は、ヘッド目づまりを生じやすく耐
久性が劣る。尚、分子量の測定法としては、常法で測定
される超遠心法、粘度法、光散乱法及び浸透圧測定法な
どがある。 またパーフロロアルキル基の含有率は、分子全体に対す
る分子量比率で、25%以上の範囲が好適である。25
%よりも低いと耐久性が劣化し、撥水性の低下から耐食
性も悪くなる。強磁性金属薄膜上への被着量としては、
0.1〜50mg、/rr?が好ましく、さらには0.
2〜20mg/rrrが好ましい。被着量が0.1mg
/rrrよりも少ないと、有効な耐久性、出力均一性が
得にく(なり、また50mg/rr?よりも多いと、ト
ップコートの厚みが厚くなると共に、トップコードがヘ
ッド摺動によりヘッド上へ移着するため、スペーシング
ロスが発生し、高域出力に低下が認められる。 強磁性金属薄膜2上にトップコート3を被着する方法と
しては、リバースロール法やバーコーティング法等に代
表される常法で塗布する方法や、抵抗加熱法などで真空
蒸着により形成する方法、あるいはモノマーを被着させ
た状態で電子線や紫外線重合をする方法が適用しつる。 パーフロロアルキル基を含有するアクリルエステル化合
物重合体よりなるトップコートの被着状態としては、必
ずしも均一な連続膜である必要はなく、斑点状等の様に
不連続であっても良い。また、この重合体に公知の各種
有機滑剤を併用することも可能である。 さらに基体1が非磁性基体フィルムの場合、保護。 滑性、補強、その他の目的で各種のバックコート層が付
加された構成も有効である。 〔実施例〕 以下実施例により本発明を説明する。分子1は、超遠心
法により測定した。分子量を超遠心法により測定した場
合、求められる分子量は量平均分子量となる。 なお、以下の実施例における評価方法を次に示す。 〈テープの評価方法〉 出力の周波数特性: 4 、5 M Hz 、 7 、5 M Hzの単一信
号を記録し、再生出力を測定。基準は市販のメタル塗布
型テープでこれをOdBとする。 パス耐久テスト: 20°C965%RHおよび一5°Cでの繰り返し走行
耐久テストに於いて初期の出力レベルから3dB以上の
出力低下が発生するまでの走行回数。 耐食テスト: 50℃、80%RH放置試験後の媒体表面の錆の有無。 くディスクの評価方法〉 出力の周波数特性: 1 、3 M Hz 、 7 、0 M Hzの単一信
号を記録し、再生出力を測定。 耐久性: 20°C285%RHの環境下でスチル再生出力の時間
変化を測定。50時間経過後出力低下が3dB以内を○
とする。 実施例1 ジアミン成分としてPPDを70モルとDADEを30
モル及びテトラカルボン酸成分としてBPDAを20モ
ル及びP M D Aを80モルを共重合して製造した
厚み10μmのポリイミドフィルムを非磁性基体として
用い、この非磁性基体上に電子ビームが加熱装置を有し
た磁気テープの連結成膜装置によりCo78wt%−C
r22wt%の垂直磁化膜を、前記ポリイミドフィルム
を230°Cに加熱しつつ、0.1μm / s e 
cの成膜速度で約0.4μm厚形成して強磁性金属薄膜
とした。使用したポリイミドフィルムの熱膨張係数は1
 、6 X 10−5c m / c m / 0C、
引張り弾性定数は490 k g / m m2であっ
た。 Co −Cr垂直磁化膜上部に酸素10%を含むアルゴ
ンガス中でCoをスパッタし、酸化コバルト薄膜を保護
層として100A厚形成した。さらにからなるパーフロ
ロアルキル基を含有するアクリルエステル化合物(分子
量5万、分子量4000以上の成分100%)をトルエ
ン:メチルイソブチルケトン=1:lの溶媒に溶かしリ
バースロール法により酸化コバルト層上に5mg/rr
r塗布乾燥した。 このようにして得られた磁気シートを8 、Om m幅
にスリットした。このテープのカールは、□<0.lm
m−’と小さく、実用上問題のない量であった。このテ
ープを8ミリVTRテープ用カセツトに装着し、8ミリ
ビデオデツキにて出力の周波数特性、スチル耐久性、パ
ス耐久テスト、耐食性テスト等を行った。評価結果を第
1表に示したが優れた録再特性、良好なパス耐久性、耐
食性を有することがわかる。 実施例2 実施例1におけるアクリルエステル化合物を、?1・ で分子[8000(分子量4000以上の成分約95%
