JP3095411B2 - Calibration method of CCD camera - Google Patents

Calibration method of CCD camera

Info

Publication number
JP3095411B2
JP3095411B2 JP02335749A JP33574990A JP3095411B2 JP 3095411 B2 JP3095411 B2 JP 3095411B2 JP 02335749 A JP02335749 A JP 02335749A JP 33574990 A JP33574990 A JP 33574990A JP 3095411 B2 JP3095411 B2 JP 3095411B2
Authority
JP
Japan
Prior art keywords
ccd camera
light source
light
solid
sight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02335749A
Other languages
Japanese (ja)
Other versions
JPH04200196A (en
Inventor
正歳 大島
良英 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Original Assignee
Sanyo Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd filed Critical Sanyo Machine Works Ltd
Priority to JP02335749A priority Critical patent/JP3095411B2/en
Publication of JPH04200196A publication Critical patent/JPH04200196A/en
Application granted granted Critical
Publication of JP3095411B2 publication Critical patent/JP3095411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高解像度のCCDカメラの固体センサやレン
ズ系の歪みなどを校正するCCDカメラの校正方法に関す
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CCD camera calibration method for calibrating distortion of a solid-state sensor or a lens system of a high-resolution CCD camera.

[従来の技術] 近年、CCDカメラは、固体センサの画素数の増大によ
る高解像度化によって、自動車などの生産工程における
加工、組立、検査等の各工程で対象物を撮像するイメー
ジセンサとしての用途が拡大されている。このCCDカメ
ラで撮像された画像情報は、画像処理プロセッサを介し
てコンピュータで処理され、対象物の外観の測定、検査
などが行なわれる。
[Prior art] In recent years, CCD cameras have been used as image sensors that capture images of objects in various processes such as processing, assembly, and inspection in the production process of automobiles, etc. due to the increase in the number of pixels of solid-state sensors and the increase in resolution. Has been expanded. Image information captured by the CCD camera is processed by a computer via an image processing processor, and measurement and inspection of the appearance of the object are performed.

CCDカメラの1画素は数ミクロン程度の大きさで、そ
の画素数が1000×1000程度のCCDカメラにおいては、あ
る条件下で、対象物の外観をミクロン単位で測定し得る
ことが知られている。このような高解像度のCCDカメラ
においては、多数の画素が格子状に並び固体センサにお
ける画素の配列や、固体センサに対象物からの光を投射
するレンズ系に、ミクロン単位の微妙な歪みがあると、
或いはその固体センサとレンズ系の組立てに微妙なずれ
があると、その歪みやずれに対応する部所での画像に歪
みが生じ、測定値に無視できない誤差が生じることがあ
る。
It is known that one pixel of a CCD camera has a size of about several microns, and a CCD camera having a number of pixels of about 1000 × 1000 can measure the appearance of an object in a micron under a certain condition. . In such a high-resolution CCD camera, there are subtle distortions on the order of microns in the arrangement of pixels in the solid-state sensor and the lens system that projects light from an object onto the solid-state sensor, in which a large number of pixels are arranged in a grid. When,
Alternatively, if there is a slight deviation between the assembly of the solid-state sensor and the lens system, the distortion or an image at a portion corresponding to the deviation may cause a non-negligible error in the measured value.

例えば、第4図に示すように、CCDカメラ(1)が精
度的に正常であって、そのレンズ系(4)の光軸aに対
する角度αの視線b上の点Pからの光が、固体センサ
(2)の1画素3mに入射したとする。他方、仮にレンズ
系(4)に歪みがあって、点Pからの光が固体センサ
(2)の前記画素3mの隣の1画素3nに入射したとする。
すると、レンズ系(4)に歪みがある場合、CCDカメラ
(1)は画素3nとレンズ系(4)の主点Qを結ぶ図中鎖
線で示す視線cの方向に点Pがあると誤って認知する。
これは光軸aに対する視線bと視線cの角度α、α′が
異なるためであり、点Pまでの距離が大きくなるほど、
点Pの三次元座標の測定値などの精度が悪くなる。
For example, as shown in FIG. 4, when the CCD camera (1) is normally accurate, light from a point P on the line of sight b at an angle α with respect to the optical axis a of the lens system (4) is solid. It is assumed that one pixel 3m of the sensor (2) is incident. On the other hand, suppose that the lens system (4) is distorted and light from the point P is incident on one pixel 3n adjacent to the pixel 3m of the solid-state sensor (2).
Then, if the lens system (4) is distorted, the CCD camera (1) erroneously determines that there is a point P in the direction of the line of sight c indicated by the dashed line in the figure connecting the pixel 3n and the principal point Q of the lens system (4). Acknowledge.
This is because the angles α and α ′ of the line of sight b and the line of sight c with respect to the optical axis a are different, and as the distance to the point P increases,
The accuracy of the measured values of the three-dimensional coordinates of the point P is deteriorated.

