JPH01100071A - Joining of ceramic shaft and metallic part - Google Patents

Joining of ceramic shaft and metallic part

Info

Publication number
JPH01100071A
JPH01100071A JP25544487A JP25544487A JPH01100071A JP H01100071 A JPH01100071 A JP H01100071A JP 25544487 A JP25544487 A JP 25544487A JP 25544487 A JP25544487 A JP 25544487A JP H01100071 A JPH01100071 A JP H01100071A
Authority
JP
Japan
Prior art keywords
shaft
metal
ceramic shaft
recess
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25544487A
Other languages
Japanese (ja)
Other versions
JP2615675B2 (en
Inventor
Mikio Murachi
村知 幹夫
Yukio Shimokawa
下川 行夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62255444A priority Critical patent/JP2615675B2/en
Publication of JPH01100071A publication Critical patent/JPH01100071A/en
Application granted granted Critical
Publication of JP2615675B2 publication Critical patent/JP2615675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To prevent the displacement and escape of a joint part of a ceramic shaft and a metallic part caused by rotation, by forming a recess on the outer circumference of a joint end on a ceramic shaft, pouring molten metal into a gap between the outer circumference and an inner circumference of the shaft hole and solidifying the metal. CONSTITUTION:The fitting surface of a joint part of a ceramic shaft 1 is provided with two recesses 3 symmetrically in axial direction to prevent the escape and rotation of a metallic part. The recess is formed by grinding with a diamond grinding wheel dressed to a radius R of about 3.5mm while feeding the wheel in a direction perpendicular to the axis. The recess 3 has a cross-section consisting of a circular spherical groove. A ring 6 made of a low-thermal expansion metal consisting of an Ni-based alloy is inserted and fitted to the shaft 1. A molten metal 5 consisting of a silver solder is heated at about 750 deg.C, filled into the space of the fitted face and solidified by cooling. The ring 6 is welded to a metallic shaft 4 at the joint face 7 by electron beam welding.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミックスシャフトと金属部材との接合方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of joining a ceramic shaft and a metal member.

[従来の技術] 従来、セラミックスと金属部材とを接合する場合は、先
ずセラミックスに金属メツキもしくはメタライジングを
施してから、該セラミックスと金属部材とをろう付けに
て接合する方法が多く採用されている。なかでもセラミ
ックスと金属部材を軸継手する場合は、セラミックスと
金属部材との同軸度が厳しく要求されることが多い。セ
ラミックスと金属部材との接合すべき部分が焼成面のま
まであると、両者の同軸度が確保し難いことがらセラミ
ックスと金属部材との接合すべき部分は、ダイヤモンド
砥石で研磨して仕上げるのが酋通である。一方セラミッ
クス面を研磨して金属メツキをした場合は、セラミック
スと金属との密着強度が低下する。この点を改良するた
めに特開昭60−155578号公報では、研磨加工が
施されていないままの焼成面を有する溝を設け、溝を含
む接合部分に金属層を形成するとともに金属部材を嵌合
し、この後に嵌合部をろう付けすることによりセラミッ
クスと金属部材とを接合する旨の開示がある。
[Prior Art] Conventionally, when joining ceramics and metal members, a method has often been adopted in which the ceramics are first plated with metal or metallized, and then the ceramics and the metal members are joined by brazing. There is. In particular, when coupling ceramics and metal members, coaxiality between the ceramics and metal members is often strictly required. If the part where the ceramic and metal parts are to be joined remains on the firing surface, it is difficult to ensure coaxiality between the two, so it is recommended that the parts where the ceramics and the metal parts are joined be polished with a diamond grindstone. He is a connoisseur. On the other hand, when the ceramic surface is polished and metal plated, the adhesion strength between the ceramic and the metal decreases. In order to improve this point, Japanese Patent Application Laid-Open No. 60-155578 provides a groove with a fired surface that has not been polished, forms a metal layer on the joint including the groove, and fits a metal member. There is a disclosure that a ceramic and a metal member are joined by fitting and then brazing the fitting portion.

また実開昭61−57101号公報には、結合軸の外周
面に凹部を形成し、該凹部内に金属製回転輪より熱膨張
率の大きな材料のチップを溶接挿入する旨の開示がある
Further, Japanese Utility Model Application Publication No. 61-57101 discloses that a recess is formed on the outer circumferential surface of the coupling shaft, and a chip made of a material having a higher coefficient of thermal expansion than the metal rotating ring is welded and inserted into the recess.

[発明が解決しようとする問題点] 従来の接合方法では接合部が高温になると接合力の低下
が著しい。また接着部には残留応力があり接合力が小さ
くなる。さらに接合部の強度が小さいという問題点を有
する。
[Problems to be Solved by the Invention] In conventional bonding methods, when the temperature of the bonded portion becomes high, the bonding force decreases significantly. Furthermore, there is residual stress in the bonded portion, which reduces the bonding force. Another problem is that the strength of the joint is low.

本発明は、このような従来の問題点に鑑みなされたもの
で、セラミックスと金属部材との結合部における回転力
によるづれ、および−抜は防止を向上せることを目的と
するものである。
The present invention has been made in view of these conventional problems, and an object of the present invention is to improve the prevention of slippage and pull-out due to rotational force at the joint between ceramic and metal members.

[問題点を解決するための手段] 本発明のセラミックスシャフトと金属部材との接合方法
は、輪状の接合端部の外周面に凹部を少な(とも1箇所
設けたセラミックスシャフトを、該セラミックスシャフ
トが嵌合される軸穴を有する金属部材に挿入し、該軸上
端部の外周面と該軸穴に嵌合させ、該セラミックスシャ
フトの該接合部の外周面と該金属部材の軸穴の内周面と
で形成される空隙に、溶融金属を注入固化して、該セラ
ミックスシャフトと該金属部材とを接合することを特徴
とする。
[Means for Solving the Problems] The method of joining a ceramic shaft and a metal member of the present invention provides a method for joining a ceramic shaft with a ceramic shaft having a small number of recesses (one in each case) on the outer circumferential surface of the annular joint end. It is inserted into a metal member having a shaft hole to be fitted, and the outer peripheral surface of the upper end of the shaft is fitted into the shaft hole, and the outer peripheral surface of the joint part of the ceramic shaft and the inner periphery of the shaft hole of the metal member are inserted. The ceramic shaft and the metal member are joined by injecting and solidifying molten metal into the gap formed between the ceramic shaft and the metal member.

前記凹部は断面形状が円弧状の球状凹部溝とすることが
できる。また前記凹部は軸上接合端部の軸と平行な断面
形状が円弧状の溝とすることができる。この凹部は、シ
ャフトの軸の半径方向、軸方向共に円板形状で砥面が平
面または曲率をもってドレスした砥石の1バスで加工可
能な形状である。この凹部に溶融金属を注入固化するこ
とによりシャフトの抜は防止および相対的回転防止が同
時に確保できる形状である。
The recess may be a spherical recess groove having an arcuate cross-section. Further, the recessed portion may be a groove having an arc-shaped cross section parallel to the axis of the axial joint end. This concave portion has a shape that can be processed in one pass using a grindstone which has a disk shape in both the radial and axial directions of the shaft axis and whose grinding surface is dressed with a flat surface or a curvature. By injecting molten metal into this recess and solidifying it, the shape is such that the shaft can be prevented from being pulled out and prevented from relative rotation at the same time.

この場合注入する溶融金属はセラミックスと接着しない
ものが好ましく、金属部材とは接着力が高いものが好ま
しい。注入される溶融金属とじては、銀ろう、銅−亜鉛
系合金等が使用できる。セラミックスシャフトが挿入さ
れる金属部材は、熱膨張係数が小さい方が高温時に溶融
金属との接着力が低下しないため好ましい。一方注入さ
れる溶融金属の熱膨張係数が大きいものであれば金属部
材の熱膨張係数は大きくても嵌合保持できる。金属部材
としては5Cr40合金を用いることができる。
In this case, the molten metal to be injected is preferably one that does not adhere to ceramics and has a high adhesive strength to metal members. As the molten metal to be injected, silver solder, copper-zinc alloy, etc. can be used. It is preferable that the metal member into which the ceramic shaft is inserted has a small coefficient of thermal expansion so that the adhesive force with the molten metal does not decrease at high temperatures. On the other hand, if the injected molten metal has a large coefficient of thermal expansion, the metal member can be fitted and maintained even if its coefficient of thermal expansion is large. A 5Cr40 alloy can be used as the metal member.

セラミックスシャフトの接合部の外周面と金属部材の軸
穴の内周面とで形成される空隙は、溶融金属が注入され
て軸芯のズレや傾き等を調整する部位であり、300μ
m以下であることが好ましい。
The gap formed between the outer peripheral surface of the joint part of the ceramic shaft and the inner peripheral surface of the shaft hole of the metal member is the part where molten metal is injected to adjust the misalignment and inclination of the shaft center, and the gap is 300 μm.
It is preferable that it is below m.

[発明の効果と作用] 本発明は前記の構成としたことによりセラミックスシャ
フトと金属部材との接合部において扱けの防止、相対回
転防止がなされており、かつセラミックスと金属部材と
の間隙に充填された金属とは接着されていないため残留
応力が少ない。このため接合力が大きく高温でもその接
合力の低下は少ない。
[Effects and Operations of the Invention] With the above-described structure, the present invention prevents handling and relative rotation at the joint between the ceramic shaft and the metal member, and fills the gap between the ceramic shaft and the metal member. There is little residual stress because it is not bonded to the metal. Therefore, the bonding force is large and there is little decrease in the bonding force even at high temperatures.

また本接合法ではセラミックスと金属との接着が不要な
ためセラミックスの接合面へのメタライズ処理が不要で
ある。従って簡単な研削加工によるのみであるので安価
に接合できる方法である。
Furthermore, since this bonding method does not require adhesion between ceramics and metal, metallization treatment on the bonding surfaces of ceramics is not necessary. Therefore, since it is only a simple grinding process, it is an inexpensive joining method.

[実施例] 以下、実施例に基づき本発明を説明する。[Example] The present invention will be explained below based on Examples.

(実施例1) 第1図は本実施例のセラミックスシャフトと金属部材と
の接合部を説明する断面図である。
(Example 1) FIG. 1 is a sectional view illustrating a joint between a ceramic shaft and a metal member in this example.

このセラミックスシャフトと金属部材との接合部は、窒
化珪素製のセラミックスシャフト1の外周面に形成した
凹部3および金属部材2との空隙に溶融金属5が注入さ
れセラミックシャフト1と金属部材2とが接合されてる
。金属部材2は、セラミックシャフト1の外周面に嵌合
される耐熱性リング6と耐熱性金属シャフト4とからな
り溶接により一体化されている。第2図に第1図の八−
AIli!の切断面図を示す。
The joint between the ceramic shaft and the metal member is created by injecting molten metal 5 into the gap between the metal member 2 and the recess 3 formed on the outer peripheral surface of the ceramic shaft 1 made of silicon nitride. It's joined. The metal member 2 is made up of a heat-resistant ring 6 fitted to the outer peripheral surface of the ceramic shaft 1 and a heat-resistant metal shaft 4, which are integrated by welding. Figure 2 shows 8-8 in Figure 1.
AIli! A cross-sectional view of the figure is shown.