)のものに変え、トルエンに溶かしリバースロール法で
15 m g / rd塗布乾燥した以外は実施例1と
同条件で磁気テープを作製し評価した。評価結果を第1
表に示したが、実施例1と同様良好な結果であることが
わかる。 実施例3 実施例1におけるアクリルエステル化合物を、千CH2
−CHヂ。 CoOCH2CH2−n C3F7 で分子fi1万(分子量4000以上の成分約97%に
)変え、トルエン:メチルエチルケトンに溶かし、バー
コーター法で2 m g / rd塗布乾燥した以外は
、実施例1と同条件で磁気テープを作製し評価した。評
価結果を第1表に示す。実施例1と同様に良好な結果で
あることがわかる。 実施例4 11.5μm厚のポリエステルフィルム上にCo80w
t%−Ni20wt%合金を微量酸素雰囲気中で連続斜
め蒸着し、0.15μm厚の強磁性金属薄を得た。 この上に、 千CH2−CH″+。 C00CH2CH2−n CB F+7からなるアクリ
ルエステル化合物(分子量5万、分子量4000以上の
成分100%)をトルエン:メチルイソブチルケトン1
=1の溶媒に溶かし、バーコーター法で8mg/nf塗
布乾燥して磁気テープを作製し評価した。評価結果を第
1表に示す。強磁性金属薄膜が変わっても、実施例1と
同様良好な結果であった。 実施例5〜8 実施例1におけるアクリルエステル化合物の分子量を、
4000 (実施例5)、8000 (実施例6)、1
ooo。 (実施例7)、1000.00 (実施例8)のものに
変えた以外は、実施例1と同様に磁気テープを作製し評
価した。 分子量4000以上の成分の割合は、実施例5から順に
約52%、約92%、約95%および100%であった
。評価結果を第1表に示した。 実施例9,10 実施例1で用いたアクリルエステル化合物と同じアクリ
ルエステル化合物で、分子量1000のものと6000
のものとをl:lの割合で混合して、分子量4000以
上の成分割合を約55%としたこと(実施例9)、分子
111000のものと10000のものとをl:lの割
合で混合して、分子量4000以上の成分割合を約62
%としたこと(実施例1.0 )以外は、実施例1と同
様に磁気テープを作製し評価した。評価結果を第1表に
示す。分子i 4000以上の成分が50%以上含まれ
るものが良好であることがわかる。 実施例11. 12 実施例1で用いたアクリルエステル化合物と同じアクリ
ルエステル化合物で、分子量500のものと6000の
ものとを1;2の割合で混合して、分子量4000以上
の成分割合を約70%としたこと(実施例11)、分子
fi500のものと10000のものとを1:2の割合
で混合して、分子14000以上の成分割合を約72%
としたこと(実施例12)以外は、実施例1と同様に磁
気テープを作製し評価した。評価結果を第1表に示す。 比較例1 実施例1におけるアクリルエステル化合物を、分+fl
12000 (分子14000以上の成分約3%)のも
のに変えた以外は実施例1と同様に磁気テープを作製し
評価した。評価結果を第1表に示す。 比較例2 実施例1におけるアクリルエステル化合物で、分子量が
1000のものと4000のものを】:1の割合で混合
して、分子14000以上の成分割合を約27%とした
こと以外は、実施例1と同様に磁気テープを作製し、評
価した。評価結果を第1表に示す。 比較例3 実施例1で用いたアクリルエステル化合物と同じアクリ
ルエステル化合物で、分子量500のものと2000の
ものを1:2の割合で混合して、分子14000以上の
成分割合を約2%としたこと以外は、実施例1と同様に
磁気テープを作製し評価した。評価結果は第、1表に示
す。 比較例4 アクリルエステル化合物のトップコートを施さずに実施
例4と同様にして作製した磁気テープを実施例1と同様
にして評価した。評価結果を第1表に示す。 実施例13 ジアミン成分としてPPDを50モル及びDADEを5
0モルと、テトラカルボン酸成分トシテBPDAを40
モル及びPMDAを60モルを共重合して製造した厚み
40μmのポリイミドフィルム上に、スパッタリング装
置にてCo80wt%−Cr 20 W t%の垂直磁
化膜を、ポリイミドフィルムを150°Cに昇温し0.