従って、高精度が要求されるCCDカメラにおいては、
事前に上記歪みなどによる測定値を補正するための校正
を行なう必要性があり、例えば、第5図に示すように、
CCDカメラ(1)を上下左右に回転させる校正方法が開
発されている。
Therefore, in a CCD camera that requires high accuracy,
It is necessary to perform a calibration for correcting the measurement value due to the distortion or the like in advance. For example, as shown in FIG.
A calibration method for rotating the CCD camera (1) up, down, left, and right has been developed.

第5図は、CCDカメラ(1)を上下左右に回転する揺
動台(10)上に固定し、揺動台(10)でCCDカメラ
(1)をレンズ系(4)の主点Qを中心に上下と左右に
回転させるものである。揺動台(10)はロータリーエン
コーダ(図示せず)で、上下左右の回転角が測定されて
回転する。CCDカメラ(1)の前方定位置に光源(11)
を配置しておいて、まず光源(11)からの光がCCDカメ
ラ(1)の固体センサ(2)の中心の画素3sに入射する
ように、CCDカメラ(1)を回転させる。このとき、CCD
カメラ(1)の光軸a上に光源(11)が位置して、光軸
aの方向が設定される。次に、例えばCCDカメラ(1)
を、第5図の鎖線に示すように、主点Qを中心に上方に
角度αだけ回転させる。すると、CCDカメラ(1)が第
4図と同等のもので、精度的に正常な場合、固体センサ
(2)の1画素3mに光源(11)からの光が入射し、また
仮にレンズ系(4)に歪みがある場合には、光源(11)
からの光は別の1画素3nに入射する。従って、画素3m、
3nのいずれに光が入射しても、その光は光軸aに対して
所定の角度αで入射した光であると補正処理するように
すれば、レンズ系(4)の歪みに伴う測定値が補正され
る。以上のような校正作業が、CCDカメラ(1)を光軸
aに対して上下左右に、段階的に角度を変えて回転させ
て、繰返し行なわれる。校正が完了したCCDカメラは、
対象物の外観測定などに使用され、校正データに基づい
て対象物の外観測定などを高精度に行なう。
FIG. 5 shows a case where the CCD camera (1) is fixed on a swing table (10) that rotates vertically and horizontally, and the CCD camera (1) is moved by the swing table (10) to the principal point Q of the lens system (4). It is to rotate up and down and left and right around the center. The swing table (10) is rotated by a rotary encoder (not shown) whose top, bottom, left and right rotation angles are measured. Light source (11) at fixed position in front of CCD camera (1)
The CCD camera (1) is first rotated so that light from the light source (11) is incident on the pixel 3s at the center of the solid-state sensor (2) of the CCD camera (1). At this time, the CCD
The light source (11) is located on the optical axis a of the camera (1), and the direction of the optical axis a is set. Next, for example, a CCD camera (1)
Is rotated upward by an angle α about the principal point Q as shown by the chain line in FIG. Then, if the CCD camera (1) is equivalent to that shown in FIG. 4 and the accuracy is normal, light from the light source (11) is incident on one pixel 3m of the solid-state sensor (2). If there is distortion in 4), the light source (11)
Is incident on another pixel 3n. Therefore, pixel 3m,
Regardless of the light incident on any of 3n, if the light is corrected to be light incident at a predetermined angle α with respect to the optical axis a, the measured value accompanying the distortion of the lens system (4) can be obtained. Is corrected. The above calibration work is repeatedly performed by rotating the CCD camera (1) up, down, left, and right with respect to the optical axis a while changing the angle in a stepwise manner. After the calibration is completed, the CCD camera
It is used for measuring the appearance of an object, and performs the measurement of the appearance of the object with high accuracy based on calibration data.

[発明が解決しようとする課題] 上記のように、CCDカメラを回転させて校正を行なう
方法は、CCDカメラの三次元での回転角をロータリーエ
ンコーダでもって正確に出すことが容易であるがCCDカ
メラをそのレンズ系の主点を中心に回転させることが非
常に困難である。つまりレンズ系は様々なレンズを組合
わせた物で、その主点は光学上の仮想点であり、正確に
止めることができない。またこのような主点を中心にCC
Dカメラを正確に回転させ得ても、光軸に対する光の入
射角と固体センサの画素の対応関係が、ミクロン単位で
見れば正確でなく、高精度な校正は困難であった。さら
に、CCDカメラの校正精度は、CCDカメラの回転を秒、或
いはそれ以下の微小単位の角度で行なうほど高くできる
が、このような微小単位の回転を正確に行なうことは技
術的に困難であり、これも高精度な校正ができない要因
になっていた。
[Problem to be Solved by the Invention] As described above, the method of performing calibration by rotating the CCD camera is easy to accurately obtain the three-dimensional rotation angle of the CCD camera with the rotary encoder, but the CCD is easy. It is very difficult to rotate the camera about the principal point of the lens system. That is, the lens system is a combination of various lenses, and the principal point is a virtual optical point, and cannot be stopped accurately. In addition, CC
Even if the D-camera can be rotated accurately, the correspondence between the incident angle of light with respect to the optical axis and the pixels of the solid-state sensor is not accurate when viewed in micron units, and high-precision calibration has been difficult. Furthermore, the calibration accuracy of the CCD camera can be increased as the rotation of the CCD camera is performed at a small unit angle of seconds or less, but it is technically difficult to accurately perform such a small unit rotation. This, too, was a factor that prevented highly accurate calibration.

本発明は、かかる従来技術の問題点に鑑みてなされた
もので、その目的とするところは、高解像度が要求され
るCCDカメラの固体センサなどの歪みなどを補正するた
めの校正を、技術的に簡単に、高精度に行ない得るCCD
カメラの校正方法を提供することにある。
The present invention has been made in view of the problems of the related art, and an object of the present invention is to perform technical calibration for correcting distortion or the like of a solid-state sensor of a CCD camera that requires high resolution. CCD that can be easily and accurately performed
An object of the present invention is to provide a camera calibration method.

[課題を解決するための手段] 本発明は上記目的を達成するため、固定されたCCDカ
メラの前方で、位置決め装置で支持された点状の光源
を、CCDカメラの固体センサの1画素に光源の中心の光
が入射するように、1視線上の離隔2点間で移動させる
工程を、CCDカメラの光軸を含む複数の視線上で行な
い、光源を移動させた複数の視線の各々の、CCDカメラ
の光軸に対する角度を位置決め装置の位置の情報から求
め、この求められた角度データに基づいて、CCDカメラ
への光の入射角と固体センサの画素の対応関係を校正す
るようにしたのである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a point light source supported by a positioning device in front of a fixed CCD camera, and a light source for one pixel of a solid-state sensor of the CCD camera. The step of moving between two points on one line of sight is performed on a plurality of lines of sight including the optical axis of the CCD camera so that the light of the center of Since the angle to the optical axis of the CCD camera is obtained from the position information of the positioning device, the correspondence between the incident angle of light to the CCD camera and the pixel of the solid-state sensor is calibrated based on the obtained angle data. is there.

[作用] CCDカメラの前方の光軸を含む1視線上での2点間の
光源の移動は、CCDカメラの固体センサの同一画素に光
が入射していることを確認して行なえば、難無く正確に
行える。1視線における光源の移動距離が長いほど、そ
の視線の光軸に対する角度が位置決め装置の位置の情報
から、より正確に、より微小な角度で求められる。この
ような光源が移動する視線の角度を求めて、光源の光が
入射する固体センサの画素の座標を求めれば、CCDカメ
ラに所定の角度で入射する光に対応する画素が設定さ
れ、CCDカメラの校正が高精度で行なわれる。
[Operation] The movement of the light source between two points on one line of sight including the optical axis in front of the CCD camera can be easily performed by confirming that light is incident on the same pixel of the solid-state sensor of the CCD camera. Can be done accurately. As the moving distance of the light source in one line of sight is longer, the angle of the line of sight with respect to the optical axis can be obtained more accurately and at a smaller angle from the information on the position of the positioning device. If the angle of the line of sight at which such a light source moves is determined and the coordinates of the pixel of the solid-state sensor on which the light of the light source is incident are determined, the pixel corresponding to the light incident on the CCD camera at a predetermined angle is set, and the CCD camera is set. Calibration is performed with high accuracy.

[実施例] 第1図は、本発明方法を実施する校正装置の概略を示
す図である。CCDカメラ(1)は固定台などの固定手段
(12)で固定され、その前方に点状の光源(5)を有す
る位置決め装置、本例では三次元測定機(6)が配置さ
れる。三次元測定機(6)は、光源(5)を可動アーム
(7)を介して三次元に移動可能に支持し、光源(5)
の三次元位置をミクロン単位で検出する。
Embodiment FIG. 1 is a view schematically showing a calibration apparatus for carrying out the method of the present invention. The CCD camera (1) is fixed by a fixing means (12) such as a fixing table, and a positioning device having a point-like light source (5) in front of the CCD camera (1), in this example, a coordinate measuring machine (6) is arranged. The coordinate measuring machine (6) supports the light source (5) via a movable arm (7) so as to be movable in three dimensions, and the light source (5)
Is detected in micron units.

上記校正装置によるCCDカメラ(1)の校正動作を説
明する。
The operation of calibrating the CCD camera (1) by the calibration device will be described.

まず、三次元測定機(6)で光源(5)をCCDカメラ
(1)の光軸a上の所望の一点Aに置く。。これは、CC
Dカメラ(1)の固体センサ(2)の中心の画素3sに、
第2図の中央の実線丸印に示されるように、光源(5)
の中心の光が入射することを確認することで実行され
る。次に、光源(5)を光軸aに沿って後退させ、点A
から十分に離れた点Bに位置させる。この後退は、固体
センサ(2)の中心の画素3sから光源(5)の光がずれ
ないように監視して行なえばよく、この場合、第2図の
破線丸印で示されるように、光軸aに相当する画素3sで
の入射光量は減少する。この時点で、光軸a上での光源
(5)の点Aと点Bの各座標を三次元測定機(6)で求
めれば、その座標からCCDカメラ(1)の光軸aの三次
元での方向が確定される。
First, the light source (5) is placed at a desired point A on the optical axis a of the CCD camera (1) by the coordinate measuring machine (6). . This is CC
In the pixel 3s at the center of the solid-state sensor (2) of the D camera (1),
As shown by the solid circle in the center of FIG. 2, the light source (5)
This is performed by confirming that the light at the center of is incident. Next, the light source (5) is retracted along the optical axis a, and the point A
At a point B sufficiently away from This retreat may be performed by monitoring so that the light of the light source (5) does not deviate from the pixel 3s at the center of the solid-state sensor (2). In this case, as shown by a broken circle in FIG. The amount of incident light at the pixel 3s corresponding to the axis a decreases. At this point, if the coordinates of the points A and B of the light source (5) on the optical axis a are obtained by the three-dimensional measuring machine (6), the three-dimensional coordinates of the optical axis a of the CCD camera (1) can be obtained from the coordinates. The direction at is determined.

次に、三次元測定機(6)で光源(5)を光軸aから
離れた所望の点Cに移動させ、このとき、光源(5)の
光は、第2図の下部に示される実線丸印の画素3rに入射
したとする。次に、光源(5)を、画素3rから入射光が
ずれないように監視して、点Cから所望の距離の点Dま
で後退させる。三次元測定機(6)で点Cと点Dの座標
を求めれば、その座標から点Cと点Dを結ぶ視線eの三
次元での角度が分かり、視線eの光軸aに対する角度β
が確定される。
Next, the light source (5) is moved to a desired point C away from the optical axis a by the coordinate measuring machine (6). At this time, the light of the light source (5) is changed to a solid line shown in the lower part of FIG. It is assumed that the light enters the pixel 3r indicated by a circle. Next, the light source (5) is monitored so that the incident light does not shift from the pixel 3r, and is retracted from the point C to a point D at a desired distance. When the coordinates of the point C and the point D are obtained by the three-dimensional measuring device (6), the three-dimensional angle of the line of sight e connecting the point C and the point D is obtained from the coordinates, and the angle β of the line of sight e with respect to the optical axis a is obtained.
Is determined.

なお、光源(5)を上記と逆に点Bから点Aへ前進、
さらに、点Dから点Cへと前進させるようにして、光軸
aと視線eの角度βを求めるようにしてもよい。
In addition, the light source (5) is advanced from the point B to the point A,
Further, the angle β between the optical axis a and the line of sight e may be obtained by moving forward from the point D to the point C.

以上のように光軸(5)を様々な方向に移動させて、
光軸aに対する様々な角度の視線に対応する固体センサ
(2)の画素の座標を求めて、校正が完了する。即ち、
例えば、CCDカメラ(1)のレンズ系(4)に歪みがあ
る場合で、上記視線eからの光が画素3rに入射する場
合、これを補正しなければCCDカメラ(1)は、第3図
の鎖線で示す視線fの方向から光が入射したと誤って認
知することになる。そこで画素3rに入射する光は、光源
aに対して角度βの視線eからのものであると、データ
処理にて校正すればよい。
By moving the optical axis (5) in various directions as described above,
The coordinates of the pixels of the solid-state sensor (2) corresponding to the lines of sight at various angles with respect to the optical axis a are obtained, and the calibration is completed. That is,
For example, when the lens system (4) of the CCD camera (1) is distorted and the light from the line of sight e is incident on the pixel 3r, if the light is not corrected, the CCD camera (1) will be replaced with the one shown in FIG. It is erroneously recognized that light has entered from the direction of the line of sight f indicated by the chain line. Thus, the light incident on the pixel 3r may be calibrated by data processing to be from the line of sight e at an angle β with respect to the light source a.

本例では、CCDカメラに関して説明したが、他の1次
元、2次元の光センサに応用できる事はいうまでもな
い。
In this example, a CCD camera has been described, but it goes without saying that the present invention can be applied to other one-dimensional and two-dimensional optical sensors.

[発明の効果] 本発明によれば、CCDカメラの前方で、三次元測定機
により駆動されて測定される光源の移動による視線の光
軸に対する角度は、1視線における光源の移動距離が長
いほど正確に、確実に、しかも、秒以下の微小な角度で
もって測定される。従って、固体センサの画素数が1000
×1000以上などの高解像度のCCDカメラであっても、こ
れの固体センサの歪みなどの校正が高精度で行なえるよ
うになる。
[Effects of the Invention] According to the present invention, the angle of the line of sight to the optical axis due to the movement of the light source measured and driven by the coordinate measuring machine in front of the CCD camera is such that the longer the movement distance of the light source in one line of sight, the longer the distance. It is measured accurately, reliably and with a small angle of less than a second. Therefore, the number of pixels of the solid-state sensor is 1000
Even a CCD camera with a high resolution of × 1000 or more can calibrate the distortion of the solid-state sensor with high accuracy.

また、CCDカメラを固定し、その前方で光源を三次元
測定機などの位置決め装置で三次元方向に移動させるだ
けでよいのでCCDカメラを高精度に回転させるような高
価で、特別な設備が必要でなく、既存の三次元測定機が
使用できるため設備的に有利なCCDカメラの校正が実行
できる。
In addition, since it is only necessary to fix the CCD camera and move the light source in the three-dimensional direction with a positioning device such as a coordinate measuring machine in front of it, expensive and special equipment such as rotating the CCD camera with high precision is required In addition, since the existing CMM can be used, the calibration of the CCD camera which is advantageous in terms of equipment can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に係る校正方法の実施装置例の概略を
示す図、第2図は第1図におけるCCDカメラの固体セン
サの正面図、第3図は固体センサとその入射光の関係を
示す図である。 第4図はCCDカメラにおける固体センサと入射光の関係
を示す図、第5図は従来のCCDカメラの校正方法を説明
すための校正装置の概略を示す図である。 (1)……CCDカメラ、(2)……固体センサ、 (3)……画素、(5)……光源、 (6)……三次元測定機、a……光軸、 e……視線。
1 is a diagram schematically showing an example of an apparatus for implementing a calibration method according to the present invention, FIG. 2 is a front view of a solid-state sensor of the CCD camera in FIG. 1, and FIG. 3 is a relationship between the solid-state sensor and incident light thereof. FIG. FIG. 4 is a diagram showing the relationship between a solid-state sensor and incident light in a CCD camera, and FIG. 5 is a diagram schematically showing a calibration device for explaining a conventional method of calibrating a CCD camera. (1) CCD camera, (2) solid-state sensor, (3) pixel, (5) light source, (6) three-dimensional measuring device, a optical axis, e line of sight .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固定されたCCDカメラの前方で、位置決め
装置で支持された点状の光源を、CCDカメラの固体セン
サの1画素に光源の中心の光が入射するように、1視線
上の離隔2点間で移動させる工程を、CCDカメラの光軸
を含む複数の視線上で行ない、光源を移動させた複数の
視線の各々の、CCDカメラの光軸に対する角度を位置決
め装置の位置の情報から求め、この求められた角度デー
タに基づいて、CCDカメラへの光の入射角と固体センサ
の画素の対応関係を校正することを特徴とするCCDカメ
ラの校正方法。
1. A point-like light source supported by a positioning device in front of a fixed CCD camera is positioned on one line of sight such that light at the center of the light source is incident on one pixel of a solid-state sensor of the CCD camera. The step of moving the light source between two points is performed on a plurality of lines of sight including the optical axis of the CCD camera, and the angle of each of the plurality of lines of sight with the light source moved with respect to the optical axis of the CCD camera is information on the position of the positioning device. And correcting the correspondence between the incident angle of light to the CCD camera and the pixels of the solid-state sensor based on the obtained angle data.
JP02335749A 1990-11-29 1990-11-29 Calibration method of CCD camera Expired - Fee Related JP3095411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02335749A JP3095411B2 (en) 1990-11-29 1990-11-29 Calibration method of CCD camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02335749A JP3095411B2 (en) 1990-11-29 1990-11-29 Calibration method of CCD camera

Publications (2)

Publication Number Publication Date
JPH04200196A JPH04200196A (en) 1992-07-21
JP3095411B2 true JP3095411B2 (en) 2000-10-03

Family

ID=18292036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02335749A Expired - Fee Related JP3095411B2 (en) 1990-11-29 1990-11-29 Calibration method of CCD camera

Country Status (1)

Country Link
JP (1) JP3095411B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095491B2 (en) 2003-05-19 2008-06-04 本田技研工業株式会社 Distance measuring device, distance measuring method, and distance measuring program
JP4969279B2 (en) 2007-03-22 2012-07-04 本田技研工業株式会社 Position detection method and position detection apparatus
CN110196019A (en) * 2019-06-27 2019-09-03 中信戴卡股份有限公司 A kind of laser sensor caliberating device and its scaling method

Also Published As

Publication number Publication date
JPH04200196A (en) 1992-07-21

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
EP1601928B1 (en) Scanning system with stereo camera set
JP3021815B2 (en) Method for measuring the surface of an object in a non-contact manner and a coordinate measuring machine for implementing the method
CN109215108A (en) Panorama three-dimensional reconstruction system and method based on laser scanning
CN107993958B (en) Orthogonality compensation method and compensation system in semiconductor defect detection/photoetching
CN108769530B (en) Image acquisition processing device and image acquisition processing method
JP7258869B2 (en) Device for optically measuring the profile of external pipe threads
KR101545186B1 (en) method of correction of defect location using predetermined wafer image targets
JP3095411B2 (en) Calibration method of CCD camera
JPH05248819A (en) Calibrating method of data of calibration object for measuring three dimensional position of object by camera and measuring method of three dimensional position
CN105758339B (en) Optical axis and object plane measuring for verticality method based on geometric error correction technique
CN112884847B (en) Dual-camera calibration method and system
JPH116711A (en) Method for measuring calibration value of image pickup unit for measurement
JP2001304827A (en) Sectional shape measuring apparatus and sectional shape measuring method
JPH10311705A (en) Image input apparatus
JPH01320431A (en) Three-dimensional position measuring device
KR20220062636A (en) How to measure position
JP5079779B2 (en) Camera calibration method and camera calibration apparatus
JP2008154195A (en) Method of creating pattern for calibration of lens, pattern for calibration of lens, method and device for calibrating lens utilizing pattern for calibration, and method and device for calibrating imaging apparatus
JP3679460B2 (en) Mobile device and control method thereof
JPS61162706A (en) Method for measuring solid body
JPH0989527A (en) Method for measuring operation parameter of measuring device, and measuring device
JP3369235B2 (en) Calibration method for measuring distortion in three-dimensional measurement
JPH08181062A (en) Positioning device and positioning method
JP2839009B2 (en) Automatic calibration method for positioning camera

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees