JPH01101648A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01101648A
JPH01101648A JP25844187A JP25844187A JPH01101648A JP H01101648 A JPH01101648 A JP H01101648A JP 25844187 A JP25844187 A JP 25844187A JP 25844187 A JP25844187 A JP 25844187A JP H01101648 A JPH01101648 A JP H01101648A
Authority
JP
Japan
Prior art keywords
film
silicon
substrate
groove
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25844187A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitajima
洋 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25844187A priority Critical patent/JPH01101648A/en
Publication of JPH01101648A publication Critical patent/JPH01101648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To increase the density of an element by sequentially stacking an insulating film, an impurity doped polycrystalline film, and an insulating film on the silicon substrate, exposing the surface of the semiconductor substrate after forming a groove, and selectively growing a single crystal in the groove using a single crystal substrate as a seed. CONSTITUTION:An SiO2 film 2, a polycrystalline silicon film 3, and an SiO2 film 4 are formed sequentially on a P-type silicon substrate 1, and then a groove 5 is formed by partially removing by reactive ion etching the SiO2 film 4, the polycrystalline silicon film 3, the SiO2 film 2 in this order to expose the surface of the silicon substrate 1. Then by having the silicon epitaxially grown selectively using dichlorosilane and hydrogen chloride, the groove 5 is buried with a single-crystal silicon 6. According to the constitution, it is allowed to obtain a device structure whose parasitic capacitance for source and drain regions is extremely small with high density.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の製造方法に関し、特にMOS (
Metal−Oxide−3emiconductor
)型素子あるいはlvl I 3 ()letal−I
nsulator−3emiconductor)型素
子の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device (MOS (
Metal-Oxide-3emiconductor
) type element or lvl I 3 ()letal-I
The present invention relates to a method of manufacturing an nsulator-3 semiconductor device.

[従来の技術] 本発明は一般的なMIS型素子の製造方法に有効である
が、装置として汎用性のきわめて高いシリコンのMO3
型素子を例にして説明する。
[Prior Art] The present invention is effective for a general MIS type device manufacturing method, but it is also effective for silicon MO3 which has extremely high versatility as a device.
This will be explained using a type element as an example.

従来、シリコンのMO8型素子は第2図のようにして形
成されてい“た。即ち、シリコン基板11上に素子分離
領域12とシリコン領域13を第2図(a)のように形
成する。この・ような構造の形成は、(1)シリコン基
板の選択的な酸化を用いる、(2)シリコン基板に溝を
形成し絶縁物を埋込む、あるいは(3)シリコン基板上
に形成した絶縁膜に溝を形成してシリコン基板表面を一
部露出させ、溝をシリコン単結晶膜で埋込むなどの方法
が用いられている。
Conventionally, a silicon MO8 type element has been formed as shown in FIG. 2. That is, an element isolation region 12 and a silicon region 13 are formed on a silicon substrate 11 as shown in FIG. 2(a).・Such a structure can be formed by (1) using selective oxidation of the silicon substrate, (2) forming a groove in the silicon substrate and filling it with an insulator, or (3) using an insulating film formed on the silicon substrate. A method used is to form a groove to expose a portion of the silicon substrate surface, and then fill the groove with a silicon single crystal film.

その後、シリコン表面を酸化して薄い酸化膜14を形成
し、ざらに多結晶シリコン15を堆積し、多結晶シリコ
ン15をパターニングし、イオン注入でソース領域16
とドレイン領域17を形成することにより第2図(b)
に示すMO3型素子の基本構造を作ることができる。
Thereafter, the silicon surface is oxidized to form a thin oxide film 14, polycrystalline silicon 15 is roughly deposited, polycrystalline silicon 15 is patterned, and source regions 16 are formed by ion implantation.
By forming the drain region 17 as shown in FIG.
The basic structure of the MO3 type element shown in FIG.

[発明が解決しようとする問題点] 素子の高密度化および奇生容量の低減はデバイスの高速
化にとって重要でおるが、こうした観点からすると上記
した従来のMO3型素子の製造方法はいくつかの欠点を
持っている。即ち、第2図の方法には多結晶シリコン1
5をパターニングする工程が含まれているが、目合せマ
ージンなどを考えると素子の高密度化を阻む一因でおる
ため、この工程がセルファラインでできる方が望ましい
[Problems to be Solved by the Invention] Increasing the density of elements and reducing stray capacitance are important for increasing the speed of devices, but from this perspective, the above-mentioned conventional method for manufacturing MO3 type elements has several have shortcomings. That is, in the method of FIG. 2, polycrystalline silicon 1
Although the step of patterning 5 is included, considering the alignment margin etc., this is one of the factors that prevents higher density of elements, so it is preferable that this step can be performed by a self-alignment line.

またソース領域16とドレイン領域17の下部構造はデ
バイス構造上必要なわけではなく、奇生容量として働く
だけであり、かえってデバイスの高速化を阻害すること
になり、望ましくない。
Further, the lower structure of the source region 16 and the drain region 17 is not necessary for the device structure, and serves only as a parasitic capacitance, which is undesirable because it rather impedes the speeding up of the device.

本発明は以上述べたような従来の欠点を解消するために
なされたもので、素子の高密度化を図ることができると
共に、ソースおよびドレイン領域の奇生容量が低減化さ
れた半導体装置の製造方法を提供することを目的とする
The present invention has been made in order to eliminate the conventional drawbacks as described above, and is capable of manufacturing a semiconductor device that can increase the density of elements and reduce the parasitic capacitance of the source and drain regions. The purpose is to provide a method.

[問題点を解決するための手段] 本発明は、半導体基板上に絶縁膜、多結晶膜および絶縁
膜を順次積層する工程と、この積層面の所定箇所に溝加
工を施して前記基板の単結晶表面を露呈させる工程と、
露呈した単結晶を種子にして溝に選択的に単結晶を成長
させると共に溝側壁部に露呈した多結晶膜からも結晶を
成長させる工程と、成長膜表面に絶縁膜を形成する工程
とを備えてなることを特徴とする半導体装置の製造方法
である。
[Means for Solving the Problems] The present invention includes a step of sequentially laminating an insulating film, a polycrystalline film, and an insulating film on a semiconductor substrate, and forming grooves at predetermined locations on the laminated surface to form a single layer on the substrate. a step of exposing the crystal surface;
The method includes a step of selectively growing a single crystal in the trench using the exposed single crystal as a seed, and also growing a crystal from the polycrystalline film exposed on the side wall of the trench, and a step of forming an insulating film on the surface of the grown film. A method of manufacturing a semiconductor device is characterized in that:

[作用] シリコン基板上に絶縁膜、不純物をドープした多結晶膜
、絶縁膜を順次積層し、溝加工を施して基゛板半導体表
面を露出させ、単結晶基板を種子にして溝に選択的に単
結晶を成長させる。選択成長時には側壁部に露出した多
結晶シリコンも単結晶シリコンよりは遅い速度ながらも
成長する。この成長した多結晶シリコン領域をソースお
よびドレインとして用いる。多結晶シリコンの成長速度
は単結晶よりもかなり遅いため、成長表面に達する多結
晶シリコンの領域は非常に小さく、従ってソースおよび
トレイン領域は側壁から横方向へはほとんど広がらない
と共に、素子分離領域に埋込まれた多結晶シリコン膜の
下部には厚い二酸化シリコン膜があるため奇生容量がほ
とんどなくなる。
[Operation] An insulating film, an impurity-doped polycrystalline film, and an insulating film are sequentially laminated on a silicon substrate, grooves are processed to expose the semiconductor surface of the substrate, and the single crystal substrate is used as a seed to selectively fill the grooves. to grow a single crystal. During selective growth, the polycrystalline silicon exposed on the sidewalls also grows, although at a slower rate than single crystal silicon. This grown polycrystalline silicon region is used as a source and a drain. Because the growth rate of polycrystalline silicon is much slower than single crystal, the area of polycrystalline silicon that reaches the growth surface is very small, so the source and train regions do not extend much laterally from the sidewalls and do not extend into isolation regions. Since there is a thick silicon dioxide film under the buried polycrystalline silicon film, there is almost no parasitic capacitance.

また、従来法がもっていた多結晶シリコン15をパター
ニングすることによる目合せマージンがなくなり、素子
をより高密度化できる。
Furthermore, the alignment margin due to patterning of the polycrystalline silicon 15, which the conventional method had, is eliminated, and the device can be made more dense.

[実施例] 次に本発明の実施例について図面を参照して詳細に説明
する。
[Example] Next, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の工程を示す模式的断面図で
ある。
FIG. 1 is a schematic cross-sectional view showing the steps of an embodiment of the present invention.

第1図(a)はP型シリコン基板1上に二酸化シリコン
膜2、多結晶シリコン膜3、二酸化シリコン膜4を順に
形成した俊、反応性イオンエツチングによって二酸化シ
リコン膜4、多結晶シリコン膜3、二酸化シリコン膜2
を順に部分的に除去して溝5を形成し、シリコン基板1
の表面を露出させた状態を示している。多結晶シリコン
膜3は最終的にはソースおよびドレイン用配線の一部と
なるため、N型の不純物でおるヒ素がドープされており
、またデバイスに対応してパターニングされている。
FIG. 1(a) shows a silicon dioxide film 2, a polycrystalline silicon film 3, and a silicon dioxide film 4 formed in this order on a P-type silicon substrate 1. The silicon dioxide film 4 and polycrystalline silicon film 3 are etched by reactive ion etching. , silicon dioxide film 2
are sequentially partially removed to form grooves 5, and the silicon substrate 1 is
The surface is exposed. Since the polycrystalline silicon film 3 will eventually become part of the source and drain wiring, it is doped with arsenic, which is an N-type impurity, and is patterned in accordance with the device.

第1図(b)はジクロロシラン(Sit−hcffi2
)と塩化水素(HCりを用いてシリコンの選択エピタキ
シャル成長を行い、溝5を単結晶シリコン6で埋込んだ
状態を示している。多結晶シリコン膜3は側壁部に露出
しているため、選択成長時には側壁部から多結晶シリコ
ンを種子として多結晶シリコン7の成長も起ることにな
る。多結晶シリコンの成長速度は単結晶シリコンよりは
かなり遅いため成長表面に達する多結晶シリコンの領域
は非常に小さい。多結晶シリコンにはヒ素がドープされ
ているため成長した多結晶シリコン7にも高温度のヒ素
がドープされている。この必と表面に薄いゲート酸化膜
を熱酸化によって形成し、さらに多結晶シリコンを堆積
することによってMO3型素子の基本構造を作ることが
できる。多結晶シリコンはパターニングする必要がある
が、従来例における多結晶シリコンのパターニングはど
の精度は必要ない。
Figure 1(b) shows dichlorosilane (Sit-hcffi2).
) and hydrogen chloride (HC) to perform selective epitaxial growth of silicon, and fill the trench 5 with single crystal silicon 6. Since the polycrystalline silicon film 3 is exposed on the side wall, During growth, polycrystalline silicon 7 also grows from the sidewalls using polycrystalline silicon as seeds.Since the growth rate of polycrystalline silicon is much slower than that of single crystal silicon, the area of polycrystalline silicon that reaches the growth surface is very small. Since polycrystalline silicon is doped with arsenic, the grown polycrystalline silicon 7 is also doped with arsenic at a high temperature.A thin gate oxide film is necessarily formed on the surface by thermal oxidation, and then The basic structure of the MO3 type device can be made by depositing polycrystalline silicon. Although polycrystalline silicon needs to be patterned, the conventional patterning of polycrystalline silicon does not require any precision.

第1図(b)の構造から明らかなように、ソースおよび
ドレイン領域は側壁から横方向へはほとんど広がってお
らず、また素子分離領域に埋込まれた多結晶シリコン膜
3の下部には、厚い二酸化シリコン膜2かめるため、奇
生容量がほとんどない構造になっている。
As is clear from the structure of FIG. 1(b), the source and drain regions hardly spread laterally from the sidewalls, and there are Since the thick silicon dioxide film 2 is covered, the structure has almost no parasitic capacitance.

以上の実施例はN型MOSトランジスタを示しているが
、N型とP型の領域を入換えれcr、そのままP型MO
Sトランジスタを形成することができる。
The above embodiment shows an N-type MOS transistor, but if the N-type and P-type regions are exchanged cr, it becomes a P-type MOS transistor as it is.
An S transistor can be formed.