5μm形成した。使用したポリイミドフィルムの熱膨張
係数は、2.6X10−’cm/am/’C,引張弾性
定数は400kg/mr+(であった。 前記Co−Cr膜の上部に酸素12%を含むアルゴンガ
ス中でCoをスパッタし、酸化コバルト薄膜を100A
厚形成した。 パーフロロアルキル基を含有するアクリルエステル化合
物(分子13万、分子量4000以上の成分約99%)
をトルエン:メチルエチルケトン=l:1の溶媒に溶か
し、バーコーター法で酸化コバルト層上に18mg/r
n’塗布した。こうして得られたサンプルを直径47φ
のディスクに打ち抜き加工し、スチルビデオデツキ(試
験機)を用いて評価した。評価結果は第2表に示す。再
生出力を損なわず、耐久性は良好であることがわかる。 実施例14 実施例13におけるアクリルエステル化合物をモCH2
−CI)−、。 □ C00CH2CH2−nCB F17 分子量5万(分子i 4000以上の成分100%)に
変え、このアクリルエステル化合物をトルエンに溶かし
、バーコーター法で20 m g / rr?塗布乾燥
した他は、実施例13と同様にしてディスクを作製し評
価した。評価結果は第2表に示したが、実施例13と同
様に再生出力を損なわず、耐久性が良好であった。 実施例15 実施例13で用いたアクリルエステル化合物と同じアク
リルエステル化合物で、分子filooooのものと3
000のものをl : l ):混合したものを用いて
、実施例13と同様にして磁気ディスクを作製し評価し
た。このとき分子量が4000以上の成分は約77%で
あった。評価結果を第2表に示す。再生出力を損なわず
、耐久性が良好であることがわかる。 比較例5 実施例13におけるアクリルエステル化合物の分子量を
2000とした以外は実施例13と同様にして磁気デス
クを作製し評価した。このとき、分子24000以上の
成分は約5%であった。評価結果を第2表に示す。 〔発明の効果〕 以上説明したように本発明による磁気記録媒体は非磁性
基体に積層された強磁性金属膜層上にパーフロロアルキ
ル基を含有するとともに50%以上が分子fi4000
以上のアクリルエステル化合物重合体を被着せしめたこ
とにより優れた記録再生特性であるとともにの耐食性、
繰り返し走行耐久性に於いても実用的に十分な性能を優
する磁気記録媒体の実現をならしめるものである。 また、−5°Cにおけるパス耐久テストでもわかるよう
に、本発明の磁気記録媒体は、低温での耐久性について
も優れている。
[(iii) CH2=C(CF3)Coo (CH2
) n(iv) CH2=C(C1'T3)CoO(C
H2) It is a polymer, oligomer, or polymer obtained by polymerizing monomers such as nR+. However, (i) to (iv) above
n is preferably 1 to 10. Rr represents a perfluoroalkyl group. The number of carbon atoms in Rr is preferably 2 to 15. Of these (CH2). is an n-(normal) linear type, i
s. - type and tert- type branched type. Also,(
A part of CH2)n may have a hydroxy group, a carboxyl group, an amino group, an amide group, a sulfonic acid group, a phosphoric acid group, etc. As the top coat 3 of the magnetic recording medium, it is preferable that a perfluoroalkyl group-containing acrylic ester compound polymer having a large molecular weight is included, and it is particularly effective when it contains a large amount of components with a molecular weight of 4000 or more. That is, more than half (50% or more) of the perfluoroalkyl group-containing acrylic ester compound polymer
is preferably occupied by molecules having a molecular weight of 4,000 or more, more preferably 8,000 or more. An acrylic ester compound polymer in which 50% or more of the molecules have a molecular i of 4000 or more means that the center of the molecular weight distribution is 4000 or more.
4,000 or more, or a mixture of a high molecular weight component of 4,000 or more and a low molecular weight component of 4,000 or less,
There are cases where the ratio of the above components is large. When the main component is an acrylic ester compound polymer having a molecular weight of 4000 or less, head clogging is likely to occur and durability is poor. Methods for measuring molecular weight include conventional methods such as ultracentrifugation, viscosity, light scattering, and osmotic pressure measurement. Further, the content of perfluoroalkyl groups is preferably in the range of 25% or more in terms of molecular weight ratio to the entire molecule. 25
%, durability deteriorates and corrosion resistance also deteriorates due to a decrease in water repellency. The amount of deposition on the ferromagnetic metal thin film is as follows:
0.1-50mg, /rr? is preferable, and more preferably 0.
2 to 20 mg/rrr is preferred. Coating amount is 0.1mg
If it is less than 50 mg/rr, it is difficult to obtain effective durability and output uniformity (and if it is more than 50 mg/rr, the top coat will become thicker and the top cord will slide onto the head due to head sliding. As the top coat 3 is deposited on the ferromagnetic metal thin film 2, a spacing loss occurs and a decrease in high frequency output is observed.Reverse roll method, bar coating method, etc. are typical methods for depositing the top coat 3 on the ferromagnetic metal thin film 2. The following methods can be applied: coating using a conventional method, vacuum deposition using resistance heating, or polymerization using electron beams or ultraviolet light with a monomer coated.Contains perfluoroalkyl groups. The coating state of the top coat made of the acrylic ester compound polymer does not necessarily have to be a uniform continuous film, but may be discontinuous like spots. It is also possible to use various organic lubricants in combination. Furthermore, when the substrate 1 is a non-magnetic substrate film, a structure in which various back coat layers are added for protection, lubricity, reinforcement, and other purposes is also effective. Examples] The present invention will be explained below with reference to Examples. Molecule 1 was measured by ultracentrifugation. When the molecular weight is measured by ultracentrifugation, the obtained molecular weight is the weight average molecular weight. The following Examples The evaluation method is as follows. <Tape evaluation method> Output frequency characteristics: Record a single signal of 4, 5 MHz, 7, 5 MHz, and measure the playback output. The standard is a commercially available metal coating type. This is expressed as OdB using a tape. Pass durability test: The number of runs until the output decreases by 3 dB or more from the initial output level in a repeated running durability test at 20°C, 965% RH and -5°C. Corrosion resistance Test: Check for rust on the media surface after storage test at 50°C and 80% RH. Disc evaluation method> Output frequency characteristics: Record and reproduce a single signal of 1, 3 MHz, 7, 0 MHz. Measure the output. Durability: Measure the change in still playback output over time in an environment of 20°C and 285% RH. If the output decreases within 3 dB after 50 hours, ○
shall be. Example 1 70 mol of PPD and 30 mol of DADE as diamine components
A polyimide film with a thickness of 10 μm produced by copolymerizing 20 moles of BPDA and 80 moles of PMD A as the mole and tetracarboxylic acid components was used as a nonmagnetic substrate, and an electron beam was applied to the heating device on this nonmagnetic substrate. Co78wt%-C was produced using a magnetic tape connection film-forming device with
A perpendicularly magnetized film with r22wt% was heated at 0.1 μm/sec while heating the polyimide film to 230°C.
