JPH01103887A - Thermoelectric device - Google Patents

Thermoelectric device

Info

Publication number
JPH01103887A
JPH01103887A JP62262137A JP26213787A JPH01103887A JP H01103887 A JPH01103887 A JP H01103887A JP 62262137 A JP62262137 A JP 62262137A JP 26213787 A JP26213787 A JP 26213787A JP H01103887 A JPH01103887 A JP H01103887A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
heat
type
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62262137A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tanaka
博由 田中
Yoshiyuki Tsuda
善行 津田
Yuji Mukai
裕二 向井
Masaaki Adachi
安立 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62262137A priority Critical patent/JPH01103887A/en
Publication of JPH01103887A publication Critical patent/JPH01103887A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve a device of this design in efficiency, performance, and the degree of freedom of installation by a method wherein an N-type or P-type thin film-like semiconductor is formed on the surface to a plate-like insulator, and the both ends surfaces of the film-like semiconductor are made to be two-dimens ionally connected with plate-like or thin film-like metals respectively. CONSTITUTION:When a voltage is applied to terminals 14 and 15, heat release and absorption take place at a junction face between a copper film 9 and semiconductors 7a and 7b, but an N-type and a P-type semiconductor are alternately arranged, so that either heat absorption or heat release takes place at a substrate 12 or 13 respectively. Heat generated at an interface between the copper film 9 and a semiconductor 7 is made to be conducted through a diamond film 10 excellent in thermal conductivity and reach to the substrate to heat or cool it, where the substrates 12 and 13 are linked with each other through only the intermediary of material low in thermal conductivity, so that heat is hard to diffuse from one substrate to the other. If voltage impressed on the terminal 14 is higher than that impressed on the terminal 15, heat absorption takes place on the substrate 12 side. The substrate 12 is installed at the part where cooling is needed and the other substrate 13 is installed outside, and thus a cooling device excellent in controllability and efficiency can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果により電気的に冷却もしくは加熱
を行い、あるいはゼーベック効果により温度差を用いて
発電を行う熱電装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a thermoelectric device that performs electrical cooling or heating using the Peltier effect, or generates electricity using a temperature difference using the Seebeck effect.

従来の技術 従来熱を電気に変換し、もしくは電気を熱に変換する熱
電装置は、第3図従来例に示す様に金属板1、及び金属
板2によってP型半導体4、もしくはN型の半導体3を
挟み込む構成を有し、両側の金属の温度差により発電を
行い、もしくは電界を与え電流を通ずることにより冷却
を行うものである。
2. Description of the Related Art Conventionally, a thermoelectric device that converts heat into electricity or electricity into heat converts a P-type semiconductor 4 or an N-type semiconductor using a metal plate 1 and a metal plate 2, as shown in a conventional example in FIG. 3, and generates electricity by the temperature difference between the metals on both sides, or performs cooling by applying an electric field and passing a current.

第3図従来例はN型の半導体3とP型の半導体4を交互
に直列的に配列した熱電装置であり端子5と端子6間に
電位を与えると、金属板の一方が冷却され、他方が加熱
される。
The conventional example shown in FIG. 3 is a thermoelectric device in which N-type semiconductors 3 and P-type semiconductors 4 are arranged alternately in series. When a potential is applied between terminals 5 and 6, one of the metal plates is cooled and the other is is heated.

発明が解決しようとする問題点 このような従来の熱電装置では、第3図に見られるよう
に冷却部と加熱部が近接し、対置して接続されているた
め、熱伝導による効率の低下が見られると共に、設置上
の制約があった。また、半導体材料をパルつて使用する
構成となっているため、(+)Te、Se等の希少材料
を大量に必要とする、また(2)重量及び容積がかさば
る、さらに(3)金属と半導体の接合のために接合部に
異物質を介在させる必要が有り、効率が低下する、また
(4)工法的な理由から、素子間の間隙が大きくなり、
金属と半導体の接合面積を広くすることが出来ない。そ
のため放熱器への熱の拡散が十分に行われなくなり、上
下の金属板の温度差が拡大する。その結果、効率の低下
が生ずる。
Problems to be Solved by the Invention In such conventional thermoelectric devices, as shown in Figure 3, the cooling section and the heating section are close to each other and are connected oppositely, resulting in a decrease in efficiency due to heat conduction. In addition to being visible, there were also installation restrictions. In addition, since the structure uses semiconductor materials in pieces, large amounts of rare materials such as (+) Te and Se are required, (2) the weight and volume are bulky, and (3) metal and semiconductor materials are required. (4) Due to the construction method, the gap between the elements becomes larger due to the need for a foreign substance to be interposed in the joint, which reduces efficiency.
It is not possible to widen the junction area between metal and semiconductor. As a result, heat is not sufficiently diffused to the radiator, increasing the temperature difference between the upper and lower metal plates. As a result, a decrease in efficiency occurs.

問題点を解決するための手段 本発明による熱電装置は、板状の絶縁物表面に薄膜状の
N型、もしくはP型の半導体を付着させ、その両端部表
面を各々板状もしくは、膜状の金属に平面的に接続して
構成したものである。
Means for Solving the Problems In the thermoelectric device according to the present invention, a thin film of N-type or P-type semiconductor is adhered to the surface of a plate-shaped insulator, and both ends of the semiconductor are coated with plate-shaped or film-shaped semiconductors. It is constructed by connecting it to metal in a plane.

作用 このような手段によって得られる作用は、以下の通りで
ある。(1)温度差の生ずる部分を十分離すことが可能
となり、熱拡散による効率の低下を防止することが出来
る。(2)薄膜状の半導体と板状もしくは薄膜状の金属
を平面的に接続しているため、接合面積が広くなり、熱
と電気の変換が行われる面積が増加し、能力を向上させ
ることができる。
Effects The effects obtained by such means are as follows. (1) It becomes possible to sufficiently separate parts where temperature differences occur, and it is possible to prevent a decrease in efficiency due to thermal diffusion. (2) Since a thin film semiconductor and a plate or thin film metal are connected in a planar manner, the bonding area becomes larger, increasing the area where heat and electricity are converted, and improving performance. can.

(3)板状の絶縁物表面に半導体膜を構成しているため
、熱と電気の変換部、つまり金属と半導体の接合部が平
面的に構成され、設置上の制約が減少するだけでなく、
装置全体をコンパクト化することができる。(4)板状
の絶縁物を薄く、フレキシブルとすれば、熱電変換部の
相対位置を必要に応じて自由に変化させることが出来る
(3) Since the semiconductor film is formed on the surface of the plate-shaped insulator, the heat and electricity conversion part, that is, the junction between the metal and the semiconductor, is constructed in a flat plane, which not only reduces installation restrictions but also ,
The entire device can be made more compact. (4) If the plate-shaped insulator is made thin and flexible, the relative position of the thermoelectric converter can be freely changed as necessary.

実施例 以下に本発明による実施例を図面により説明する。第1
図は本発明による一実施例である。 (a)は本発明に
よる熱電装置正面図であり、(b)は(a)のAA面で
の断面図である。 7aはP型半導体、7bはN型半導
体でありポリイミドフィルム8の表面に線状に図の様に
交互に製膜されている。半導体膜7a、7bはその端面
上部に銅膜9がスパッタ等の方法でコーティングされ、
P型半導体、N型半導体が銅膜9を介して直列に連結さ
れている。この半導体と銅はの断面図(b)に示したよ
うにダイヤモンド薄膜10により絶縁され、積層してい
る。しかし、一方基板閏にある半導体膜間は酸化シリコ
ン等の、熱伝導率の悪い電気絶縁物11によって絶縁さ
れる。また12.13は保持もしくは熱拡散用の基板で
あり熱伝導率の高い銅を使用している。
Examples Examples according to the present invention will be described below with reference to the drawings. 1st
The figure shows one embodiment according to the invention. (a) is a front view of a thermoelectric device according to the present invention, and (b) is a sectional view taken along the AA plane of (a). 7a is a P-type semiconductor, and 7b is an N-type semiconductor, which are alternately formed linearly on the surface of the polyimide film 8 as shown in the figure. The semiconductor films 7a and 7b are coated with a copper film 9 on the upper end surfaces thereof by a method such as sputtering.
A P-type semiconductor and an N-type semiconductor are connected in series via a copper film 9. As shown in the cross-sectional view (b), this semiconductor and copper are insulated by a diamond thin film 10 and stacked. However, the semiconductor films on one substrate are insulated by an electrical insulator 11 having poor thermal conductivity, such as silicon oxide. Further, 12 and 13 are substrates for holding or heat diffusion, and are made of copper, which has high thermal conductivity.

以下本発明の実施例を冷却用として使用した場合の作用
について述べる。端子14.15に電圧を印加すると、
ペルチェ効果により銅膜9と半導体7a、7bの接合面
で発熱と吸熱が起きる。本実施例ではN型とP型の半導
体を交互に配置しているために、基板12、もしくは基
板13で、それぞれ吸熱か放熱のどちらかしか起こらな
い。半導体7と銅膜9の界面で発生した熱は高熱伝導率
をもつダイヤモンド膜を伝わって基板へ流れ、基板を冷
却もしくは加熱する。しかしこの熱は基板12と基板1
3が熱伝導率の低い物質で連絡しているのみであるため
、一方の基板から他方へは拡散し難い構成となっている
。 端子14に端子15よりも高電圧を印加すると基板
12側で吸熱する。
The effect when the embodiment of the present invention is used for cooling will be described below. When voltage is applied to terminals 14.15,
Due to the Peltier effect, heat generation and heat absorption occur at the bonding surface between the copper film 9 and the semiconductors 7a and 7b. In this embodiment, since N-type and P-type semiconductors are arranged alternately, either heat absorption or heat radiation occurs in the substrate 12 or the substrate 13, respectively. The heat generated at the interface between the semiconductor 7 and the copper film 9 flows to the substrate through the diamond film, which has high thermal conductivity, and cools or heats the substrate. However, this heat
3 are connected only through a substance with low thermal conductivity, the structure is such that diffusion from one substrate to the other is difficult. When a higher voltage is applied to the terminal 14 than to the terminal 15, heat is absorbed on the substrate 12 side.

この基板12を冷却を必要とする場所に設置し、もう一
方の基板13を外部に置くことによって、非常に制御性
がよく効率の高い冷却装置となる。
By installing this substrate 12 at a location that requires cooling and placing the other substrate 13 outside, a cooling device with very good controllability and high efficiency can be obtained.

また基板12.13を極端に薄くするか、取り除けば非
常に応答速度の早い冷却装置を得ることが出来る。
Furthermore, if the substrates 12 and 13 are made extremely thin or removed, a cooling device with extremely fast response speed can be obtained.

この様に本発明による実施例では、薄いポリイミドフィ
ルムの上に熱電素子構成を持たせ、発熱部と冷却部を分
離しているために効率が向上するばかりではなく、軽量
かつコンパクトとなり、設置上の制約も著しく減少する
。また各素子は、高熱伝導度を有するダイヤモンドによ
り電気絶縁され、かつ熱を外部に効率的に拡散させるよ
うにしつつ積層しているため、冷却能力を大きくとれる
As described above, the embodiment of the present invention has a thermoelectric element structure on a thin polyimide film and separates the heat generating part and the cooling part, which not only improves efficiency, but also makes it lightweight and compact, making it easy to install. constraints are also significantly reduced. Furthermore, each element is electrically insulated by diamond, which has high thermal conductivity, and is laminated to efficiently diffuse heat to the outside, so that a large cooling capacity can be achieved.

また半導体は線状に構成して、たわみに強い構造とする
とともに、その端部には銅膜をスパッタ蒸着により付着
させているので銅と半導体の接合面積が広くなり、均一
な温度分布と高い効率が得られる。
In addition, the semiconductor is constructed in a linear shape to create a structure that is resistant to deflection, and a copper film is attached to the end by sputter deposition, so the bonding area between the copper and the semiconductor is widened, resulting in uniform temperature distribution and high heat resistance. Gain efficiency.

本発明による実施例ではP型とN型の半導体を使用した
例を示したが、P型もしくはN型のみを使用して並列的
に電流を流せる構成としてもよい。
In the embodiment according to the present invention, an example is shown in which P-type and N-type semiconductors are used, but a configuration may also be adopted in which only P-type or N-type semiconductors are used and current can flow in parallel.

第2図は本発明の他の実施例であり、N型の半導体を並
列に並べた熱電装置である。
FIG. 2 shows another embodiment of the present invention, which is a thermoelectric device in which N-type semiconductors are arranged in parallel.

第2図に於て(a)は正面図、(b)はBB断面図であ
る。線状のN型半導体16はポリイミドフィルム17上
に製膜される。N型半導体16は基板18.19のあい
だではポリイミドフィルム17上に製膜されるが、基板
18.19上でポリイミドフィルム17には開孔部が設
けられ、その孔によりN型半導体は銅製の基板に付着し
、電気的に導通している。この様な並列構成によって、
直列にN型、P型半導体を連結する時よりも電流値を大
きく取れるため、より能力の高い熱電冷却装置を得るこ
とが出来る。また本実施例では基板18.19を直接、
半導体16に接合しているため、形状が簡素となり、コ
ンパクト化が計れる。
In FIG. 2, (a) is a front view, and (b) is a BB sectional view. A linear N-type semiconductor 16 is formed on a polyimide film 17. The N-type semiconductor 16 is formed on the polyimide film 17 between the substrates 18 and 19. On the substrates 18 and 19, the polyimide film 17 is provided with an opening, and the hole allows the N-type semiconductor to pass through the copper film. It adheres to the substrate and is electrically conductive. With this parallel configuration,
Since a larger current value can be obtained than when N-type and P-type semiconductors are connected in series, a thermoelectric cooling device with higher performance can be obtained. In addition, in this embodiment, the substrates 18 and 19 are directly connected to each other.
Since it is bonded to the semiconductor 16, the shape is simple and compact.

本実施例ではN型半導体のみを使用したが、もちろんP
型でもよい。また本実施例は、−枚の素子のみを示した
が、積層することも可能である。その際には、基板18
.19側は、銅、半導体、銅という順番で繰り返し積層
するとともに、基板間では、絶縁膜、半導体、絶縁膜の
順序で繰り返して、積層する。
In this example, only N-type semiconductors were used, but of course P-type semiconductors were used.
It can also be a type. Further, although this embodiment shows only -1 elements, it is also possible to stack them. In that case, the board 18
.. On the 19 side, copper, semiconductor, and copper are repeatedly laminated in this order, and between the substrates, an insulating film, a semiconductor, and an insulating film are repeatedly laminated in this order.

発明の効果 本発明の熱電装置は、板状の絶縁物表面に薄膜状のN型
、もしくはP型の半導体を形成し、その両端部表面を各
々板状、もしくは膜状の金属に平面的に接続して構成し
たものであるため、次のような効果を奏する。すなわち
、温度差のつく部分を十分分離することが出来るため、
効率、能力共に向上するとだけでなく、設置の自由度が
向上する。また半導体を薄膜状で形成し、金属と直接的
に密着させているため、温度分布が均一になり、効率が
向上すると共に、非常にコンパクト軽量とすることがで
きる。以上のように本発明によって、コンパクト軽量で
、能力、効率共に高い熱電装置を得ることが出来るもの
である。
Effects of the Invention In the thermoelectric device of the present invention, a thin N-type or P-type semiconductor is formed on the surface of a plate-shaped insulator, and both ends of the semiconductor are formed in a plane with a plate-shaped or film-shaped metal. Since they are connected, the following effects can be achieved. In other words, it is possible to sufficiently separate parts with temperature differences,
Not only does efficiency and capacity improve, but the flexibility of installation also increases. Furthermore, since the semiconductor is formed into a thin film and is in direct contact with the metal, the temperature distribution is uniform, efficiency is improved, and the device can be made extremely compact and lightweight. As described above, according to the present invention, it is possible to obtain a thermoelectric device that is compact, lightweight, and has high capacity and efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱電装置の構成図であり、
(a)は正面図、(b)はそのAA断面図、第2図は本
発明の他の実施例の熱電装置の構成図であり、(a)は
正面図、(b)はBB断面図、第3図は従来例の熱電装
置の斜視図である。 12.13,18,19.、、基板、?、16...半
導体、8.1?、、。 フィルム。 代理人の氏名 弁理士 中尾敏男 はか1名極
FIG. 1 is a configuration diagram of a thermoelectric device according to an embodiment of the present invention,
(a) is a front view, (b) is an AA sectional view thereof, and FIG. 2 is a configuration diagram of a thermoelectric device according to another embodiment of the present invention, (a) is a front view, and (b) is a BB sectional view. , FIG. 3 is a perspective view of a conventional thermoelectric device. 12.13,18,19. ,,substrate,? , 16. .. .. Semiconductor, 8.1? ,,. film. Name of agent: Patent attorney Toshio Nakao Haka1 Meigoku

Claims (5)

【特許請求の範囲】[Claims] (1)板状の絶縁物表面に薄膜状のN型、もしくはP型
の半導体を付着させ、その両端部表面を各々板状もしく
は膜状の金属を平面的に接続してなる熱電装置。
(1) A thermoelectric device in which a thin N-type or P-type semiconductor is adhered to the surface of a plate-shaped insulator, and a plate-shaped or film-shaped metal is connected in a planar manner to each end surface of the thin N-type or P-type semiconductor.
(2)半導体が線状であり、その線状の半導体がの両端
部表面に接続された金属により並列的もしくは直列的に
接合された特許請求の範囲第1項記載の熱電装置。
(2) The thermoelectric device according to claim 1, wherein the semiconductor is linear, and the linear semiconductors are connected in parallel or in series by metals connected to the surfaces of both ends.
(3)半導体と金属を、交互に複数層積層させた特許請
求の範囲第1項記載の熱電装置。
(3) The thermoelectric device according to claim 1, wherein a plurality of layers of semiconductors and metals are alternately laminated.
(4)積層された半導体と金属を一対とし各々の対を絶
縁物で絶縁した特許請求の範囲第3項記載の熱電装置。
(4) The thermoelectric device according to claim 3, which comprises a pair of laminated semiconductors and metals and insulates each pair with an insulator.
(5)絶縁物がダイヤモンド薄膜である特許請求の範囲
第3項記載の熱電装置。
(5) The thermoelectric device according to claim 3, wherein the insulator is a diamond thin film.
JP62262137A 1987-10-16 1987-10-16 Thermoelectric device Pending JPH01103887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262137A JPH01103887A (en) 1987-10-16 1987-10-16 Thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262137A JPH01103887A (en) 1987-10-16 1987-10-16 Thermoelectric device

Publications (1)

Publication Number Publication Date
JPH01103887A true JPH01103887A (en) 1989-04-20

Family

ID=17371569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262137A Pending JPH01103887A (en) 1987-10-16 1987-10-16 Thermoelectric device

Country Status (1)

Country Link
JP (1) JPH01103887A (en)

Similar Documents

Publication Publication Date Title
JP3447915B2 (en) Thermoelectric element and thermoelectric element module using the same
US6314741B1 (en) Thermoelectric device
US6855880B2 (en) Modular thermoelectric couple and stack
US3240628A (en) Thermoelectric panel
KR20150088063A (en) Cooling thermoelectric moudule and device using the same
JP2006294935A (en) High efficiency and low loss thermoelectric module
KR20120046106A (en) Microstructure for a seebeck effect thermoelectric generator, and method for making such a microstructure
JPH10303469A (en) Thin film thermoelectric transducer, semiconductor device using the transducer and printed board using the semiconductor
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
JP5776700B2 (en) Thermoelectric conversion module
JPH01208876A (en) Thermoelectric device and manufacture thereof
JPH0430586A (en) Thermoelectric device
JPH01103887A (en) Thermoelectric device
JPH08153898A (en) Thermoelectric element
JP3055679B2 (en) Thermoelectric module jacket, thermoelectric heating / cooling device, method of manufacturing thermoelectric module jacket, and method of manufacturing thermoelectric heating / cooling device
JPH0629581A (en) Thermoelectric element
JPS62145783A (en) Thin film thermoelectric module
JPH01164079A (en) Thermoelectric device
JPH0555639A (en) Thermoelectric device
JPH02130878A (en) Thermoelectric device
WO2022270914A1 (en) Thermoelectric device
JPH02155280A (en) Thermoelectric device
JPH02303076A (en) Thermoelectric device and method of controlling same
JP2512213B2 (en) Thermoelectric device and manufacturing method thereof
JPS62213691A (en) Heat exchanging fin