[発明の効果] 以上述べたように本発明によれば、MOSあるいはMI
S型デバイスを従来法に較べてより高密度に、またソー
スおよびドレイン領域の奇生容量がきわめて小さい、す
なわち、高速化にとって有効なデバイス構造を作ること
ができる。
[Effect of the invention] As described above, according to the present invention, MOS or MI
Compared to the conventional method, it is possible to fabricate an S-type device with higher density and extremely small parasitic capacitance in the source and drain regions, that is, a device structure that is effective for increasing speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の工程を示す模式的断面図、
第2図は従来例の工程を示す模式的断面図である。 1.11・・・シリコン基板 2.4・・・二酸化シリコン膜 3・・・多結晶シリコン膜  5・・・溝6・・・単結
晶シリコン
FIG. 1 is a schematic cross-sectional view showing the steps of an embodiment of the present invention;
FIG. 2 is a schematic cross-sectional view showing a conventional process. 1.11... Silicon substrate 2.4... Silicon dioxide film 3... Polycrystalline silicon film 5... Groove 6... Single crystal silicon

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に絶縁膜、多結晶膜および絶縁膜を
順次積層する工程と、この積層面の所定箇所に溝加工を
施して前記基板の単結晶表面を露呈させる工程と、露呈
した単結晶を種子にして溝に選択的に単結晶を成長させ
ると共に溝側壁部に露呈した多結晶膜からも結晶を成長
させる工程と、成長膜表面に絶縁膜を形成する工程とを
備えてなることを特徴とする半導体装置の製造方法。
(1) A process of sequentially laminating an insulating film, a polycrystalline film, and an insulating film on a semiconductor substrate, a process of forming grooves at predetermined locations on the laminated surface to expose the single crystal surface of the substrate, and a process of exposing the single crystal surface of the substrate; A method comprising the steps of selectively growing a single crystal in a groove using a crystal as a seed, and also growing a crystal from a polycrystalline film exposed on the side wall of the trench, and forming an insulating film on the surface of the grown film. A method for manufacturing a semiconductor device, characterized by:
JP25844187A 1987-10-15 1987-10-15 Manufacture of semiconductor device Pending JPH01101648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25844187A JPH01101648A (en) 1987-10-15 1987-10-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25844187A JPH01101648A (en) 1987-10-15 1987-10-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01101648A true JPH01101648A (en) 1989-04-19

Family

ID=17320245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25844187A Pending JPH01101648A (en) 1987-10-15 1987-10-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01101648A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773357A (en) * 1995-01-25 1998-06-30 Nec Corporation Method for producing silicon film to bury contact hole
US5837604A (en) * 1995-12-19 1998-11-17 Lg Semicon Co., Ltd. Method for forming interconnection of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773357A (en) * 1995-01-25 1998-06-30 Nec Corporation Method for producing silicon film to bury contact hole
US5837604A (en) * 1995-12-19 1998-11-17 Lg Semicon Co., Ltd. Method for forming interconnection of semiconductor device

Similar Documents

Publication Publication Date Title
JP2804539B2 (en) Semiconductor device and manufacturing method thereof
JPS6347963A (en) Integrated circuit and manufacture of the same
JPS62247572A (en) Manufacture of insulated gate field effect transistor
KR930010987B1 (en) Semiconductor isolation method
JP3172031B2 (en) Method for manufacturing semiconductor device
EP0098111A2 (en) Vertical IGFET device and method for fabricating same
JPH01101648A (en) Manufacture of semiconductor device
EP0233791A2 (en) Insulated gate field effect transistor and method of manufacture thereof
KR100218668B1 (en) Collector device of semiconductor device and method of manufacturing the same
JPS6310896B2 (en)
JPH0423828B2 (en)
JPH0249019B2 (en) HANDOTAISOCHINOSEIZOHOHO
KR950003900B1 (en) Semiconductor device manufacturing method for soi structure
KR940010920B1 (en) Manufacturing method of soi structure semiconductor
JPS59138367A (en) Semiconductor device
KR100209765B1 (en) Method of fabricating bi-mos
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor
JPS6395664A (en) Semiconductor device and manufacture thereof
JPS59191380A (en) Semiconductor device and manufacture thereof
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPH01248637A (en) Isolating method for self-alignment element
JPH04348037A (en) Semiconductor device and its manufacture
JPS6154256B2 (en)
JPH04196227A (en) Semiconductor device and its manufacture
JPH01286361A (en) Semiconductor device