このセラミックスシャフト1の接合部の嵌合面には、扱
は止めと、廻わり止めの作用をする凹部3が軸方向に対
称に2箇所形成されている。この凹部3は研削加工によ
り形成される。予め半径R3,5IIIIllにドレス
しであるダイヤモンド砥石を用いて、軸と直角方向に送
りをかけて研削加工した′ものである。この凹部3は、
第2図の断面図に示すごとく、断面形状が円弧状の球状
四部溝となっている。このセラミックシャフト1にNi
基合金の低熱膨張金属(インコロイ903)製のリング
6を挿入嵌合し嵌合面の空隙に溶融金属5の銀ろう材を
750℃に加熱して注入して充填した後冷却固化させた
。その後、上記リング6を金属シャフト4(材質は5C
r40)に接合面7で電子ビーム溶接して接合させた。
On the fitting surface of the joint portion of the ceramic shaft 1, two recesses 3 are formed symmetrically in the axial direction to prevent handling and to prevent rotation. This recess 3 is formed by grinding. It was ground using a diamond grindstone which had been dressed in advance with a radius of R3,5IIIll and was fed in a direction perpendicular to the axis. This recess 3 is
As shown in the sectional view of FIG. 2, the cross-sectional shape is a spherical four-part groove with an arcuate shape. This ceramic shaft 1 has Ni
A ring 6 made of a base alloy low thermal expansion metal (Incoloy 903) was inserted and fitted, and the molten metal 5, which was a silver brazing filler metal, was heated to 750° C. and injected into the gap of the fitting surface to fill it, and then cooled and solidified. After that, the ring 6 is attached to the metal shaft 4 (the material is 5C).
r40) at joint surface 7 by electron beam welding.

上記接合方法においてセラミックスシャフト1と溶融金
属5の銀ろう材とは接着されておらず、溶融金属5は金
属部材2と接着しているのみである。したがって金属部
材2とセラミックスシャフト1との間の抜は防止および
セラミックスシャフト1と金属部材2との相対的回転の
防止は、セラミックシャフト1の接合面に形成した四部
3および空隙間に溶融金属5の銀ろう材が充填把持され
ることによりなされている。
In the above joining method, the ceramic shaft 1 and the silver brazing material of the molten metal 5 are not bonded together, and the molten metal 5 is only bonded to the metal member 2. Therefore, to prevent disconnection between the metal member 2 and the ceramic shaft 1 and to prevent relative rotation between the ceramic shaft 1 and the metal member 2, it is possible to This is done by filling and holding silver brazing material.

この様にして接合された前記接合体を400℃に保った
炉に入れその中で引張り試験および回転力を測定した。
The thus joined bodies were placed in a furnace kept at 400°C and tensile tests and rotational forces were measured therein.

その結果5kQfの引張り強さを有し、4kQ−m以上
の回転トルクを有し実用上全く問題のないレベルを有し
ていた。
As a result, it had a tensile strength of 5 kQf and a rotational torque of 4 kQ-m or more, which was at a level that caused no practical problems.

(実施例2) 本実施例は実施例1における溶融金属とセラミックシャ
フトの接合面に形成する凹部の形状および金属部材の材
質を変更した例である。
(Example 2) This example is an example in which the shape of the recess formed in the joint surface of the molten metal and the ceramic shaft and the material of the metal member in Example 1 are changed.

第3図には第1図のA−A線の切断面について本、実施
例の形状を示す。
FIG. 3 shows the shape of the book and the embodiment on a cross section taken along the line A--A in FIG.

このセラミックスシャフト1と金属部材2との接合部は
、窒化珪素製のセラミックスシャフト1の外周面に形成
した凹部8および金属部材2との空隙に溶融金属9の銅
−亜鉛合金が注入され金属部材2は材質が5Cr40の
耐熱金属のリング6が嵌合され、この耐熱金属リング6
には耐熱金属5Cr40製の金属シャフト4が溶接され
て形成されている。
The joint between the ceramic shaft 1 and the metal member 2 is formed by injecting a copper-zinc alloy of molten metal 9 into a recess 8 formed on the outer peripheral surface of the ceramic shaft 1 made of silicon nitride and a gap between the metal member 2 and the metal member 2. 2 is fitted with a heat-resistant metal ring 6 made of 5Cr40.
A metal shaft 4 made of heat-resistant metal 5Cr40 is welded to the shaft.

このセラミックスシャフト1の接合面には、抜−け止め
と廻ねり止めの作用をする凹部8が軸方向に対称に半径
方向に垂直面を有する半円形状をもち2箇所形成されて
いる。この凹部8は砥石を半径方向への送りのみで研削
加工したものである。
On the joint surface of the ceramic shaft 1, two recesses 8 are formed axially symmetrically and semicircularly with vertical surfaces in the radial direction and serve to prevent the shaft from slipping out and rotating. This recess 8 is formed by grinding a grindstone by only feeding it in the radial direction.

このセラミックスシャフト1に5Cr40!FJの金属
リング6を挿入し嵌合部の間隙に銅−亜鉛系の合金の溶
融金属9を900℃に加熱して充填し冷却させた。つい
で金属リング6に5Cr401iの金属シャフト2に電
子ビーム溶接で接合した。
5Cr40 in this ceramic shaft 1! The metal ring 6 of the FJ was inserted, and the gap between the fitting parts was filled with molten metal 9 of a copper-zinc alloy heated to 900° C. and cooled. Next, the metal ring 6 was joined to the metal shaft 2 made of 5Cr401i by electron beam welding.

この場合もセラミックス1と溶融金19の銅−亜鉛系合
金との間は接着されていない。セラミックスシャフト1
の四部8の加工形状および溶融金属9とにより抜は防止
と金属シャフト4とセラミックスシャフト1との間の相
対的回転防止がなされている。
Also in this case, the ceramic 1 and the copper-zinc alloy of the molten gold 19 are not bonded to each other. Ceramic shaft 1
The processed shape of the four parts 8 and the molten metal 9 prevent the metal shaft 4 and the ceramic shaft 1 from being pulled out and prevent relative rotation between the metal shaft 4 and the ceramic shaft 1.

実施例1と同様に400℃で引張り強さ(失は防止)と
回転トルクを測定した。引張り強さは5kgf以上、回
転トルクは4kQ−m以上あり実用上全く問題のないレ
ベルであった。
As in Example 1, the tensile strength (prevention of loss) and rotational torque were measured at 400°C. The tensile strength was 5 kgf or more, and the rotational torque was 4 kQ-m or more, which were at a level that caused no practical problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の接合部の縦断面説明図、第2図は実施
例1の接合部のA−A切断面による横断面図、第3図は
実施例2のA−A切断による横断面図である。 1・・・セラミックシャフト 2・・・金属部材 3.8・・・凹部 4・・・金属部材のシャフト 5.9・・・溶融金属 6・・・金属部材のリング 7・・・接合面 特許出願人  トヨタ自動車株式会社
Fig. 1 is an explanatory longitudinal cross-sectional view of the joint of Example 1, Fig. 2 is a cross-sectional view taken along A-A of the joint of Example 1, and Fig. 3 is a cross-sectional view taken along A-A of Example 2. It is a front view. 1... Ceramic shaft 2... Metal member 3.8... Recessed portion 4... Shaft of metal member 5.9... Molten metal 6... Ring of metal member 7... Joint surface patent Applicant Toyota Motor Corporation

Claims (3)

【特許請求の範囲】[Claims] (1)軸状接合端部の外周面に凹部を少なくとも1箇所
設けたセラミックスシャフトを、該セラミックスシャフ
トが嵌合される軸穴を有する金属部材に挿入し、該軸上
接合端部の外周面と該軸穴の内周面とで形成される空隙
に溶融金属を注入固化して該セラミックスシャフトと該
金属部材とを接合することを特徴とするセラミックスシ
ャフトと金属部材との接合方法。
(1) A ceramic shaft having at least one recess on the outer circumferential surface of the axial joint end is inserted into a metal member having a shaft hole into which the ceramic shaft is fitted, and the outer circumferential surface of the axial joint end is A method for joining a ceramic shaft and a metal member, characterized in that the ceramic shaft and the metal member are joined by injecting and solidifying molten metal into the gap formed by the shaft hole and the inner peripheral surface of the shaft hole.
(2)前記凹部は、断面形状が円弧状の球状凹部である
特許請求の範囲第1項記載のセラミックスシャフトと金
属部材との接合方法。
(2) The method of joining a ceramic shaft and a metal member according to claim 1, wherein the recess is a spherical recess with an arcuate cross-section.
(3)前記凹部は軸上接合端部の軸と平行な断面形状が
円弧状の溝である特許請求の範囲第1項記載のセラミッ
クスシャフトと金属部材との接合方法。
(3) The method of joining a ceramic shaft and a metal member according to claim 1, wherein the recess is a groove having an arc-shaped cross section parallel to the axis of the axial joining end.
JP62255444A 1987-10-09 1987-10-09 Joining method of ceramic shaft and metal member Expired - Fee Related JP2615675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62255444A JP2615675B2 (en) 1987-10-09 1987-10-09 Joining method of ceramic shaft and metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255444A JP2615675B2 (en) 1987-10-09 1987-10-09 Joining method of ceramic shaft and metal member

Publications (2)

Publication Number Publication Date
JPH01100071A true JPH01100071A (en) 1989-04-18
JP2615675B2 JP2615675B2 (en) 1997-06-04

Family

ID=17278853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255444A Expired - Fee Related JP2615675B2 (en) 1987-10-09 1987-10-09 Joining method of ceramic shaft and metal member

Country Status (1)

Country Link
JP (1) JP2615675B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076484A (en) * 1990-03-29 1991-12-31 Ngk Spark Plug Co., Ltd. Joining structure of a turbine rotor
JP2006062919A (en) * 2004-08-27 2006-03-09 Kyocera Corp Metal/ceramic composite member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544909A (en) * 1977-06-13 1979-01-16 Kyoto Ceramic Ceramiccmetal complex body and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544909A (en) * 1977-06-13 1979-01-16 Kyoto Ceramic Ceramiccmetal complex body and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076484A (en) * 1990-03-29 1991-12-31 Ngk Spark Plug Co., Ltd. Joining structure of a turbine rotor
JP2006062919A (en) * 2004-08-27 2006-03-09 Kyocera Corp Metal/ceramic composite member
JP4646573B2 (en) * 2004-08-27 2011-03-09 京セラ株式会社 Metal-ceramic composite material

Also Published As

Publication number Publication date
JP2615675B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JPS61142301A (en) Turbine rotor and its production
JPH0339993B2 (en)
JP4625035B2 (en) Shaft assembly
JP2531708Y2 (en) Ceramic / metal composite
JPH03279277A (en) Joint structure of turbine rotor
JPH01100071A (en) Joining of ceramic shaft and metallic part
JP3179928B2 (en) Bonded body, bonded body thereof and ceramics, and methods of manufacturing them
JP2536630B2 (en) Method for joining ceramic member and metal member
JP3360981B2 (en) Tappet
JP3431392B2 (en) Tappet
JPH02149477A (en) Method for joining ceramic rotor and metallic shaft
JPS61169164A (en) Joint structure of rotary shaft
JP2003097213A (en) Ceramic turbine rotor
JPH063171B2 (en) Ceramic-Metal Friction Welding Body and Ceramic Casting Piston Composed of It
JPH03115179A (en) Method for joining ceramic member and metallic member
JPH0410198Y2 (en)
JPH0351319Y2 (en)
JP2883223B2 (en) Method of joining ceramic member and metal member
JPH04292477A (en) Method for cementing ceramics to metal
JPS59111984A (en) Ceramics-metal joint mechanism
JPH0351321Y2 (en)
JPH061672A (en) Joining structure for ceramic shaft and metallic shaft
JPS61142024A (en) Shrink-fit of ceramic shaft
JPS60155578A (en) Method of bonding ceramic and metal member
JPH01215769A (en) Production of ceramic-metal coupled body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees