JPS61229229A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61229229A
JPS61229229A JP7158985A JP7158985A JPS61229229A JP S61229229 A JPS61229229 A JP S61229229A JP 7158985 A JP7158985 A JP 7158985A JP 7158985 A JP7158985 A JP 7158985A JP S61229229 A JPS61229229 A JP S61229229A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
chromium carbide
layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7158985A
Other languages
Japanese (ja)
Inventor
Nobuyuki Saito
信之 斉藤
Fumio Kishi
岸 文夫
Kenji Suzuki
謙二 鈴木
Hirotsugu Takagi
高木 博嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7158985A priority Critical patent/JPS61229229A/en
Publication of JPS61229229A publication Critical patent/JPS61229229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a surface protective layer which has excellent lubricity and wear resistance and exhibits an effect of improving running stability for a long period of time by forming a thin film of chromium carbide on the surface of a magnetic layer. CONSTITUTION:A thin magnetic metallic film 2 which is the magnetic layer and the thin film 3 consisting of chromium carbide are formed in this order on one surface of a non-magnetic substrate. The magnetic layer 2 is obtd. in the form of the thin film of a metal such as Fe or Ni or metallic compd. formed to about 0.04-2.0mum thickness by a vapor deposition or sputtering method on the substrate 1. The compsn. of the chromium carbide to constitute the thin film 3 consisting of the chromium carbide is not particularly limited.

Description

【発明の詳細な説明】 11匁j 本発明は金属薄膜型磁気記録媒体の改良に関し、特に金
属磁性薄膜の表面に保護層(いわゆるトップコート層)
を形成して耐摩耗性および長期にわたる走行安定性を改
善した磁気記録媒体に関する。
[Detailed Description of the Invention] 11 Momme The present invention relates to the improvement of a metal thin film type magnetic recording medium, and in particular, a protective layer (so-called top coat layer) on the surface of a metal magnetic thin film.
The present invention relates to a magnetic recording medium having improved wear resistance and long-term running stability.

11且遣 従来より、磁気テープ、フロッピーディスク等の磁気記
録媒体においては、強磁性微粒子を高分子結合剤中に分
散させた磁性層を有するいわゆる塗布型の記録媒体が広
く用いられて来たが、近年はFe、Ni、Fe−Co、
Co−Ni、Co−Cr、  Go−P、  Mn−B
1.  Fe−Co−B 、Co−N1−P、  Co
−V、  Co−Re、  Co  −Pt等の金属あ
るいは金属化合物の薄膜を蒸着。
11. Conventionally, so-called coated recording media having a magnetic layer in which ferromagnetic fine particles are dispersed in a polymeric binder have been widely used in magnetic recording media such as magnetic tapes and floppy disks. , in recent years Fe, Ni, Fe-Co,
Co-Ni, Co-Cr, Go-P, Mn-B
1. Fe-Co-B, Co-N1-P, Co
Deposit a thin film of metal or metal compound such as -V, Co-Re, Co-Pt.

スパッタリング等の方法で非磁性支持体上に形成せしめ
た、より記録密度の高い金属薄M型磁気記録媒体の開発
が進められている。
Development of thin metal M-type magnetic recording media with higher recording densities, which are formed on non-magnetic supports by methods such as sputtering, is underway.

これらの磁気記録媒体においては、高密度記録等の磁気
的性能を満足させると同時に、摩擦係数が小さく円滑な
走行安定性を示すこと、耐摩耗性に優れ長期にわたり安
定走行を維持すること、いかなる環境下でも安定な性能
を発揮できる耐環境性があること等の特性が要求される
These magnetic recording media must satisfy magnetic performance such as high-density recording, exhibit smooth running stability with a small coefficient of friction, have excellent wear resistance, and maintain stable running over a long period of time. It is required to have characteristics such as environmental resistance so that it can exhibit stable performance even under environmental conditions.

磁性層たる金属薄膜の表面がむき出しのままとなってい
る金属薄膜型磁気記録媒体においては。
In metal thin film magnetic recording media, the surface of the metal thin film that is the magnetic layer is left exposed.

磁気へラド−記録媒体間の摺動により磁性層に傷がつき
やすいため、ヘッドと媒体間の潤滑性向上による走行安
定性、耐摩耗性等が一段と強く要請される。これらの特
性が得られなければ、磁性層に高密度記録された情報を
長期にわたって安定に維持し、かつ確実に再生すること
が到底期待し得ないからである。
Since the magnetic layer is easily damaged by sliding between the magnetic head and the recording medium, there is a strong demand for running stability, wear resistance, etc. by improving the lubricity between the head and the medium. This is because unless these characteristics are obtained, it is impossible to expect that the information recorded at high density in the magnetic layer can be stably maintained over a long period of time and reliably reproduced.

磁気記録媒体の走行安定性を改善するために、従来より
、フッ素系あるいはシリコン系オイル、界面活性剤、滑
剤等の潤滑剤を磁性層表面に塗布する方法や、直鎖の飽
和脂肪酸ないしそのエステルを蒸着して表面保護層とす
る方法が検討されている。
In order to improve the running stability of magnetic recording media, conventional methods include applying lubricants such as fluorine-based or silicone-based oils, surfactants, and lubricants to the surface of the magnetic layer, and applying linear saturated fatty acids or their esters. A method of vapor-depositing it to form a surface protective layer is being considered.

これらの方法においては、塗布剤の均一な混合、塗布が
困難であるばかりでなく、形成された潤滑剤あるいは脂
肪酸等の層は磁性層の保護層として十分な耐久性がなく
、その潤滑効果が徐々に低減する傾向があるため、潤滑
効果を長期間維持した長期的に信頼性のある薄い保護層
を得ることは困難であった。
In these methods, it is not only difficult to uniformly mix and apply the coating agent, but also the formed layer of lubricant or fatty acid does not have sufficient durability as a protective layer for the magnetic layer, and its lubricating effect is reduced. Due to its tendency to gradually decrease, it has been difficult to obtain long-term reliable thin protective layers that maintain their lubricating effect over a long period of time.

1に1」 本発明の目的は、潤滑性、耐摩耗性に優れると同時に長
期にわたる走行安定性改善効果を示す表面保護層を有す
る磁気記録媒体を提供することにある。
1 to 1" An object of the present invention is to provide a magnetic recording medium having a surface protective layer that has excellent lubricity and wear resistance and at the same time exhibits the effect of improving running stability over a long period of time.

発JLIJL鷹 本発明者等の研究によれば、磁性層の表面に炭化クロミ
ウムの1[を形成することが、上述の目的達成のために
効果的であることが見出された。
According to research conducted by the present inventors, it has been found that forming chromium carbide on the surface of the magnetic layer is effective for achieving the above-mentioned objective.

本発明の磁気記録媒体はこのような知見に基づくもので
あり、より詳しくは、非磁性支持体上に金属磁性薄膜お
よび炭化クロミウムの薄膜をこの順序で形成してなるこ
とを特徴とするものである。
The magnetic recording medium of the present invention is based on this knowledge, and more specifically, it is characterized by forming a metal magnetic thin film and a chromium carbide thin film on a non-magnetic support in this order. be.

−雷 以下、本発明を更に詳細に説明する。−Lightning The present invention will be explained in more detail below.

本発明の磁気記録媒体は、図面に一実施例の部分断面構
成を示すように、非磁性支持体lの一面に磁性層たる金
属磁性薄sI2および炭化クロミウムの薄Pa3をこの
順序で形成してなる。
In the magnetic recording medium of the present invention, as shown in the drawing showing a partial cross-sectional configuration of an embodiment, a thin metal magnetic layer sI2 and a thin chromium carbide Pa3 are formed in this order on one surface of a non-magnetic support l. Become.

非磁性支持体lとしては、ポリエステル、ポリイミド、
ポリアミド等のプラスチックの厚さ5〜1100JL程
度のフィルムが好ましく用いられるが、その他、ガラス
又はアルミニウム等の非磁性金属も必要に応じて用いる
ことができ、基本的には所望の磁性層形成面を与える任
意の非磁性固体材料が用いられる。
As the non-magnetic support l, polyester, polyimide,
A film made of plastic such as polyamide and having a thickness of about 5 to 1100 JL is preferably used, but glass or non-magnetic metal such as aluminum can also be used as necessary. Basically, the desired magnetic layer forming surface is formed. Any non-magnetic solid material that can be used can be used.

磁性層2は、上記したような非磁性支持体l上に、蒸着
、スパッタリング等の方法により形成されたFe、Ni
、Fe−Co、Co−Ni、C。
The magnetic layer 2 is made of Fe, Ni, etc. formed on the above-mentioned non-magnetic support l by a method such as vapor deposition or sputtering.
, Fe-Co, Co-Ni, C.

−Cr、Co−P、Mn−B1.Fe−Co −B、C
o−N1−P、Go−V、Go−Re。
-Cr, Co-P, Mn-B1. Fe-Co-B,C
o-N1-P, Go-V, Go-Re.

Co−Pt、等の金属あるいは金属化合物の好ましくは
厚さ0.04〜2.0ルm程度の薄膜として得られる。
It is obtained as a thin film of metal or metal compound such as Co--Pt, preferably having a thickness of about 0.04 to 2.0 m.

炭化クロミウム薄膜3を構成する炭化クロミウムの組成
は特に限定されるものではなく、例えばCr3C2,C
r7C,、Cr23C@等の組成のものが用いられる。
The composition of chromium carbide constituting the chromium carbide thin film 3 is not particularly limited; for example, Cr3C2, C
Those having compositions such as r7C, Cr23C@ are used.

炭化クロミウム薄@3の厚さは40〜tooo人が好ま
しく、更には、50〜300人が好ましい、これは炭化
クロミウムg膜3が薄すぎると長期にわたる耐久性が得
られず、保護層どしての信頼性に欠けるためであり、ま
た一方、炭化クロミウム薄115I3が厚すぎると長期
にわたる走行安定性は向上するもののスペーシングロス
が増大し、再生信号出力が低下するためである。
The thickness of the chromium carbide thin layer 3 is preferably 40 to 300 mm, more preferably 50 to 300 mm. This is because if the chromium carbide film 3 is too thin, long-term durability cannot be obtained, and the protective layer On the other hand, if the chromium carbide thin 115I3 is too thick, the long-term running stability will be improved, but the spacing loss will increase and the reproduced signal output will decrease.

炭化クロミウム層3は例えばCVD (化学的気相成長
法)プラズマCVD、高周波スパッタリング、マグネト
ロンスパッタリング、イオンブレーティング等により形
成される。蒸着源あるいはスパッタ源としては、炭化ク
ロミウムそのものが用いられるほか、クロミウムを蒸着
源あるいはスパッタ源として用いて真空雰囲気中にメタ
ン、エタンあるいは一酸化炭素を導入し、気相反応で炭
化クロミウムを形成する方法も好ましく用いられる。炭
化クロミウム層3の形成は金属磁性薄膜2(必要な場合
は更に中間層)を形成する工程と同一の真空槽内で連続
工程として実施し、生産性を向上させることも可能であ
る。
The chromium carbide layer 3 is formed by, for example, CVD (chemical vapor deposition) plasma CVD, high frequency sputtering, magnetron sputtering, ion blating, or the like. Chromium carbide itself is used as a vapor deposition source or sputtering source, or chromium carbide is used as a vapor deposition source or sputtering source and methane, ethane, or carbon monoxide is introduced into a vacuum atmosphere to form chromium carbide through a gas phase reaction. The method is also preferably used. The formation of the chromium carbide layer 3 can be carried out as a continuous process in the same vacuum chamber as the process of forming the metal magnetic thin film 2 (further intermediate layer if necessary) to improve productivity.

なお1本発明の磁気記録媒体において非磁性支持体lと
金属磁性薄llI2の間に磁気記録媒体としての特性向
上のため、Fe−Ni系や非晶質高透磁材料のCo−Z
r系、Fe−P−C系、Co−5i−B系等の軟磁性膜
あるいはTi、Ge等の非磁性金属薄膜等の中間層又は
その他の層が例えば0.5uLm程度までの厚さで必要
に応じて形成されていてもよい。
1. In the magnetic recording medium of the present invention, in order to improve the characteristics of the magnetic recording medium between the non-magnetic support l and the metal magnetic thin layer I2, Fe-Ni-based or Co-Z amorphous high permeability material is used.
An intermediate layer or other layer such as a soft magnetic film such as r-based, Fe-P-C-based, Co-5i-B-based, or a non-magnetic metal thin film such as Ti or Ge has a thickness of up to about 0.5 uLm, for example. It may be formed as necessary.

また、本発明の磁気記録媒体は、磁性層保護層の耐摩耗
性が要求される限り、ディスク、シート、テープ、カー
ド等任意の形態を取り得る。
Furthermore, the magnetic recording medium of the present invention may take any form such as a disk, sheet, tape, or card as long as the magnetic protective layer is required to have wear resistance.

11立皇j 上述したように本発明はよれば、金属磁性薄膜上に炭化
クロミウム薄膜を形成することにより、磁気特性、生産
性を損うことなく、潤滑性、耐摩耗性に優れると同時に
、長期にわたる走行安定性を示す磁気記録媒体が得られ
る。
11 Ritsumeikan J As described above, according to the present invention, by forming a chromium carbide thin film on a metal magnetic thin film, it is possible to achieve excellent lubricity and wear resistance without impairing magnetic properties or productivity. A magnetic recording medium exhibiting long-term running stability can be obtained.

1亙1 以下、実施例、比較例により本発明を更に具体的に説明
する。
1-1 Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

東」L倍」2 厚さ12ILmのポリエチレンテレフタレート(PET
)フィルムの一面に、蒸着法によりC。
East"L times"2 12ILm thick polyethylene terephthalate (PET)
) C on one side of the film by vapor deposition.

80原子%Ni 20原子%の組成を有する厚さ0.2
終mの金属薄膜を形成した。
Thickness 0.2 with a composition of 80 atomic % Ni 20 atomic %
A final metal thin film was formed.

更に炭化クロミウム(組成Cr、C2)をターゲットと
して配したマグネトロンスパッタ装置において、真空槽
内を一旦2.5X10−4Pa以上まで排気した後、ア
ルゴンガスを導入してスパッタリング圧0.3Paとし
、マグネトロンスパッタリングにより磁性層表面に厚さ
150人の炭化クロミウム薄膜を形成した。
Furthermore, in a magnetron sputtering device with chromium carbide (composition Cr, C2) as a target, the inside of the vacuum chamber was once evacuated to 2.5X10-4 Pa or more, and then argon gas was introduced to make the sputtering pressure 0.3 Pa, and magnetron sputtering was performed. A chromium carbide thin film with a thickness of 150 mm was formed on the surface of the magnetic layer.

これを8mm巾にスリットし1本発明による磁気テープ
を得た。
This was slit into a width of 8 mm to obtain a magnetic tape according to the present invention.

一方、厚さ124mのポリエチレンテレフタレートフィ
ルムに上記と同様に厚さ0.21LmのCo−Ni金属
薄膜のみを形成し、8mm巾にスリットして、比較例1
のテープとした。
On the other hand, in the same manner as above, only a Co-Ni metal thin film with a thickness of 0.21 Lm was formed on a polyethylene terephthalate film with a thickness of 124 m, and the film was slit to a width of 8 mm.
It was made into a tape.

上記2種のテープについて動摩擦係数ルおよび走行耐久
性のテストを行った。
The above two types of tapes were tested for dynamic friction coefficient and running durability.

動摩擦係数は温度30℃、相対湿度80%の条件下で(
オイラーの摩擦係数値測定の方法に従って)測定し、さ
らに100回目の往復時の動摩擦係数を測定した。
The coefficient of dynamic friction is measured at a temperature of 30°C and a relative humidity of 80% (
According to Euler's friction coefficient measurement method), the dynamic friction coefficient during the 100th reciprocation was further measured.

走行耐久性は市販のVTR装置のスチルモードにおける
スチル再生寿命として測定した。上記スチルモードにお
いて最初の再生出力がl/2になる時間をスチル再生寿
命とした。
Running durability was measured as the still playback life in still mode of a commercially available VTR device. The time when the first reproduction output becomes 1/2 in the above-mentioned still mode was defined as the still reproduction life.

結果を第1表に示す。The results are shown in Table 1.

支ム亘」 厚さlopmのアラミドフィルムの一面に、スパッタリ
ング法によりCo80原子%、Cr2O原子%の組成を
有する厚さ0.5pmの金属薄膜を形成した。
A metal thin film with a thickness of 0.5 pm and having a composition of 80 atomic % Co and 2 atomic % Cr2O was formed on one surface of an aramid film 10 pm thick by a sputtering method.

さらに、スパッタリング圧力を0.4Paとした他は実
施例1と同様のマグネトロンスパッタリング法により厚
さ100人の炭化クロミウム層を形成し、8mm巾にス
リットして本発明による磁気テープを得た。一方、厚さ
10pmのアラミドフィルムに上記と同様に厚さ0.5
4mのCo−Cr金属薄膜のみを形成し、8mm巾にス
リットして比較例2のテープとした。
Furthermore, a chromium carbide layer having a thickness of 100 mm was formed by the same magnetron sputtering method as in Example 1 except that the sputtering pressure was 0.4 Pa, and the layer was slit to a width of 8 mm to obtain a magnetic tape according to the present invention. On the other hand, in the same way as above, a thickness of 0.5
A tape of Comparative Example 2 was obtained by forming only a 4 m thick Co--Cr metal thin film and slitting it into a width of 8 mm.

上記2種のテープについて、実施例1と同様に、動摩擦
係数終およびスチル再生寿命の測定を行った。結果を第
1表に示す。
Regarding the above two types of tapes, the dynamic friction coefficient end and still playback life were measured in the same manner as in Example 1. The results are shown in Table 1.

裏」ul】 厚さ40ILmのポリイミドフィルムの一面に。Back "ul] On one side of a polyimide film with a thickness of 40ILm.

蒸着法により、厚さ0.5BmのパーマロイFe−Ni
 (Fe20原子%、Ni80原子%)mを形成し、さ
らにその上に蒸着法により厚さ0.5pmc7)Co−
Cr (Co80原子%、Cr2O原子%)I8!を形
成した。
Permalloy Fe-Ni with a thickness of 0.5 Bm was made by vapor deposition method.
Co-
Cr (Co80 atomic%, Cr2O atomic%) I8! was formed.

さらに、スパッタ圧を0.5Paとした他は実施例1と
同様のマグネトロンスパッタリングにより、厚さ300
人の炭化クロミウム層を形成し、さらに裁断して150
mmφの本発明による磁気ディスクを得た。一方、厚さ
404mのポリイミドフィルムに上記と同様にFe−N
i膜およびco−Cr膜を形成し、さらに裁断して15
0mmφの比較例3のディスクとした。
Furthermore, a thickness of 300 mm was obtained by magnetron sputtering in the same manner as in Example 1 except that the sputtering pressure was 0.5 Pa.
Form a layer of human chromium carbide and further cut it into 150
A magnetic disk according to the present invention having a diameter of mm was obtained. On the other hand, Fe-N was applied to a polyimide film with a thickness of 404 m in the same manner as above.
An i film and a co-Cr film were formed and further cut into 15
The disk of Comparative Example 3 had a diameter of 0 mm.

上記2種のディスクについて動摩擦係数鉢の測定を実施
例1と同様の方法で行った。
The dynamic friction coefficients of the above two types of disks were measured in the same manner as in Example 1.

走行耐久性は、垂直記録方式専用の録画再生装置におい
て、1800rpm、サンプリング周波数(輝度信号)
7.16MHzで録画した画像の再生出力が、最初の値
の1/2になるまでの走行回数パスとして測定した。
Running durability is measured at 1800 rpm and sampling frequency (luminance signal) in a recording/playback device dedicated to the perpendicular recording method.
The measurement was performed as the number of passes until the playback output of an image recorded at 7.16 MHz became 1/2 of the initial value.

結果を第1表に示す。The results are shown in Table 1.

第1表に示すように、炭化クロミウム層を形成した本発
明のテープ(実施例1〜2)あるいはディスク(実施例
3)の動摩擦係数路はそれぞれの比較例の2/3程度に
減少していた。また100回往復時の動摩擦係数芦の値
も実施例1〜3においては最初の終の値に比べほとんど
変化していなかった。これに対し、比較例1〜3では動
摩擦係数路は100回往復時では大幅に増加していた。
As shown in Table 1, the coefficient of dynamic friction of the tape (Examples 1-2) or disk (Example 3) of the present invention with a chromium carbide layer is reduced to about 2/3 of that of each comparative example. Ta. Furthermore, the value of the dynamic friction coefficient during 100 reciprocating cycles hardly changed in Examples 1 to 3 compared to the initial and final value. On the other hand, in Comparative Examples 1 to 3, the dynamic friction coefficient road significantly increased after 100 reciprocations.

一方、走行耐久性としてのスチル再生寿命(実施例1−
2)および画像出力が半減するまでの走行回数パス(実
施例3)においても、本発明の記録媒体にはそれぞれの
比較例より大幅な改善が認められた。
On the other hand, still regeneration life as running durability (Example 1-
2) and the number of running passes until the image output was halved (Example 3), the recording medium of the present invention showed significant improvement over the respective comparative examples.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の磁気記録媒体の実施例の部分断面図で
ある。 l・・・非磁性支持体、2・・・金属磁性薄膜、3・・
・炭化クロミウム薄膜。
The drawing is a partial cross-sectional view of an embodiment of the magnetic recording medium of the present invention. l...Nonmagnetic support, 2...Metal magnetic thin film, 3...
・Chromium carbide thin film.

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上に、金属磁性薄膜および炭化クロミウム
の薄膜を、この順序で形成してなることを特徴とする磁
気記録媒体。
A magnetic recording medium comprising a metal magnetic thin film and a chromium carbide thin film formed in this order on a nonmagnetic support.
JP7158985A 1985-04-04 1985-04-04 Magnetic recording medium Pending JPS61229229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7158985A JPS61229229A (en) 1985-04-04 1985-04-04 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7158985A JPS61229229A (en) 1985-04-04 1985-04-04 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61229229A true JPS61229229A (en) 1986-10-13

Family

ID=13465010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7158985A Pending JPS61229229A (en) 1985-04-04 1985-04-04 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61229229A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218624A (en) * 1985-07-18 1987-01-27 Toshiba Corp Magnetic recording medium
JPH0276195A (en) * 1988-09-13 1990-03-15 Toshiba Corp Semiconductor memory device
EP1324043A1 (en) * 2000-09-06 2003-07-02 Toyo Kohan Co., Ltd. Solid supports having surface-treated layer formed thereon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218624A (en) * 1985-07-18 1987-01-27 Toshiba Corp Magnetic recording medium
JPH0513333B2 (en) * 1985-07-18 1993-02-22 Tokyo Shibaura Electric Co
JPH0276195A (en) * 1988-09-13 1990-03-15 Toshiba Corp Semiconductor memory device
EP1324043A1 (en) * 2000-09-06 2003-07-02 Toyo Kohan Co., Ltd. Solid supports having surface-treated layer formed thereon
EP1324043A4 (en) * 2000-09-06 2006-05-17 Toyo Kohan Co Ltd Solid supports having surface-treated layer formed thereon

Similar Documents

Publication Publication Date Title
JPS61229229A (en) Magnetic recording medium
JPS60145524A (en) Magnetic recording medium
JPH03296919A (en) Magnetic recording medium
JPS61278012A (en) Magnetic recording medium
JPS61278013A (en) Magnetic recording medium
JPS6047230A (en) Tape shape magnetic recording medium
JPH0719368B2 (en) Magnetic recording medium
WO2019187731A1 (en) Magnetic recording tape and magnetic recording tape cartridge
JPS59112431A (en) Magnetic recording medium
JPS6218624A (en) Magnetic recording medium
JPH1074319A (en) Manufacture of magnetic recording medium and manufacturing device therefor
JPS61260418A (en) Magnetic recording medium
JPH02281413A (en) Magnetic recording medium
JPH06124832A (en) Magnetic recording media
JPH11232648A (en) Manufacture of magnetic recording medium
JPS6342020A (en) Magnetic recording medium having granular faced magnetic layer
JPS61196424A (en) Magnetic recording medium
JPS62103834A (en) Magnetic recording medium
JPH0518169B2 (en)
JPS61260417A (en) Magnetic recording medium
JPH04281212A (en) Magnetic recording medium and its production
JP2003331411A (en) Magnetic recording medium and method for manufacturing the same
JPS6174129A (en) Magnetic recording medium
JPS62103841A (en) Magnetic recording medium
JPS61278014A (en) Magnetic recording medium