JPH01103292A - Camera fitting system to robot - Google Patents

Camera fitting system to robot

Info

Publication number
JPH01103292A
JPH01103292A JP62257153A JP25715387A JPH01103292A JP H01103292 A JPH01103292 A JP H01103292A JP 62257153 A JP62257153 A JP 62257153A JP 25715387 A JP25715387 A JP 25715387A JP H01103292 A JPH01103292 A JP H01103292A
Authority
JP
Japan
Prior art keywords
camera
robot
axis
coordinate system
reference mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62257153A
Other languages
Japanese (ja)
Inventor
Shunji Mori
毛利 峻治
Hidekage Matoba
的場 秀影
Akira Ashida
芦田 暁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62257153A priority Critical patent/JPH01103292A/en
Publication of JPH01103292A publication Critical patent/JPH01103292A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To set a TV camera horizontally to the axis of a robot so as to facilitate matching (collation) between a TV camera coordinate system and a robot coordinate system by showing a reference mark to the TV camera, moving the TV camera along the axis of a robot, and repeating showing the mark again. CONSTITUTION: In installation of a TV camera to a robot, a reference mark is shown to the TV camera 1, the TV camera is moved along an axis 3 of a robot, and the axis 3 of the robot and an optical axis of the TV camera 1 are matched together. Subsequently, only the installation position for the TV camera 1 is adjusted while the reference mark is shown. In this way, the TV camera 1 is set horizontally to the axis 3 of the robot, an offset between the axis 3 of the robot and the camera 1 is found accurately, and then, coordinate matching (collation) between a camera coordinate system and a robot coordinate system is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はロボット手先カメラの取り付け後の調整に係り
、そのカメラの取り付け位置・姿勢を求めることにより
、カメラをロボット軸と平行な位置・姿勢で取り付ける
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the adjustment of a robot hand camera after it is attached, and by determining the attachment position and attitude of the camera, the camera is placed in a position and attitude parallel to the robot axis. This is about how to install it.

〔従来の技術〕[Conventional technology]

ロボットのある軸にカメラをつけた場合、その軸とカメ
ラとの取り付け誤差が問題となる。従来はカメラ座標系
とロボット座標系との較正方式が論じられているが、カ
メラを任意の角度で取り付ける方法については論じられ
ていない。
When a camera is attached to a certain axis of a robot, the installation error between that axis and the camera becomes a problem. Conventionally, a method for calibrating the camera coordinate system and the robot coordinate system has been discussed, but a method for mounting the camera at an arbitrary angle has not been discussed.

−〔発明が解決しようとする問題点〕 従来の技術は、何らかの方式でカメラを取り付けた後の
較正法につき論じたものであり、取り付けたカメラの位
置・姿勢の求め方や調整法については触れられていない
- [Problem to be solved by the invention] The conventional technology discusses the calibration method after the camera is attached by some method, but does not mention how to determine the position and orientation of the attached camera or how to adjust it. It has not been done.

本発明は、簡便にその取り付け後の位置・姿勢を求め、
軸と平行の位置・姿勢に取り付ける方式を提供すること
にある。
The present invention easily determines the position and orientation after installation,
The purpose is to provide a method for attaching the device in a position and attitude parallel to the axis.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、 (1) カメラに規準マークを見せ、その軸に沿って移
動(マークを移動するかロボットを移動するかどちらで
もよい)し、軸とカメラの光軸を合わせる。
The above objectives are as follows: (1) Show the reference mark to the camera, move along the axis (either move the mark or move the robot), and align the axis with the optical axis of the camera.

(2)次いで、カメラの取り付け位置のみを、規準マー
クをみせながら調整する。
(2) Next, adjust only the mounting position of the camera while showing the reference mark.

ことにより達成させる。achieve this by doing so.

〔作 用〕[For production]

カメラを取り付ける際、その取り付け位置と姿勢を同時
に決定しようとすると面倒である。そこでそれらを別々
に行なうことにより簡便で正確な取り付けが可能となる
When attaching a camera, it is troublesome to try to determine its attachment position and orientation at the same time. Therefore, by performing these steps separately, simple and accurate installation becomes possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を図を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

カメラとロボットの軸との関係は第1図に示すようにQ
、d、θ、α、β、γと6つある。これは空間の1点の
自由度が6であることを示す。しかし、カメラ1の光軸
2回りの回転γは発生しても特に効果を及ぼすものでな
いためここでは問題としない、これは写真を撮るとき、
カメラのみを焦点軸まわりに回転しても被写体の位置に
関係しないことを考えれば明らかである。これにくらべ
The relationship between the camera and the axis of the robot is shown in Figure 1.
, d, θ, α, β, and γ. This indicates that the degrees of freedom of one point in space are six. However, even if the rotation γ of the camera 1 around the optical axis 2 occurs, it does not have any particular effect, so it is not considered a problem here.
This is obvious if you consider that rotating only the camera around the focal axis has no relation to the position of the subject. Compare this.

他の5つのパラメータはすべて被写体の大きさや位置な
どを変えてしまう原因となる。
The other five parameters all cause changes in the size and position of the subject.

取り付け調整は次の3ステツプで行なう。Installation adjustment is performed in the following three steps.

(1) カメラ1の焦点軸2とロボットの軸3と合わす
(1) Align focal axis 2 of camera 1 with axis 3 of the robot.

(2) ロボットの軸3と取り付け点4の位置(R。(2) Position of robot axis 3 and attachment point 4 (R.

d、0で示される)を調整する。d, denoted by 0).

(3) ロボットの軸3と焦点軸2の角度(α、β)を
調整する。
(3) Adjust the angle (α, β) between robot axis 3 and focal axis 2.

第1ステツプでは以下のようにしてロボット軸と焦点軸
を合わす。
In the first step, the robot axis and focal axis are aligned as follows.

(a)第2図で示す規準マーク5を用意管る。この正方
形の辺aの長さは既知とする。
(a) Prepare the reference mark 5 shown in FIG. It is assumed that the length of side a of this square is known.

(b)規準マーク5を見せ焦点を合わす。そして規準マ
ーク5とカメラ1との相対距離をhだけ短かくする。こ
れには、規準マーク5をロボットの軸2に沿って動かし
てもよいし、ロボットを軸2に沿って下げてもよい。
(b) Show reference mark 5 and focus. Then, the relative distance between the reference mark 5 and the camera 1 is shortened by h. This can be done by moving the reference mark 5 along the axis 2 of the robot or by lowering the robot along the axis 2.

この移動の前後の規準マークの点6は第3図に示すよう
に一般に7から8に移動する。
The reference mark point 6 before and after this movement generally moves from 7 to 8 as shown in FIG.

この移動量をカメラ座標系9の成分Δχ、Δyとして求
める。この求め方は以下の通りである。
This amount of movement is determined as components Δχ and Δy of the camera coordinate system 9. The method for finding this is as follows.

カメラで取り込んだ画像は、通常カメラ座標系9の原点
10の位置を(0,0)とじた256X256のような
ピクセルの位置として与えられる。従って1点7,8の
中心もピクセルの位置として求められる。(例えば岩披
講座情籟科学21「パターン認識と図形処理」のP、1
68等参照)この点7を(x4゜y、)2点8を(!a
*yi)とする。
An image captured by a camera is usually given as a pixel position such as 256×256 where the position of the origin 10 of the camera coordinate system 9 is subtracted from (0,0). Therefore, the center of each point 7, 8 can also be determined as a pixel position. (For example, P. 1 of Iwahiro Course Information Science 21 “Pattern Recognition and Shape Processing”)
68 etc.) This point 7 is (x4゜y,)2 point 8 is (!a
*yi).

また、点8を含む規準マーク11の1辺の長さが九ピク
セルであるとすると、第3図の画面ではηピクセルが既
知の長さaに対応するから、中心の差のX成分13とν
成分14は次のように求められる。
Furthermore, if the length of one side of the reference mark 11 including point 8 is 9 pixels, then in the screen of FIG. 3, η pixels correspond to the known length a, so the X component 13 of the center difference ν
Component 14 is determined as follows.

Δx=(xl−χ、)a/71 Δy=(yニーy*)a/71 このΔX、Δyは、カメラの焦点軸2とロボットの軸3
とが平行でないと発生する。その両軸のなす角は第4図
を参照すると δ=ta71−1(Δ/h) であるから、第1図のα、βは次のように求められる。
Δx=(xl-χ,)a/71 Δy=(y knee y*)a/71 These ΔX and Δy are the focal axis 2 of the camera and the axis 3 of the robot.
This occurs when the and are not parallel. Referring to FIG. 4, the angle formed by both axes is δ=ta71-1(Δ/h), so α and β in FIG. 1 can be determined as follows.

α= t (171−” (Δy/h)β= t (1
71−”  (Δx / h )従って、このα、βを
用いてカメラ1の取りつけ角を調整すると、カメラの焦
点軸2とロボットの軸3とを合わすことができる。
α= t (171-” (Δy/h) β= t (1
71-'' (Δx/h) Therefore, by adjusting the mounting angle of the camera 1 using these α and β, the focal axis 2 of the camera and the axis 3 of the robot can be aligned.

実用上は、さらにこれを繰り返すことにより、さらに精
度よく合わすことができるようになる。
In practice, by repeating this process, it becomes possible to achieve even more precise alignment.

第2ステツプでは、取り付け点の位置(Q。In the second step, the location of the attachment point (Q).

d、θ)を測定し、それを調整する。d, θ) and adjust it.

(c)第5図に示すように、ロボット座標系  15の
xy平面上(ロボット軸3と垂直な面)にカメラ取り付
け位置16におけるカメラ座標系の射影座標17を示す
規準座標図18を設置する。尚、規準座標図18には長
さしの既知の直線が描いであるものとする。もしカメラ
1の取付け点がズしていると第6図に示すように見える
(c) As shown in FIG. 5, a standard coordinate map 18 showing the projected coordinates 17 of the camera coordinate system at the camera mounting position 16 is installed on the xy plane of the robot coordinate system 15 (a plane perpendicular to the robot axis 3). . It is assumed that the standard coordinate diagram 18 depicts a straight line with a known length. If the mounting point of camera 1 is misaligned, it will appear as shown in FIG.

第6図の点20と10の間の距離の成分Δx2.Δy2
は、長さ既知の直41119を用いて、(b)と同様に
求めることができる。これが求・  まると第7図を参
照して、本来の位置とのズレΔQ、Δθは例えば次のよ
うに求められる。
Component Δx2 of the distance between points 20 and 10 in FIG. Δy2
can be obtained in the same manner as in (b) using a straight line 41119 whose length is known. Once this is determined, referring to FIG. 7, the deviations ΔQ and Δθ from the original position can be determined, for example, as follows.

まず点20を示す位置ベクトルをP2゜とする。次いで
P2゜のχ成分、y成分よりΔx2゜Δy2を引いた位
置ベクトルをpHlとする。
First, the position vector indicating point 20 is assumed to be P2°. Next, the position vector obtained by subtracting Δx2°Δy2 from the χ and y components of P2° is defined as pHl.

ΔR=lP、。1lpt。1 但し+x+はベクトルXの絶対値(長さ)とする。ΔR=lP,. 1lpt. 1 However, +x+ is the absolute value (length) of vector X.

また Po。・P2゜=IP□。1・lpz。1(3)Δθで
あるから Δθ=(5)−’(IPよ。・P2゜/IP、。1・I
IP2.1)である。
Po again.・P2゜=IP□. 1.lpz. 1(3)Δθ, so Δθ=(5)-'(IP.・P2°/IP, .1・I
IP2.1).

但しx−譬はベクトル)le’lの内積とする。However, the x-parable is the inner product of the vector )le'l.

(d)また、dに関する誤差Δdは次のように求められ
る。
(d) Also, the error Δd regarding d is obtained as follows.

第8図に示すようにレンズ21と結像面22との距離(
これは既知である)をSとするとき、レンズ21の倍率
はs / dで与えられる。
As shown in FIG. 8, the distance between the lens 21 and the imaging plane 22 (
(this is known) is S, the magnification of the lens 21 is given by s/d.

ここで、規準座標図18とカメラ1との相対距離を(b
)と同様にhだけ短かくするとする。この移動の前後に
おける直49119の長さを求めずピクセル数をmt、
m、とする。この差は倍率により発生しているから が成り立つ、これより Δd =(d−m、−(d −h) ・ma)/ (m
i  mi)となる。
Here, the relative distance between the reference coordinate diagram 18 and the camera 1 is (b
), we also shorten h by h. Without finding the length of the straight line 49119 before and after this movement, the number of pixels is mt,
Let m be. This difference is caused by the magnification, so Δd = (d-m, -(d-h) ・ma)/(m
i mi).

(8)このΔQ、Δθ、Δdを用いて、取り付け位置を
ズラしてやると正しくカメラ1を取り付けられることに
なる。
(8) By using these ΔQ, Δθ, and Δd to shift the mounting position, the camera 1 can be mounted correctly.

実用的には、この作業(c)(d)(s)をくりかえす
ことにより精度をあげることができる。
Practically speaking, accuracy can be improved by repeating operations (c), (d), and (s).

本方式を用いると、カメラ1とロボット軸2とのオフセ
ット量誤差Δ悲、Δd、ΔO9α、βが求められ、正確
なオフセット量を求めることにも用いることができる。
By using this method, the offset amount errors Δ, Δd, ΔO9α, and β between the camera 1 and the robot axis 2 can be determined, and can also be used to determine the accurate offset amount.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ロボットの軸と平行に手先カメラを設
定し、軸とカメラとのオフセットが正確になるため、カ
メラ座標系とロボット座標系との座標系合わせ(較正)
が楽にできるようになる。
According to the present invention, the hand camera is set parallel to the axis of the robot, and the offset between the axis and the camera is accurate, so coordinate system alignment (calibration) between the camera coordinate system and the robot coordinate system is performed.
becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、カメラとロボット軸との誤差の種類の説明図
、第2図は傾き調整用マークの表示図、第3図は傾き量
測定のためのカメラ画像の説明図。 第4図は傾きを求めるための説明図、第5図は取り付け
位置測定用の座標系と座標系図、第6図はそのカメラ画
像説明図、第7図は誤差計算用の説明図、a4&   
     第8図は結像状態説明図である。 1・・・カメラ、2・・・カメラ焦点軸、3・・・ロボ
ット軸、4・・・カメラ取付け位置、9・・・カメラ座
標系。 15・・・ロボット座標系、16・・・カメラ取り付け
点。 17・・・カメラ座標系の射影図、18・・・基準座標
図。 20・・・基準座標原点の画像、21・・・レンズ、2
2−)、 〕 ′ 葛 1 図 1 カメラ 277メラの声、頁軸 3 0ボ゛ツト車由 + ηメラ取イ?rlj萎 第 3 図 /2 第4図 第 5 固 (久) :VJ  乙 図 1θ 第7図
FIG. 1 is an explanatory diagram of the types of errors between the camera and the robot axis, FIG. 2 is an illustration of a mark for tilt adjustment, and FIG. 3 is an explanatory diagram of a camera image for measuring the amount of tilt. Figure 4 is an explanatory diagram for determining the inclination, Figure 5 is a coordinate system and coordinate system diagram for measuring the mounting position, Figure 6 is an explanatory diagram of the camera image, and Figure 7 is an explanatory diagram for error calculation.
FIG. 8 is an explanatory diagram of the imaging state. 1...Camera, 2...Camera focal axis, 3...Robot axis, 4...Camera mounting position, 9...Camera coordinate system. 15...Robot coordinate system, 16...Camera attachment point. 17... Projection diagram of camera coordinate system, 18... Reference coordinate diagram. 20... Image of reference coordinate origin, 21... Lens, 2
2-), ] ′ Kuzu 1 Figure 1 Camera 277 Mera's voice, page axis 3 0 Bots car reason + η Mera capture? rlj wilting Fig. 3/2 Fig. 4 Fig. 5 Hard: VJ Otsu Fig. 1θ Fig. 7

Claims (1)

【特許請求の範囲】[Claims] 1、ロボットとその軸に取り付けられたTVカメラより
成る装置において、そのTVカメラに規準マークを見せ
、ロボットの軸に沿って動かし再度マークを見ることを
繰り返すことにより、カメラをその軸に対して平行取り
つけを可能とすることを特徴とするロボットへのカメラ
取り付け方式。
1. In a device consisting of a robot and a TV camera attached to its axis, by showing the reference mark to the TV camera, moving it along the axis of the robot and looking at the mark again, you can move the camera to that axis. A method for attaching cameras to robots, which is characterized by enabling parallel attachment.
JP62257153A 1987-10-14 1987-10-14 Camera fitting system to robot Pending JPH01103292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62257153A JPH01103292A (en) 1987-10-14 1987-10-14 Camera fitting system to robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62257153A JPH01103292A (en) 1987-10-14 1987-10-14 Camera fitting system to robot

Publications (1)

Publication Number Publication Date
JPH01103292A true JPH01103292A (en) 1989-04-20

Family

ID=17302449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62257153A Pending JPH01103292A (en) 1987-10-14 1987-10-14 Camera fitting system to robot

Country Status (1)

Country Link
JP (1) JPH01103292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000167A1 (en) * 1990-06-29 1992-01-09 Fanuc Ltd Method of detecting shift in camera position
JPH04365586A (en) * 1991-06-14 1992-12-17 Toyota Autom Loom Works Ltd Optical axis aligning method and orthogonal axis aligning method for hand eye

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992000167A1 (en) * 1990-06-29 1992-01-09 Fanuc Ltd Method of detecting shift in camera position
US5274360A (en) * 1990-06-29 1993-12-28 Fanuc Ltd. Method of detecting positional dislocation of camera
JPH04365586A (en) * 1991-06-14 1992-12-17 Toyota Autom Loom Works Ltd Optical axis aligning method and orthogonal axis aligning method for hand eye

Similar Documents

Publication Publication Date Title
US8452568B2 (en) Method for calibrating cameras installed on vehicle
US5444481A (en) Method of calibrating a CCD camera
JP2006148745A (en) Camera calibration method and apparatus
CN111896221B (en) Alignment method of rotating optical measurement system for virtual coordinate system auxiliary camera calibration
JP2008010504A (en) Device and method of alignment
WO2014181581A1 (en) Calibration device, calibration system, and imaging device
JPH0140492B2 (en)
CN112132891A (en) Method for enlarging calibration space
JP2890874B2 (en) Robot arm relative posture correction method
CN111652945A (en) Camera calibration method
JPH01103292A (en) Camera fitting system to robot
CN113781579B (en) Geometric calibration method for panoramic infrared camera
TWI424259B (en) Camera calibration method
JP2000199704A (en) Calibration method for image processor
JP2001124700A (en) Calibration method of inspection machine with line sensor camera
JPH09329440A (en) Coordinating method for measuring points on plural images
Nian et al. An auto-alignment vision system with three-axis motion control mechanism
JPS63300843A (en) Coordinate correction for visual recognition device
JP2000258121A (en) Master substrate for calibrating a plurality of cameras and calibration method for image recognition camera
JPH01116401A (en) Parallax correction system for visual sensor
JPH0724360B2 (en) Position correction method for parts
CN111340892A (en) Method for correcting platform calculation error through double-camera single-point mapping
JP2839009B2 (en) Automatic calibration method for positioning camera
JP2913370B2 (en) Optical position measurement method
JP3095411B2 (en) Calibration method of CCD camera