JP7633094B2 - 弱いラベル付けを使用した半導体試料内の欠陥の検出 - Google Patents

弱いラベル付けを使用した半導体試料内の欠陥の検出 Download PDF

Info

Publication number
JP7633094B2
JP7633094B2 JP2021093501A JP2021093501A JP7633094B2 JP 7633094 B2 JP7633094 B2 JP 7633094B2 JP 2021093501 A JP2021093501 A JP 2021093501A JP 2021093501 A JP2021093501 A JP 2021093501A JP 7633094 B2 JP7633094 B2 JP 7633094B2
Authority
JP
Japan
Prior art keywords
training
poi
pixel block
neural network
feature map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021093501A
Other languages
English (en)
Japanese (ja)
Other versions
JP2021190716A5 (enExample
JP2021190716A (ja
Inventor
ペレグ イラド
シュレイェン ラン
コーエン ボアズ
Original Assignee
アプライド マテリアルズ イスラエル リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アプライド マテリアルズ イスラエル リミテッド filed Critical アプライド マテリアルズ イスラエル リミテッド
Publication of JP2021190716A publication Critical patent/JP2021190716A/ja
Publication of JP2021190716A5 publication Critical patent/JP2021190716A5/ja
Application granted granted Critical
Publication of JP7633094B2 publication Critical patent/JP7633094B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/0895Weakly supervised learning, e.g. semi-supervised or self-supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Neurology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
JP2021093501A 2020-06-03 2021-06-03 弱いラベル付けを使用した半導体試料内の欠陥の検出 Active JP7633094B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/892,139 US11379972B2 (en) 2020-06-03 2020-06-03 Detecting defects in semiconductor specimens using weak labeling
US16/892,139 2020-06-03

Publications (3)

Publication Number Publication Date
JP2021190716A JP2021190716A (ja) 2021-12-13
JP2021190716A5 JP2021190716A5 (enExample) 2024-06-10
JP7633094B2 true JP7633094B2 (ja) 2025-02-19

Family

ID=78786923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021093501A Active JP7633094B2 (ja) 2020-06-03 2021-06-03 弱いラベル付けを使用した半導体試料内の欠陥の検出

Country Status (5)

Country Link
US (2) US11379972B2 (enExample)
JP (1) JP7633094B2 (enExample)
KR (1) KR102749767B1 (enExample)
CN (2) CN113763312B (enExample)
TW (1) TWI864281B (enExample)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11816411B2 (en) * 2020-01-29 2023-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for semiconductor wafer defect review
US11379972B2 (en) * 2020-06-03 2022-07-05 Applied Materials Israel Ltd. Detecting defects in semiconductor specimens using weak labeling
US11493901B2 (en) * 2020-09-24 2022-11-08 International Business Machines Corporation Detection of defect in edge device manufacturing by artificial intelligence
US20220101114A1 (en) * 2020-09-27 2022-03-31 Kla Corporation Interpretable deep learning-based defect detection and classification
US20230401821A1 (en) * 2020-11-09 2023-12-14 Canon U.S.A., Inc. Using activation maps to detect best areas of an image for prediction of noise levels
US12462074B2 (en) * 2021-01-22 2025-11-04 Nvidia Corporation Object simulation using real-world environments
US12430563B2 (en) * 2021-07-29 2025-09-30 GE Precision Healthcare LLC Learning-based clean data selection
CN115706819B (zh) * 2021-08-17 2024-12-31 鸿富锦精密工业(深圳)有限公司 网页视频播放方法、装置、电子设备及存储介质
TWI767828B (zh) * 2021-08-27 2022-06-11 開必拓數據股份有限公司 應用於具有卷對卷機構的設備的馬達控制系統
US20240013365A9 (en) * 2021-10-04 2024-01-11 Kla Corporation Unsupervised or self-supervised deep learning for semiconductor-based applications
TWI823159B (zh) * 2021-10-20 2023-11-21 開必拓數據股份有限公司 具人機互動功能的瑕疵檢測系統
US11789069B2 (en) * 2021-12-03 2023-10-17 International Business Machines Corporation Mixed high-resolution and low-resolution inspection for tamper detection
CN115061427B (zh) * 2022-06-28 2023-04-14 浙江同发塑机有限公司 吹塑机的料层均匀性控制系统及其控制方法
KR20240028665A (ko) * 2022-08-25 2024-03-05 한국전자통신연구원 딥러닝 서비스를 제공하기 위한 신경망 모델 배포 방법 및 장치
KR20240096217A (ko) * 2022-12-19 2024-06-26 삼성전자주식회사 제조 공정의 이상 여부를 판단하는 방법 및 장치
CN116046810B (zh) * 2023-04-03 2023-06-23 云南通衢工程检测有限公司 基于rpc盖板破坏荷载的无损检测方法
WO2025011912A1 (en) * 2023-07-13 2025-01-16 Asml Netherlands B.V. Systems and methods for defect inspection in charged-particle systems
KR102740270B1 (ko) * 2023-10-19 2024-12-10 주식회사 에이아이비즈 웨이퍼맵의 패턴을 분류하기 위한 모델을 학습시키는 방법, 장치 및 프로그램
US20250253121A1 (en) * 2024-02-07 2025-08-07 Kla Corporation Systems and methods of sem inspection using selective scan approach

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160300338A1 (en) 2015-04-13 2016-10-13 Anchor Semiconductor Inc. Pattern weakness and strength detection and tracking during a semiconductor device fabrication process
WO2019050992A1 (en) 2017-09-06 2019-03-14 Kla-Tencor Corporation UNIFIED NEURONAL NETWORK FOR DETECTION AND CLASSIFICATION OF DEFECTS
US20200105500A1 (en) 2018-09-28 2020-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. Machine learning on wafer defect review

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3534582B2 (ja) * 1997-10-02 2004-06-07 株式会社日立製作所 パターン欠陥検査方法および検査装置
US7570796B2 (en) * 2005-11-18 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US7676077B2 (en) * 2005-11-18 2010-03-09 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
JP4928862B2 (ja) * 2006-08-04 2012-05-09 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置
JP5065943B2 (ja) * 2008-02-29 2012-11-07 株式会社日立ハイテクノロジーズ 製造プロセスモニタリングシステム
US8150140B2 (en) * 2008-12-22 2012-04-03 Ngr Inc. System and method for a semiconductor lithographic process control using statistical information in defect identification
JP5429869B2 (ja) * 2008-12-22 2014-02-26 株式会社 Ngr パターン検査装置および方法
US9390490B2 (en) * 2010-01-05 2016-07-12 Hitachi High-Technologies Corporation Method and device for testing defect using SEM
US8669523B2 (en) * 2011-05-25 2014-03-11 Kla-Tencor Corporation Contour-based defect detection using an inspection apparatus
KR102019534B1 (ko) * 2013-02-01 2019-09-09 케이엘에이 코포레이션 결함 특유의, 다중 채널 정보를 이용한 웨이퍼 상의 결함 검출
US9171364B2 (en) * 2013-06-21 2015-10-27 Kla-Tencor Corp. Wafer inspection using free-form care areas
US9714905B1 (en) * 2013-06-23 2017-07-25 Kla-Tencor Corp. Wafer inspection recipe setup
US9355208B2 (en) * 2013-07-08 2016-05-31 Kla-Tencor Corp. Detecting defects on a wafer
US9518935B2 (en) * 2013-07-29 2016-12-13 Kla-Tencor Corporation Monitoring changes in photomask defectivity
US10410338B2 (en) * 2013-11-04 2019-09-10 Kla-Tencor Corporation Method and system for correlating optical images with scanning electron microscopy images
US9613411B2 (en) * 2014-03-17 2017-04-04 Kla-Tencor Corp. Creating defect classifiers and nuisance filters
JP2016058465A (ja) * 2014-09-08 2016-04-21 株式会社日立ハイテクノロジーズ 欠陥定量化方法、欠陥定量化装置、および欠陥評価値表示装置
US9767548B2 (en) * 2015-04-24 2017-09-19 Kla-Tencor Corp. Outlier detection on pattern of interest image populations
US10359371B2 (en) * 2015-08-24 2019-07-23 Kla-Tencor Corp. Determining one or more characteristics of a pattern of interest on a specimen
US11205119B2 (en) * 2015-12-22 2021-12-21 Applied Materials Israel Ltd. Method of deep learning-based examination of a semiconductor specimen and system thereof
US9916965B2 (en) * 2015-12-31 2018-03-13 Kla-Tencor Corp. Hybrid inspectors
US10181185B2 (en) * 2016-01-11 2019-01-15 Kla-Tencor Corp. Image based specimen process control
US11010886B2 (en) * 2016-05-17 2021-05-18 Kla-Tencor Corporation Systems and methods for automatic correction of drift between inspection and design for massive pattern searching
US10706522B2 (en) * 2016-11-08 2020-07-07 Kla-Tencor Corporation System and method for generation of wafer inspection critical areas
US10451563B2 (en) * 2017-02-21 2019-10-22 Kla-Tencor Corporation Inspection of photomasks by comparing two photomasks
US10620135B2 (en) * 2017-07-19 2020-04-14 Kla-Tencor Corp. Identifying a source of nuisance defects on a wafer
US9964607B1 (en) * 2017-08-28 2018-05-08 Seagate Technology Llc Recognizing and identifying defect patterns on magnetic media
US11138507B2 (en) * 2017-09-28 2021-10-05 Applied Materials Israel Ltd. System, method and computer program product for classifying a multiplicity of items
WO2019070600A1 (en) * 2017-10-02 2019-04-11 Applied Materials Israel Ltd. DETERMINING A CRITICAL DIMENSION VARIATION OF A PATTERN
US10423861B2 (en) * 2017-10-16 2019-09-24 Illumina, Inc. Deep learning-based techniques for training deep convolutional neural networks
KR20190073756A (ko) * 2017-12-19 2019-06-27 삼성전자주식회사 반도체 결함 분류 장치, 반도체의 결함을 분류하는 방법, 그리고 반도체 결함 분류 시스템
WO2019155471A1 (en) * 2018-02-07 2019-08-15 Applied Materials Israel Ltd. Method of deep learning-based examination of a semiconductor specimen and system thereof
KR102176335B1 (ko) * 2018-02-07 2020-11-10 어플라이드 머티리얼즈 이스라엘 리미티드 반도체 시편의 시험을 위해 사용 가능한 훈련 세트를 생성하는 방법 및 그 시스템
US11199506B2 (en) * 2018-02-21 2021-12-14 Applied Materials Israel Ltd. Generating a training set usable for examination of a semiconductor specimen
US10599951B2 (en) * 2018-03-28 2020-03-24 Kla-Tencor Corp. Training a neural network for defect detection in low resolution images
WO2020043525A1 (en) * 2018-08-28 2020-03-05 Asml Netherlands B.V. Systems and methods of optimal metrology guidance
KR102649132B1 (ko) * 2018-12-31 2024-03-20 에이에스엠엘 네델란즈 비.브이. E-빔 이미지 향상을 위한 완전 자동화 sem 샘플링 시스템
US10957034B2 (en) * 2019-01-17 2021-03-23 Applied Materials Israel Ltd. Method of examination of a specimen and system thereof
CN109978764B (zh) * 2019-03-11 2021-03-02 厦门美图之家科技有限公司 一种图像处理方法及计算设备
US11151710B1 (en) * 2020-05-04 2021-10-19 Applied Materials Israel Ltd. Automatic selection of algorithmic modules for examination of a specimen
US11379972B2 (en) * 2020-06-03 2022-07-05 Applied Materials Israel Ltd. Detecting defects in semiconductor specimens using weak labeling
US20220044949A1 (en) * 2020-08-06 2022-02-10 Carl Zeiss Smt Gmbh Interactive and iterative training of a classification algorithm for classifying anomalies in imaging datasets

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160300338A1 (en) 2015-04-13 2016-10-13 Anchor Semiconductor Inc. Pattern weakness and strength detection and tracking during a semiconductor device fabrication process
WO2019050992A1 (en) 2017-09-06 2019-03-14 Kla-Tencor Corporation UNIFIED NEURONAL NETWORK FOR DETECTION AND CLASSIFICATION OF DEFECTS
US20200105500A1 (en) 2018-09-28 2020-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. Machine learning on wafer defect review

Also Published As

Publication number Publication date
KR20210150970A (ko) 2021-12-13
KR102749767B1 (ko) 2025-01-07
CN113763312B (zh) 2024-04-19
TW202147163A (zh) 2021-12-16
JP2021190716A (ja) 2021-12-13
CN118297906B (zh) 2025-07-29
US11379972B2 (en) 2022-07-05
US20210383530A1 (en) 2021-12-09
CN113763312A (zh) 2021-12-07
TWI864281B (zh) 2024-12-01
CN118297906A (zh) 2024-07-05
US20220301151A1 (en) 2022-09-22
US11790515B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP7633094B2 (ja) 弱いラベル付けを使用した半導体試料内の欠陥の検出
CN113269709B (zh) 探测半导体晶片中缺陷的方法及半导体晶片缺陷探测系统
CN111512324B (zh) 半导体样品的基于深度学习的检查的方法及其系统
TWI767108B (zh) 用於檢查半導體試樣的方法與系統及在其上紀錄相關指令的電腦可讀取媒體
US20220067523A1 (en) Method of deep learining-based examination of a semiconductor specimen and system thereof
CN114092387B (zh) 生成可用于检查半导体样本的训练数据
TWI889675B (zh) 基於機器學習之半導體樣本中的缺陷分類之方法、系統及非暫態電腦可讀取媒體
JP2021190716A5 (enExample)
KR20200014927A (ko) 반도체 시편의 시험을 위해 사용 가능한 훈련 세트를 생성하는 방법 및 그 시스템
TWI786570B (zh) 生成可用於檢查半導體樣本的訓練集
KR20150140349A (ko) 반도체 검사 레시피 생성, 결함 리뷰 및 계측을 위한 적응적 샘플링
CN110648310A (zh) 基于注意力机制的弱监督铸件缺陷识别方法
US11151710B1 (en) Automatic selection of algorithmic modules for examination of a specimen
TW202339038A (zh) 基於機器學習的半導體樣品的檢查及其訓練
Li et al. A defect detection method based on improved mask R-CNN for wafer maps
US12480889B2 (en) Inspection recipe optimization for semiconductor specimens
CN115953641A (zh) 半导体样本的缺陷检查
Danajitha et al. Detection of cracks in high rise buildings using drones
CN119168939A (zh) 用于半导体样本的基于机器学习的缺陷检查
CN117529803A (zh) 用于主动良率管理的制造指纹

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240531

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20250107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250206

R150 Certificate of patent or registration of utility model

Ref document number: 7633094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150