A ferromagnetic metal thin film was formed to a thickness of about 0.4 μm at a film formation rate of c. The coefficient of thermal expansion of the polyimide film used is 1
, 6 X 10-5cm/cm/0C,
The tensile elastic constant was 490 kg/m m2. Co was sputtered on top of the Co--Cr perpendicularly magnetized film in argon gas containing 10% oxygen to form a 100A thick cobalt oxide thin film as a protective layer. Furthermore, 5 mg of an acrylic ester compound containing a perfluoroalkyl group (molecular weight 50,000, 100% component with a molecular weight of 4,000 or more) was dissolved in a solvent of toluene:methyl isobutyl ketone = 1:l and placed on the cobalt oxide layer by the reverse roll method. /rr
R coated and dried. The magnetic sheet thus obtained was slit into a width of 8.0 mm. The curl of this tape is □<0. lm
The amount was as small as m-' and caused no practical problems. This tape was mounted in an 8 mm VTR tape cassette, and tested for output frequency characteristics, still durability, pass durability test, corrosion resistance test, etc. using an 8 mm video deck. The evaluation results are shown in Table 1, and it can be seen that it has excellent recording/reproducing characteristics, good pass durability, and corrosion resistance. Example 2 The acrylic ester compound in Example 1, ? 1. Molecules [8000 (approximately 95% of components with a molecular weight of 4000 or more)
), a magnetic tape was prepared and evaluated under the same conditions as in Example 1, except that it was dissolved in toluene, applied at a rate of 15 mg/rd by the reverse roll method, and dried. Evaluation results first
As shown in the table, it can be seen that the results are good as in Example 1. Example 3 The acrylic ester compound in Example 1 was added to 1,000 CH2
-CHji. CoOCH2CH2-n C3F7 was used to change the molecular fi 10,000 (to about 97% of components with a molecular weight of 4000 or more), dissolved in toluene: methyl ethyl ketone, coated with a bar coater method at 2 mg/rd, and magnetically coated under the same conditions as in Example 1, except that it was dried. A tape was produced and evaluated. The evaluation results are shown in Table 1. It can be seen that similar to Example 1, the results are good. Example 4 Co80w on 11.5 μm thick polyester film
A ferromagnetic metal thin film having a thickness of 0.15 μm was obtained by continuously diagonally depositing a t%-Ni 20 wt% alloy in a trace oxygen atmosphere. On top of this, an acrylic ester compound (molecular weight 50,000, 100% of components with a molecular weight of 4000 or more) consisting of 1,000 CH2-CH''+.C00CH2CH2-n CB F+7 was added to toluene: methyl isobutyl ketone 1
The magnetic tape was dissolved in a solvent of 1 and coated with a bar coater method at 8 mg/nf and dried to produce a magnetic tape and evaluated. The evaluation results are shown in Table 1. Even if the ferromagnetic metal thin film was changed, the same good results as in Example 1 were obtained. Examples 5 to 8 The molecular weight of the acrylic ester compound in Example 1 was
4000 (Example 5), 8000 (Example 6), 1
ooooo. (Example 7), 1000.00 Magnetic tapes were produced and evaluated in the same manner as in Example 1, except that they were changed to those of Example 8. The proportions of components having a molecular weight of 4000 or more were approximately 52%, approximately 92%, approximately 95%, and 100% in order from Example 5. The evaluation results are shown in Table 1. Examples 9 and 10 The same acrylic ester compound used in Example 1, with a molecular weight of 1000 and a molecular weight of 6000.
(Example 9), by mixing the components with a molecular weight of 111,000 and with the molecular weight of 10,000 at a ratio of 1:1, the proportion of components having a molecular weight of 4,000 or more was approximately 55% (Example 9). and the proportion of components with a molecular weight of 4000 or more is approximately 62
% (Example 1.0), a magnetic tape was produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. It can be seen that those containing 50% or more of components with a molecule i of 4000 or more are good. Example 11. 12 The same acrylic ester compound as the acrylic ester compound used in Example 1, one with a molecular weight of 500 and one with a molecular weight of 6,000 were mixed at a ratio of 1:2, so that the proportion of components with a molecular weight of 4,000 or more was about 70%. (Example 11), by mixing those with molecules fi500 and those with molecules fi 10,000 at a ratio of 1:2, the proportion of components with molecules fi 14,000 or more was approximately 72%.
A magnetic tape was produced and evaluated in the same manner as in Example 1, except that (Example 12). The evaluation results are shown in Table 1. Comparative Example 1 The acrylic ester compound in Example 1 was
A magnetic tape was prepared and evaluated in the same manner as in Example 1, except that the magnetic tape was changed to 12,000 (approximately 3% of components having molecules of 14,000 or more). The evaluation results are shown in Table 1. Comparative Example 2 Example 1 except that the acrylic ester compounds in Example 1 with molecular weights of 1,000 and 4,000 were mixed at a ratio of ]:1 to make the proportion of components with molecules of 14,000 or more approximately 27%. A magnetic tape was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. Comparative Example 3 The same acrylic ester compound as the acrylic ester compound used in Example 1, one with a molecular weight of 500 and one with a molecular weight of 2,000 were mixed at a ratio of 1:2, so that the proportion of components with a molecular weight of 14,000 or more was about 2%. Except for the above, a magnetic tape was produced and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. Comparative Example 4 A magnetic tape produced in the same manner as in Example 4 without being coated with an acrylic ester compound top coat was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. Example 13 50 moles of PPD and 5 moles of DADE as diamine components
0 mol and 40 mol of tetracarboxylic acid component Toshite BPDA.
On a 40 μm thick polyimide film produced by copolymerizing 60 moles of mol and PMDA, a perpendicularly magnetized film of 80 wt% Co-20 wt% Cr was formed using a sputtering device, and the polyimide film was heated to 150°C. ..
A thickness of 5 μm was formed. The polyimide film used had a thermal expansion coefficient of 2.6 x 10 cm/am/'C and a tensile elastic constant of 400 kg/mr+. Co is sputtered at 100A to form a cobalt oxide thin film.
Formed thickly. Acrylic ester compound containing a perfluoroalkyl group (130,000 molecules, approximately 99% of components with a molecular weight of 4,000 or more)
was dissolved in a solvent of toluene:methyl ethyl ketone = 1:1 and applied to the cobalt oxide layer at 18 mg/r using a bar coater method.
n' was applied. The sample thus obtained had a diameter of 47φ.
A disk was punched out and evaluated using a still video deck (testing machine). The evaluation results are shown in Table 2. It can be seen that the reproduction output is not impaired and the durability is good. Example 14 The acrylic ester compound in Example 13 was
-CI)-,. □ C00CH2CH2-nCB F17 Change the molecular weight to 50,000 (100% of components with molecular i of 4000 or more), dissolve this acrylic ester compound in toluene, and use a bar coater method to obtain 20 mg/rr? A disk was prepared and evaluated in the same manner as in Example 13, except for coating and drying. The evaluation results are shown in Table 2, and as in Example 13, the reproduction output was not impaired and the durability was good. Example 15 The same acrylic ester compound as that used in Example 13, with the molecules filooooo and 3
A magnetic disk was prepared and evaluated in the same manner as in Example 13 using a mixture of 000 and 1:1). At this time, components having a molecular weight of 4000 or more accounted for about 77%. The evaluation results are shown in Table 2. It can be seen that the reproduction output is not impaired and the durability is good. Comparative Example 5 A magnetic desk was produced and evaluated in the same manner as in Example 13, except that the molecular weight of the acrylic ester compound in Example 13 was changed to 2000. At this time, the component having molecules of 24,000 or more was about 5%. The evaluation results are shown in Table 2. [Effects of the Invention] As explained above, the magnetic recording medium according to the present invention contains perfluoroalkyl groups on the ferromagnetic metal film layer laminated on the nonmagnetic substrate, and more than 50% of the ferromagnetic metal film layer has a molecular fi4000.
By coating the above acrylic ester compound polymer, it has excellent recording and reproducing properties as well as corrosion resistance.
This will lead to the realization of a magnetic recording medium that has practically sufficient performance in terms of repeated running durability. Further, as can be seen from the pass durability test at -5°C, the magnetic recording medium of the present invention also has excellent durability at low temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の一例を示す側面図、第
2図は本発明の磁気記録媒体の他の例を示す側面図であ
る。 1・・・非磁性基体 2・・・強磁性金属薄膜層 3・・・パーフロロ基を含有アクリルエステル化合物層
4・・・中間層 第2図
FIG. 1 is a side view showing one example of the magnetic recording medium of the invention, and FIG. 2 is a side view showing another example of the magnetic recording medium of the invention. 1...Nonmagnetic substrate 2...Ferromagnetic metal thin film layer 3...Perfluoro group-containing acrylic ester compound layer 4...Intermediate layer FIG.

Claims (1)

【特許請求の範囲】 1)非磁性基体上に強磁性金属薄膜が積層された磁気記
録媒体において、前記強磁性金属薄膜の上にパーフロロ
アルキル基を含有するアクリルエステル化合物重合体で
50%以上が分子量4000以上である有機化合物を有
することを特徴とする磁気記録媒体。 2)前記強磁性金属薄膜と前記有機化合物の間に、中間
層が形成されている特許請求の範囲第1項記載の磁気記
録媒体。 3)前記非磁性基体がポリイミドフィルムであり、前記
強磁性金属薄膜がCo−Cr合金であり、更に前記中間
層がCoを主成分とする酸化物からなる特許請求の範囲
第2項記載の磁気記録媒体。
[Claims] 1) In a magnetic recording medium in which a ferromagnetic metal thin film is laminated on a non-magnetic substrate, 50% or more of an acrylic ester compound polymer containing a perfluoroalkyl group is formed on the ferromagnetic metal thin film. 1. A magnetic recording medium comprising an organic compound having a molecular weight of 4000 or more. 2) The magnetic recording medium according to claim 1, wherein an intermediate layer is formed between the ferromagnetic metal thin film and the organic compound. 3) The magnetic material according to claim 2, wherein the nonmagnetic substrate is a polyimide film, the ferromagnetic metal thin film is a Co-Cr alloy, and the intermediate layer is made of an oxide containing Co as a main component. recoding media.
JP26114286A 1986-10-31 1986-10-31 Magnetic recording medium Pending JPS63113926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26114286A JPS63113926A (en) 1986-10-31 1986-10-31 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26114286A JPS63113926A (en) 1986-10-31 1986-10-31 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS63113926A true JPS63113926A (en) 1988-05-18

Family

ID=17357679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26114286A Pending JPS63113926A (en) 1986-10-31 1986-10-31 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS63113926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082599A1 (en) * 2007-12-21 2009-07-02 3M Innovative Properties Company Coatings and methods for particle reduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082599A1 (en) * 2007-12-21 2009-07-02 3M Innovative Properties Company Coatings and methods for particle reduction
CN101945963A (en) * 2007-12-21 2011-01-12 3M创新有限公司 Coatings and methods for particle reduction
US7923133B2 (en) 2007-12-21 2011-04-12 3M Innovative Properties Company Coatings and methods for particle reduction

Similar Documents

Publication Publication Date Title
US4756967A (en) Magnetic recording medium
US5139849A (en) Magnetic recording medium
EP1118980A1 (en) Magnetic recording medium
US5059468A (en) Magnetic recording medium
JP2851898B2 (en) Lubricants and magnetic recording media
JPH0130225B2 (en)
JPS63113926A (en) Magnetic recording medium
US5616398A (en) Magnetic recording medium
JPS63113925A (en) Magnetic recording medium
US5741593A (en) Magnetic recording medium
JPS63171422A (en) Magnetic recording medium
EP0751206A2 (en) Lubricant and magnetic recording medium using lubricant
JPH07254128A (en) Magnetic recording medium
JPS62232721A (en) Magnetic recording medium
JPS62229516A (en) Magnetic recording medium
JPH0411322A (en) Magnetic recording medium
JPH01112527A (en) Magnetic recording medium
JPH01104655A (en) Polyimide film
JPH04221426A (en) Magnetic recording medium and its manufacture
JPS62271222A (en) Production of magnetic recording medium
JPH0766524B2 (en) Magnetic recording medium
JPH0554368A (en) Magnetic recording medium
JPH0278016A (en) Magnetic recording medium
JPS62229518A (en) Magnetic recording medium
JPS62229517A (en) Magnetic recording medium