JP2000199704A - Calibration method for image processor - Google Patents

Calibration method for image processor

Info

Publication number
JP2000199704A
JP2000199704A JP95399A JP95399A JP2000199704A JP 2000199704 A JP2000199704 A JP 2000199704A JP 95399 A JP95399 A JP 95399A JP 95399 A JP95399 A JP 95399A JP 2000199704 A JP2000199704 A JP 2000199704A
Authority
JP
Japan
Prior art keywords
work
calibration mark
camera
point
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP95399A
Other languages
Japanese (ja)
Other versions
JP4061519B2 (en
Inventor
Hideharu Shimokawa
秀春 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP00095399A priority Critical patent/JP4061519B2/en
Publication of JP2000199704A publication Critical patent/JP2000199704A/en
Application granted granted Critical
Publication of JP4061519B2 publication Critical patent/JP4061519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Input (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain with high accuracy the calibration of an image processor and a moving table, when an error at the time of calculating the position of the center of rotation is made large due to the impossibility of the increase of the angle of rotation of a θ axis of the moving table. SOLUTION: The specific pattern of a calibration mark or work 10 at a first point is recognized from the photographed image of the calibration mark or work 10 placed on an XYθ table 14, and the position (x1, y1) is measured, and the θ table is rotated so that the calibration mark or work 10 can be deviated from the range of the field of sight of a camera 11. Then, the X or Y table is moved within the field of view of the camera, and the specific pattern of the calibration mark or work 10 at the second point is recognized, and the position (x2, y2) is measured, and the position of the center of rotation of the θtable is calculated, based on position information (tx1, ty1, tθ1) of the XYθ table at the first point and position information (tx2, ty2, tθ2) of the XYθtable at the second point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ワークの位置を認
識する画像処理装置と、ワークの位置を移動させるため
の移動テーブル(XYθテーブル)の位置関係を較正
(キャリブレーション)する方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to an image processing apparatus for recognizing the position of a work, and a method for calibrating the positional relationship between a moving table (XYθ table) for moving the position of the work.

【0002】[0002]

【従来の技術】画像処理装置を使用した自動化機器で
は、自動化機器の作業対象となるワークを移動させるた
めの移動テーブルと、ワークを撮影するカメラとの位置
関係をキャリブレーションする必要がある。移動テーブ
ルは、一般的にX軸,Y軸およびこれらの上にありワー
クを回転させるためのθ軸とから構成される。画像処理
装置の基本分解能である画素サイズのキャリブレーショ
ンについては、移動テーブルのX軸またはY軸のいずれ
か1軸のみを用い、画像処理装置で認識可能なキャリブ
レーション用マークまたはワークを、カメラの視野内の
任意な2点を移動させ、画像処理装置でキャリブレーシ
ョン用マークまたはワークを認識し、その位置データと
実ステージの軸(X軸またはY軸)の移動距離より演算
で求めている。また、θ軸を持った移動テーブルで画像
処理装置で計測したワークの位置データをもとに回転補
正を行うには、θ軸の回転中心位置を求める必要があ
る。 従来は、画像処理装置で認識可能なキャリブレー
ション用マークまたはワークを、カメラ視野内で任意の
2点をθ軸を回転させ画像処理装置でその位置を計測
し、移動前の認識位置データと移動後の認識位置データ
をもとに、θ軸の移動量より回転中心位置を求める手法
がとられている。図8はXYθテーブル14を上面より
見た図を示すもので、キャリブレーションマークまたは
実ワーク71をカメラ視野内で、θテーブルを回転させ
た従来のキャリブレーション方法を示す。
2. Description of the Related Art In an automation device using an image processing apparatus, it is necessary to calibrate a positional relationship between a moving table for moving a work to be worked by the automation device and a camera for photographing the work. The moving table generally includes an X axis, a Y axis, and a θ axis on the X axis and the Y axis for rotating the work. For the calibration of the pixel size, which is the basic resolution of the image processing apparatus, only one of the X-axis and the Y-axis of the moving table is used, and a calibration mark or a work recognizable by the image processing apparatus is moved to the camera. Any two points in the field of view are moved, the calibration mark or the work is recognized by the image processing apparatus, and the position is calculated from the position data and the moving distance of the axis (X axis or Y axis) of the actual stage. Further, in order to perform the rotation correction based on the position data of the work measured by the image processing apparatus using the moving table having the θ axis, it is necessary to find the rotation center position of the θ axis. Conventionally, calibration marks or workpieces recognizable by the image processing device are rotated by rotating the θ axis at any two points in the camera's field of view, and the positions are measured by the image processing device. A method of obtaining the rotation center position from the movement amount of the θ-axis based on the later recognized position data has been adopted. FIG. 8 is a view of the XYθ table 14 as viewed from above, and shows a conventional calibration method in which the θ table is rotated with the calibration mark or the actual work 71 in the field of view of the camera.

【0003】[0003]

【発明が解決しようとする課題】微細な位置決め精度を
要求される自動化機器が増加しており、カメラの倍率が
高くなり視野は狭くなる方向にある。その狭い視野内の
2点を移動(回転)させて、画像処理装置で位置を求め
るには、移動テーブルのθ軸の回転角度を大きくできな
いため回転中心位置を演算で求める誤差が大きくなると
いう欠点がある。本発明は、このような問題点を改善
し、高精度に画像処理装置と移動テーブルのキャリブレ
ーションを行うことを目的とする。
As the number of automated devices requiring fine positioning accuracy is increasing, the magnification of a camera is increasing and the field of view is becoming narrower. In order to move (rotate) two points in the narrow field of view and obtain the position by the image processing apparatus, the rotation angle of the θ axis of the moving table cannot be increased, so that an error in calculating the rotation center position by calculation becomes large. There is. It is an object of the present invention to improve such a problem and to calibrate an image processing apparatus and a moving table with high accuracy.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明は、ワークの位置を認識する画像処理装置に
おいて、XYθテーブル上に置かれたキャリブレーショ
ンマークまたはワークを撮影し、撮影された画像から第
1点目のキャリブレーションマークまたはワークの特定
のパターンを認識してその位置(x1,y1)を計測
し、カメラの視野の範囲から前記キャリブレーションマ
ークまたはワークがはみ出す程度にθテーブルを回転さ
せ、その後XテーブルまたはYテーブルを前記カメラ視
野内に移動させ、第2点目のキャリブレーション用マー
クまたはワークの特定のパターンを認識してその位置
(x2、y2)を計測し、前記第1点目のXYθテーブ
ルの位置情報(tx1,ty1,tθ1)と、前記第2
点目のXYθテーブルの位置情報(tx2,ty2,t
θ2)をもとに前記θテーブル回転中心位置を求めるよ
うにしたことを特徴とする。
In order to achieve this object, the present invention relates to an image processing apparatus for recognizing a position of a work, wherein a calibration mark or a work placed on an XYθ table is photographed and photographed. The first point of the calibration mark or the specific pattern of the work is recognized from the image, the position (x1, y1) is measured, and the θ table is set so that the calibration mark or the work protrudes from the range of the field of view of the camera. Then, the X table or the Y table is moved into the field of view of the camera, the second calibration mark or the specific pattern of the work is recognized, and the position (x2, y2) is measured. The position information (tx1, ty1, tθ1) of the XYθ table of the first point and the second
The position information (tx2, ty2, t
The rotation center position of the θ table is obtained based on θ2).

【0005】[0005]

【発明の実施の形態】以下、図面を参照して本発明の一
実施例を詳細に説明する。図1は本発明を実施するため
の一構成例を示すもので、11はテレビカメラ、12は
照明、13は画像処理装置、14はXYθテーブル、1
5はマシンコントローラである。XYθテーブル14上
にはキャリブレーション用マークまたは実ワークがあ
り、Xテーブル、Yテーブル、θテーブルを備えてい
る。画像処理装置13はテレビカメラ11からの信号を
処理し、マシンコントローラ15に出力する。マシンコ
ントローラ15はXYθテーブル14の駆動制御をす
る。なお、XYθテーブル14上のキャリブレーション
用マークまたは実ワークを画像処理装置13が認識しや
すいように、照明12がある。図2はXYθテーブル1
4を上面より見た図を示すものであり、テーブル上に第
1点目のキャリブレーションマークまたは実ワーク21
が配置されている。図3はXYθテーブル14を上面よ
り見た図を示すものであり、XYθテーブルのθテーブ
ルをカメラ視野からはみ出す程度に大きく回転させた後
のキャリブレーションマークまたは実ワーク31を示
す。図4はXYθテーブル14を上面より見た図を示す
もので、θテーブルを回転させたためにカメラ視野から
はみ出したものを、XテーブルまたはYテーブルを移動
させて、カメラ視野内に移動させた第2点目のキャリブ
レーションマークまたは実ワーク41を示す。図5は本
発明によるカメラ視野を従来技術と比較した図である。
回転位置の求め方は、2等辺三角形にたとえれば、底辺
の長さ(W)と2等辺の向かい合う角度(θ)を基に2
等辺三角形の高さ(H)を求めることと等しく、底辺の
誤差(εw)および角度の誤差(εθ)が同一とすると
従来技術と本発明による違いは明らかである。図から明
らかなように、従来技術では H = (W1 / 2 ±εw) / tan(θ1 / 2 ±εθ) 本発明では H = (W2 / 2 ±εw) / tan(θ2 / 2 ±εθ) ただし、W1< W2 , θ1 <θ2 したがって、W、θの大きいほうがHのばらつきが小さく
なり、回転中心位置が精度よく求められる。図6は図4
での画像処理装置の座標系を示すものである。また、図
7は画像処理装置の座標系をXYθテーブル座標系に変
換した図である。図6において、dx = tx2 - tx1、dy =
ty2 - ty1であり、T1を認識した時のXYθテーブル
の位置とT2を認識した時のXYθテーブルの位置の差
分すなわちテーブルの移動量を示す。θ軸回転中心の求
め方について以下に説明する。 1)画像処理装置で認識した2点T1(tx1,ty
1),T2(tx2,ty2)を画像処理座標系からXY
θテーブル座標系T1’(tx1’,ty1’),T2’
(tx2’,ty2’)に変換する。 T1’は tx1' = (tx1 - Tox) * cosθ + (ty1 - Toy) * sinθ ty1' = (ty1 - Toy) * cosθ - (tx1 - Tox) * sinθ T2’は tx2' = (tx2 - Tox) * cosθ + (ty2 - Toy) * sinθ ty2' = (ty2 - Toy) * cosθ - (tx2 - Tox) * sinθ 2)XYθテーブル移動量より、T2’の移動後の実座
標T2''をT2’を基準に求める。 Tx2'' = tx2'+ dx Ty2'' = ty2'+ dy 3)XYθテーブル座標系の2点(T1',T2'')の
回転中心を求める。第1点目から第2点目までのθテー
ブルの回転角βは β = Tθ2 - Tθ1 (tx2'' - xθ) = (tx1' - xθ) * cosβ - (ty1' - y
θ) * sinβ (ty2'' - yθ) = (ty1' - yθ) * cosβ + (tx1' - x
θ) * sinβ 回転中心位置 xθ = (tx2'' + tx1') / 2 - (ty2'' - ty1') / (2 * t
an(β/2)) yθ = (ty2'' + ty1') / 2 + (tx2'' - tx1') / (2 * t
an(β/2)) として求められる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an example of a configuration for implementing the present invention, in which 11 is a television camera, 12 is illumination, 13 is an image processing device, 14 is an XYθ table,
5 is a machine controller. Table 14 has a calibration mark or an actual work on the XYθ table 14, and includes an X table, a Y table, and a θ table. The image processing device 13 processes a signal from the television camera 11 and outputs the signal to the machine controller 15. The machine controller 15 controls the driving of the XYθ table 14. The illumination 12 is provided so that the image processing apparatus 13 can easily recognize the calibration mark or the actual work on the XYθ table 14. Figure 2 shows the XYθ table 1
4 is a top view of the first calibration mark or the actual work 21 on the table.
Is arranged. FIG. 3 is a view of the XYθ table 14 as viewed from above, and shows the calibration mark or the actual work 31 after the θ table of the XYθ table has been rotated so large that it protrudes from the camera field of view. FIG. 4 is a view of the XYθ table 14 as viewed from above, and the XYθ table 14 is moved out of the camera field of view due to the rotation of the θ table. The second calibration mark or the actual work 41 is shown. FIG. 5 is a diagram comparing the camera field of view according to the present invention with the prior art.
The rotational position can be obtained by calculating the isosceles triangle based on the length (W) of the base and the angle (θ) at which the isosceles faces.
The difference between the prior art and the present invention is clear when the height error (εw) and the angle error (εθ) are the same as when the height (H) of the equilateral triangle is determined. As is clear from the figure, H = (W1 / 2 ± εw) / tan (θ1 / 2 ± εθ) in the prior art H = (W2 ± εw) / tan (θ2 / 2 ± εθ) , W1 <W2, θ1 <θ2 Therefore, the larger W and θ, the smaller the variation of H, and the rotation center position can be obtained with high accuracy. FIG. 6 shows FIG.
5 shows the coordinate system of the image processing apparatus. FIG. 7 is a diagram in which the coordinate system of the image processing apparatus is converted into an XYθ table coordinate system. In FIG. 6, dx = tx2−tx1, dy =
ty2-ty1, which indicates the difference between the position of the XYθ table when T1 is recognized and the position of the XYθ table when T2 is recognized, that is, the amount of movement of the table. A method for obtaining the θ-axis rotation center will be described below. 1) Two points T1 (tx1, ty) recognized by the image processing device
1), T2 (tx2, ty2) is converted from the image processing coordinate system into XY
θ table coordinate system T1 ′ (tx1 ′, ty1 ′), T2 ′
(tx2 ', ty2'). T1 'is tx1' = (tx1-Tox) * cosθ + (ty1-Toy) * sinθ ty1 '= (ty1-Toy) * cosθ-(tx1-Tox) * sinθ T2' is tx2 '= (tx2-Tox) * cosθ + (ty2-Toy) * sinθ ty2 '= (ty2-Toy) * cosθ-(tx2-Tox) * sinθ 2) From the XYθ table movement amount, the actual coordinate T2''after the movement of T2' is T2 ' Is determined based on Tx2 ″ = tx2 ′ + dx Ty2 ″ = ty2 ′ + dy 3) Obtain the rotation center of two points (T1 ′, T2 ″) in the XYθ table coordinate system. The rotation angle β of the θ table from the first point to the second point is β = Tθ2-Tθ1 (tx2 ''-xθ) = (tx1 '-xθ) * cosβ-(ty1'-y
θ) * sinβ (ty2 ''-yθ) = (ty1 '-yθ) * cosβ + (tx1'-x
θ) * sinβ Rotation center position xθ = (tx2 '' + tx1 ') / 2-(ty2''-ty1') / (2 * t
an (β / 2)) yθ = (ty2 '' + ty1 ') / 2 + (tx2''-tx1') / (2 * t
an (β / 2)).

【0006】[0006]

【発明の効果】以上に説明したように、本発明のキャリ
ブレーション方法はカメラ視野に制限されることなく、
広範囲にθテーブルを回転させ、精度良く位置補正を行
うためのθテーブルの回転中心位置を求めることができ
るという効果がある。
As described above, the calibration method of the present invention is not limited to the camera field of view,
There is an effect that the θ table can be rotated over a wide range and the rotation center position of the θ table for performing position correction with high accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の構成図FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】 XYθテーブルを上面から見たもので第1点
目のキャリブレーションマークを示す図
FIG. 2 is a diagram showing a first calibration mark when the XYθ table is viewed from above.

【図3】 XYθテーブルを上面から見たものでθテー
ブルを回転させたキャリブレーションマークを示す図
FIG. 3 is a view showing a calibration mark obtained by rotating the θ table when the XYθ table is viewed from above.

【図4】 図3で示したキャリブレーションマークをX
テーブルまたはYテーブルをカメラ視野内に移動させた
第2点目のキャリブレーションマークを示す図
FIG. 4 shows the calibration mark shown in FIG.
The figure which shows the calibration mark of the 2nd point which moved the table or the Y table into the camera visual field.

【図5】 本発明によるカメラ視野を従来技術と比較し
た図である。
FIG. 5 is a diagram comparing the camera field of view according to the present invention with the prior art.

【図6】 図4で示すキャリブレーションマークの画像
処理装置座標系を説明する図
FIG. 6 is a view for explaining an image processing apparatus coordinate system of the calibration mark shown in FIG. 4;

【図7】 XYθテーブル座標系に変換した図FIG. 7 is a diagram converted into an XYθ table coordinate system.

【図8】 従来の技術を説明したものでカメラ視野内で
第1点目から第2点目へ回転させたキャリブレーション
マークを示す図
FIG. 8 is a diagram illustrating a conventional technique, and is a diagram illustrating a calibration mark rotated from a first point to a second point in a camera field of view.

【符号の説明】[Explanation of symbols]

11 テレビカメラ 12 照明 13 画像処理装置 14 XYθテーブル 15 マシンコントローラ 11 TV Camera 12 Lighting 13 Image Processing Device 14 XYθ Table 15 Machine Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ワークの位置を認識する画像処理装置に
おいて、XYθテーブル上に置かれたキャリブレーショ
ンマークまたはワークを撮影し、撮影された画像から第
1点目のキャリブレーションマークまたはワークの特定
のパターンを認識してその位置(x1,y1)を計測
し、カメラの視野の範囲から前記キャリブレーションマ
ークまたはワークがはみ出す程度にθテーブルを回転さ
せ、その後XテーブルまたはYテーブルを前記カメラ視
野内に移動させ、第2点目のキャリブレーションマーク
またはワークの特定のパターンを認識してその位置(x
2、y2)を計測し、前記第1点目のXYθテーブルの
位置情報(tx1,ty1,tθ1)と、前記第2点目
のXYθテーブルの位置情報(tx2,ty2,tθ
2)をもとに前記θテーブル回転中心位置を求めるよう
にしたことを特徴とする画像処理装置のキャリブレーシ
ョン方法。
In an image processing apparatus for recognizing a position of a work, a calibration mark or a work placed on an XYθ table is photographed, and a first calibration mark or a specific work of the work is specified from the photographed image. The pattern is recognized, its position (x1, y1) is measured, the θ table is rotated to the extent that the calibration mark or the work protrudes from the range of the field of view of the camera, and then the X table or the Y table is placed in the field of view of the camera. Move to recognize the second calibration mark or the specific pattern of the work, and recognize the position (x
2, y2), and the position information (tx1, ty1, tθ1) of the XYθ table at the first point and the position information (tx2, ty2, tθ) of the XYθ table at the second point.
A calibration method for an image processing apparatus, wherein the θ table rotation center position is obtained based on 2).
JP00095399A 1999-01-06 1999-01-06 Calibration method for image processing apparatus Expired - Fee Related JP4061519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00095399A JP4061519B2 (en) 1999-01-06 1999-01-06 Calibration method for image processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00095399A JP4061519B2 (en) 1999-01-06 1999-01-06 Calibration method for image processing apparatus

Publications (2)

Publication Number Publication Date
JP2000199704A true JP2000199704A (en) 2000-07-18
JP4061519B2 JP4061519B2 (en) 2008-03-19

Family

ID=11488050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00095399A Expired - Fee Related JP4061519B2 (en) 1999-01-06 1999-01-06 Calibration method for image processing apparatus

Country Status (1)

Country Link
JP (1) JP4061519B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606233B1 (en) * 2001-08-15 2006-07-28 유에이치티 가부시키가이샤 Working table for punch unit and the punch unit
JP2007064698A (en) * 2005-08-30 2007-03-15 Yaskawa Electric Corp Image processing system and calibration method for image processing system
JP2011117914A (en) * 2009-12-07 2011-06-16 Cognex Corp Object control system, object control method, program, and rotation center position specification device
JP2013096863A (en) * 2011-11-01 2013-05-20 Shimadzu Corp Calibration method and substrate inspection device
CN106352795A (en) * 2016-10-26 2017-01-25 哈尔滨工业大学 Vision measuring device and method for flexible manufacturing
CN110857924A (en) * 2018-08-22 2020-03-03 皓琪科技股份有限公司 System for assisting array typesetting circuit board identification and recording defect position
CN111721781A (en) * 2020-06-30 2020-09-29 深圳中科飞测科技有限公司 Detection equipment and detection method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606233B1 (en) * 2001-08-15 2006-07-28 유에이치티 가부시키가이샤 Working table for punch unit and the punch unit
JP2007064698A (en) * 2005-08-30 2007-03-15 Yaskawa Electric Corp Image processing system and calibration method for image processing system
JP2011117914A (en) * 2009-12-07 2011-06-16 Cognex Corp Object control system, object control method, program, and rotation center position specification device
JP2013096863A (en) * 2011-11-01 2013-05-20 Shimadzu Corp Calibration method and substrate inspection device
CN106352795A (en) * 2016-10-26 2017-01-25 哈尔滨工业大学 Vision measuring device and method for flexible manufacturing
CN106352795B (en) * 2016-10-26 2019-02-19 哈尔滨工业大学 Vision measurement device and method for flexible manufacturing
CN110857924A (en) * 2018-08-22 2020-03-03 皓琪科技股份有限公司 System for assisting array typesetting circuit board identification and recording defect position
CN111721781A (en) * 2020-06-30 2020-09-29 深圳中科飞测科技有限公司 Detection equipment and detection method thereof

Also Published As

Publication number Publication date
JP4061519B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4446609B2 (en) Image processing method and apparatus
JPH05109873A (en) Aligning method for semiconductor chip and target for laser repair
JP2008010504A (en) Device and method of alignment
JP6787612B2 (en) Devices and methods for positioning the first object with respect to the second object
CN108326848A (en) Robot
JP2000199704A (en) Calibration method for image processor
JP4405009B2 (en) Calibration method of inspection machine with line sensor camera
JP2005116765A (en) Method, device, and program for discriminating bonding pattern
KR20120077884A (en) Automatic teaching method of wafer trasfer robot
JP2007064698A (en) Image processing system and calibration method for image processing system
Nian et al. An auto-alignment vision system with three-axis motion control mechanism
JPH11317439A (en) Positioning device
JPS63109307A (en) Apparatus for inspecting mounting of chip part
JPH04361104A (en) Detecting system of position of substrate mark
JP3679460B2 (en) Mobile device and control method thereof
JPH01103292A (en) Camera fitting system to robot
JP3419870B2 (en) Calibration method of optical system for recognition of visual recognition device and visual recognition device using the method
JPH08181062A (en) Positioning device and positioning method
JPH05313380A (en) Aligning device
JP2001230596A (en) Method and apparatus for mounting electronic component
JP3180432B2 (en) Adjustment method of CCD camera reference position in IC tester equipped with CCD camera
JPH05226460A (en) Semiconductor chip position detecting device by processing image
CN116594271A (en) Mark aligning method and aligning device compatible with contour alignment
JP2000223896A (en) Method and device for mounting electronic part
KR101361664B1 (en) Facility for treating substrates and automatic teaching method of wafer trasfer robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150111

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees