JP7524008B2 - 冷却装置及び冷却システム - Google Patents

冷却装置及び冷却システム Download PDF

Info

Publication number
JP7524008B2
JP7524008B2 JP2020157406A JP2020157406A JP7524008B2 JP 7524008 B2 JP7524008 B2 JP 7524008B2 JP 2020157406 A JP2020157406 A JP 2020157406A JP 2020157406 A JP2020157406 A JP 2020157406A JP 7524008 B2 JP7524008 B2 JP 7524008B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
heat
liquid
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020157406A
Other languages
English (en)
Other versions
JP2021076364A (ja
Inventor
耕作 西田
郁朗 赤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Publication of JP2021076364A publication Critical patent/JP2021076364A/ja
Application granted granted Critical
Publication of JP7524008B2 publication Critical patent/JP7524008B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、冷却装置及び該冷却装置を備える冷却システムに関する。
冷蔵倉庫などを冷却する冷却システムとして、例えば、アンモニアなどの一次冷媒が循環する一次冷媒回路と、二酸化炭素などを二次冷媒として用いた二次冷媒回路とを備え、一次冷媒によって冷却された二次冷媒液を液レシーバに溜め、液レシーバ内の二次冷媒液を液ポンプで冷蔵倉庫に設けられたエアクーラなどの冷却負荷に供給する自然冷媒冷却システムが知られている。この冷却システムでは、液ポンプや液ポンプの吸込側配管の内部で圧力が低下してキャビテーションが発生すると、冷却負荷に二次冷媒液を送ることができなくなるため、液レシーバを液ポンプより高い位置に配置し、必要吸込ヘッド(NPSHR:Required Net Positive Suction Head)以上の有効吸込ヘッド(NPSHA:Available Net Positive Suction Head)を確保する必要がある。この場合、装置全体の高さ寸法が大きくなり、設計や装置の配置に制約が生じる。また、デフロスト運転終了後の冷却運転時など液レシーバ内の冷媒圧力が急に減圧する場合には、液ポンプの吸込側でキャビテーションが発生する場合がある。
上記問題を解消するため、特許文献1及び2には、液レシーバの内部に冷却コイルを設けたり、あるいは液ポンプの吸込側配管に熱交換器を設け、該冷却コイルや該熱交換器に冷却媒体を供給する冷凍機を設け、液レシーバ内又は液ポンプの吸込側配管を流れる液冷媒を過冷却することで、液ポンプでキャビテーションが起るのを防止する手段が開示されている。
特開2007-155315号公報 特許第6321568号公報
特許文献1及び2に開示された手段は、液冷媒を冷却するため液冷媒より低温の冷却媒体を生成するための冷凍機、液冷媒と該冷却媒体とを熱交換する熱交換器、及び該冷却媒体を該熱交換器に供給する配管類等が新たに必要となる。そのため、余分な設置スペースが必要であることや、設備費が高コストとなる問題がある。
本開示は、上述する問題点に鑑みてなされたもので、有効吸込ヘッドを確保することにによる制約を緩和し、かつ低コストで液ポンプや液ポンプの吸込側配管に発生するキャビテーションを抑制する手段を実現することを目的とする。
上記目的を達成するため、本開示に係る冷却装置の一態様は、液レシーバと、前記液レシーバ内の液冷媒を冷却負荷に送るための液ポンプと、前記液レシーバと前記液ポンプとの間に設けられた冷媒管と、入口及び出口が前記液レシーバに接続された前記液冷媒の循環管と、前記冷媒管側に設けられた吸熱面および前記循環管側に設けられた放熱面を有するペルチェ素子と、を備える。
本開示に係る冷却システムの一態様は、一次冷媒が循環する一次冷媒回路と、前記一次冷媒回路に設けられた蒸発器を含む冷凍サイクル構成機器と、前記蒸発器で前記一次冷媒によって冷却された二次冷媒を前記冷却負荷に供給するための二次冷媒回路と、前記二次冷媒回路に設けられた上記構成の冷却装置と、を備え、前記液冷媒は前記二次冷媒として前記液レシーバに貯留され、かつ、前記冷媒管は前記液レシーバと前記液ポンプとの間で前記二次冷媒回路の一部を構成する。
本開示に係る冷却装置及び冷却システムによれば、ペルチェ素子を用いて液冷媒を過冷却することで、液冷媒が気化する圧力を下げることができる。これによって、液ポンプや吸込側配管の内部でキャビテーションが起るのを抑制できるため、有効吸込ヘッドを確保するための制約を緩和でき、冷却装置のコンパクト化と安定運転が可能になる。また、特許文献1及び2のように、冷凍機及び熱交換器等を新たに設ける必要がないため、装置の設置スペースの増加及び装置コストの増加を抑制できる。さらに、ペルチェ素子は吸熱面と放熱面との温度差が小さいほど、吸熱特性が向上するが、吸熱側の液冷媒と放熱側の液冷媒とは同じ液レシーバから供給され、両液冷媒の温度差は小さいので、良好な吸熱特性が得られる。また、放熱側の液冷媒は熱吸収時に相変化し、温度変化を伴わないため、良好な吸熱特性を維持できる。
一実施形態に係る冷凍システムの系統図である。 一実施形態に係る冷却装置の一部を示す正面図である。 図2中のA-A線に沿う一部断裁側面図である。 一実施形態に係る冷却装置のモリエル線図である。 一実施形態に係る多孔質材料の拡大図である。 一実施形態に係る多孔質材料を示す図である。 一実施形態に係る冷却装置の一部を示す正面図である。 図7中のB-B線に沿う一部断裁側面図である。 多孔質材料による熱伝達係数の向上を示すグラフである。 多孔質材料による熱伝達係数の向上を示すグラフである。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1は、一実施形態に係る冷凍システム10の系統図である。冷凍システム10は、一次冷媒が循環する一次冷媒回路12と、二次冷媒が循環する二次冷媒回路14と、を含む。一次冷媒回路12には蒸発器16を含む冷凍サイクル構成機器が設けられ、一次冷媒が冷凍サイクル構成機器を循環することで冷凍サイクルが構成される。二次冷媒回路14を循環する二次冷媒は蒸発器16で一次冷媒によって冷却され凝縮する。蒸発器16で凝縮した二次冷媒液は冷却負荷18に供給され、冷却負荷18の冷熱源として用いられる。例えば、一次冷媒としてアンモニアなどの自然冷媒が使用され、二次冷媒として二酸化炭素などの自然冷媒が使用される。
一実施形態では、冷凍サイクル構成機器として、一次冷媒回路12に圧縮機20、凝縮器22及び膨張弁24等が設けられる。圧縮機20で圧縮された一次冷媒は凝縮器22で冷却されて凝縮し、凝縮した一次冷媒液は膨張弁24を経て減圧され、一次冷媒回路12の蒸発器として機能する蒸発器16に送られる。蒸発器16で一次冷媒液は二次冷媒から吸熱して気化し、気化した一次冷媒は圧縮機20で再度圧縮される。
図1に示すように、一実施形態に係る冷却装置30は、液冷媒を溜めるための液レシーバ32を備え、液レシーバ32と液ポンプ34との間に冷媒管36が設けられ、液レシーバ32に溜まった液冷媒は、冷媒管36を介して液ポンプ34によって冷却負荷18に送られる。さらに、冷却装置30は、入口及び出口が液レシーバ32に接続された液冷媒の循環管38を備えると共に、冷媒管36を流れる液冷媒と循環管38を流れる液冷媒との間で熱伝達を行わせるためのペルチェ素子40が設けられている。冷媒管36は、液レシーバ32と液ポンプ34との間において、一端が液レシーバ32の底面に接続され、液ポンプ34に向かって下降する配管で構成される。一実施形態では、図1に示すように、鉛直方向に配置される。ペルチェ素子40はこの下降する配管に設けられる。一実施形態では、図1に示すように、循環管38は、上端が液レシーバ32に接続され液レシーバ32の底面から下方へ下降し、下端部から上方に折り返して液レシーバ32の底面に接続するように構成される。
図2は、ペルチェ素子40及びその周辺を示す拡大正面図であり、図3は、図2中のA-A線に沿う一部断裁断面図である。ペルチェ素子40は、冷媒管36側に設けられた吸熱面40aと、循環管38側に設けられた放熱面40bとを有する。冷媒管36及び循環管38には液レシーバ32内の飽和液冷媒Lrが供給されるが、導線42を介してペルチェ素子40に電流を流すと、吸熱面40a及び放熱面40b間に温度差が形成され、冷媒管36を流れる飽和液冷媒Lrから循環管38を流れる飽和液冷媒Lrに熱移動が起る。これによって、冷媒管36を流れる飽和液冷媒Lrは過冷却され、循環管38を流れる飽和液冷媒Lrは熱を受けて少なくとも一部が気相に変化する。冷媒管36を流れる液冷媒が過冷却されることで、液冷媒が気化する圧力を下げることができる。これによって、冷媒管36に設けられた液ポンプ34の吸込側における必要吸込ヘッド(NPSHR)より有効吸入ヘッド(NPSHA)を大きくできるため、有効吸込ヘッドを確保するための制約を緩和できる。これによって、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションが起るのを抑制できる。従って、冷却装置30のコンパクト化と安定運転が可能になる。また、有効吸込ヘッドを確保するために、冷凍機や熱交換器等を新たに設ける必要がなく、循環管38及びペルチェ素子40等を追設するだけで済むため、装置の設置スペースの増加及び装置コストの増加も抑制できる。
また、ペルチェ素子40は吸熱面40aと放熱面40bとの温度差が小さいほど、少ない電力で多くの吸熱量が得られ、吸熱特性が向上する。冷媒管36に流下する飽和液冷媒Lrと循環管38に流下する飽和液冷媒Lrとは同じ液レシーバ32から供給されるため、両飽和液冷媒Lrの温度差は小さい。従って、ペルチェ素子40は良好な吸熱特性が得られる。また、循環管38を流れる飽和液冷媒Lrは、熱吸収時に液冷媒の一部が蒸発して気相に変化するだけで液冷媒の温度変化を伴わないため、良好な吸熱特性を持続できる。
図4は、モリエル線図の一部を示す。同図中、点Pcは臨界点を示し、点Pcより左側のラインXは飽和液線を示し、点Pcより右側のラインYは飽和蒸気線を示す。また、点aは液レシーバ32内の飽和液冷媒の状態量(例えば、-40℃、1.0MPa)を示し、点cは液ポンプ34内の最小静圧部の状態量を示す。液レシーバ32から冷媒管36に供給された液冷媒は、ペルチェ素子40によって点aより過冷却されて点bに示す状態量となる。一実施形態では、過冷却された点bの温度に相当する飽和液線X上の位置は点dである。この場合、点dにおける圧力Psは飽和液線X上の点cの圧力以下に降下している。従って、点aから点c(液ポンプ34内の最小静圧)までの必要吸込ヘッド(NPSHR)に対して、点aから点dまでの有効吸込ヘッド(NPSHA。例えば、0.8m)を確保できる状態量となるため、この液冷媒が液ポンプ34に流入するとき、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションが起るのを抑制できる。
一実施形態では、図1に示すように、循環管38は、液レシーバ32から下方に向かって延びる下降管部38aと、折り返し部38cを介して下降管部38aに接続され、上方の液レシーバ32に向かって延在する上昇管部38bと、を有する。ペルチェ素子40の放熱面40bは上昇管部38b側に設けられる。上昇管部38bにおいて、放熱面40bから熱を受けた飽和液冷媒Lrは一部が気化し、気化したガス冷媒は浮力により上昇する。そのため、下降管部38aを自重により下降する飽和液冷媒Lrとの間で密度差が生じ、液レシーバ32→下降管部38a→折り返し部38c→上昇管部38b→液レシーバ32という自然循環の流れが形成される。従って、循環管38の内部で冷媒を循環させるための動力が不要になる。
また、図1は、冷凍システム10に冷却装置30を組み込んだ場合の実施形態を示しており、図1に示す実施形態では、液レシーバ32に貯留される液冷媒は二次冷媒であり、冷媒管36は二次冷媒回路14の一部を構成する。
一実施形態では、冷却負荷18は、食料品などを保冷状態に保つ冷却庫44(例えば、冷蔵庫、冷凍庫等)に設けられ、冷却庫44内を冷却するためのエアクーラで構成され、二次冷媒回路14は該エアクーラに導設されている。従って、この実施形態では、冷却庫44に設けられたエアクーラに二次冷媒を供給する場合に、液ポンプ34や液ポンプ34の吸込側配管におけるキャビテーションの発生を抑制できるため、該エアクーラに二次冷媒を安定供給できる。
一実施形態では、図2及び図3に示すように、冷媒管36又は循環管38の少なくとも一方の配管内に伝熱促進部材46が設けられる。伝熱促進部材46は、吸熱面40a又は放熱面40bの法線Nの方向から視たとき、吸熱面40a又は放熱面40bとオーバラップする領域に設けられる。伝熱促進部材46を備えることで、冷媒管36又は循環管38を流れる飽和液冷媒Lrとの熱伝達を促進できるため、吸熱面40a側から放熱面40b側への熱伝達を促進でき、冷媒管36を流れる飽和液冷媒Lrのペルチェ素子40による冷却効果を向上できる。
図2及び図3に示す例示的な実施形態では、冷媒管36及び循環管38の両方に伝熱促進部材46が設けられる。また、吸熱面40aと放熱面40bとは、冷媒管36及び循環管38の管軸方向において全領域で互いにオーバラップし、このオーバラップした冷媒管36及び循環管38の全領域に伝熱促進部材46が設けられる。これによって、オーバラップした全領域で伝熱が促進されるため、ペルチェ素子40による飽和液冷媒Lrの冷却効果を向上できる。
伝熱促進部材46の配置によって冷媒管36を流れる液冷媒の圧力損失が大きくなると、圧力損失した分だけ有効吸込ヘッドを余分に確保する必要があるため、圧力損失をなるべく抑える必要がある。また、伝熱促進部材46の伝熱面積を増加させることで熱伝達を促進できるため、伝熱促進部材46は表面積が大きい材料が好ましい。
一実施形態では、図5及び図6に示すように、伝熱促進部材46は、大きな表面積を有する多孔質材料で構成されている。これによって、多孔質材料を介した配管と液冷媒との熱伝達が促進される。また、多孔質材料の乱流促進効果によって液冷媒が乱流となることで、液冷媒の圧力損失を抑えながら配管と液冷媒との熱伝達を高めることができる。図5に示す多孔質材料46(46a)は、直径約2.4mmのセル内に、孔径が約0.8mmの空隙47が形成されている。
図6に示す多孔質材料46(46b)は、線状部材の集合体で構成されている。伝熱促進部材46がこのような線状部材の集合体で構成されるため、表面積を大きくでき、冷媒管36又は循環管38を流れる液冷媒の圧力損失を抑えながら、冷媒管36と循環管38を流れる液冷媒の熱伝達を促進し、液冷媒の冷却効果を高めることができる。
一実施形態では、伝熱促進部材46は、例えば、銅やアルミ等のように、熱伝導性の良い金属材料で構成された多孔質材料で構成される。これによって、伝熱促進部材46の伝熱効果をさらに高め、冷媒管36を流れる液冷媒の冷却効果をさらに高めることができる。
一実施形態では、ペルチェ素子40は、冷媒管36を流れる飽和液冷媒Lrを液ポンプ34の必要吸込ヘッドに相当する過冷却温度以上に冷却可能な冷却性能を有するように構成されている。これによって、ペルチェ素子40によって冷媒管を流れる飽和液冷媒Lrを液ポンプ34の必要吸込ヘッド以上に沸点圧力を降下できるため、冷媒管36に必要吸込ヘッドを形成しなくても、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションの発生を確実に抑制できる。
一実施形態では、図1に示すように、液レシーバ32内の気相部の圧力を検出する圧力センサ48と、液ポンプ34の入口側の液冷媒の温度を検出する温度センサ49と、圧力センサ48及び温度センサ49の検出値に基づいてペルチェ素子40の作動を制御する制御部50と、を備える。この実施形態によれば、制御部50が圧力センサ48の検出値に基づいてペルチェ素子40の作動を制御し、かつ制御部50は温度センサ49の検出値に基づいてペルチェ素子をフィードバック制御することで、液ポンプ34の入口付近における液冷媒の過冷却度が必要吸込ヘッド以上となるように正確に制御できる。
図1に示す実施形態では、制御部50は、電源部41を制御し、導線42を介してペルチェ素子40に流す電流値を制御する。
以下、制御部50による具体的な制御の一例を説明する。まず、点bの温度Tbを温度センサ49で検出する。次に、液レシーバ32内の圧力Paを圧力センサ48で検出する。圧力Paと点bの温度Tbとから、既知の下記式を用いて、点bのエンタルピhbを算出する。
hb=f(Pa、Tb)
さらに、飽和液線X上でエンタルピhbとなる点dの圧力Psを既知の下記式を用いて算出する。
hd=f(Ps) hd=hb
有効吸込ヘッド(NPSHA)ΔPは、ΔP=Pa-Psから求めることができる。実際に用いられる液冷媒の有効吸込ヘッド(NPSHA)Hは下記式で求められる。
H=ΔP/ρd・g
ここで、ρdは点dにおける液冷媒の密度であり、gは重力である。
ρdは、圧力Psから既知式ρd=f(Ps)で求めることができる。用いられる液冷媒のヘッドHが必要吸込ヘッド(NPSHR)より大きくなるように、ペルチェ素子40に供給する電流値を制御する。これによって、冷却負荷18の冷熱量が変動して液レシーバ42内の温度及び圧力が変動しても、液ポンプ34及びその吸込側配管の内部でキャビテーションを確実に抑制できる。
一実施形態では、図1に示すように、冷媒管36と循環管38とは、少なくともペルチェ素子40が設置される設置領域内において、互いに平行に配置されている。そして、ペルチェ素子40は、冷媒管36と循環管38との間において、冷媒管36及び循環管38の管軸方向に沿って延在する。このように、冷媒管36、循環管38及びペルチェ素子40が同一方向に沿って延在するので、吸熱面40aと放熱面40bとの間のペルチェ素子40の配置スペースを縮小でき、ペルチェ素子40に配置が容易になる。また、広い吸熱面40a及び放熱面40bを容易に確保できるため、ペルチェ素子40の効率を向上でき、冷媒管36を流れる液冷媒の冷却効果を高めることができる。
図2及び図3に示す実施形態では、ペルチェ素子40の本体を板状に形成している。このように、ペルチェ素子40を板状に形成することで、冷媒管36と循環管38との間のスペースが狭くても、ペルチェ素子40の配置が容易になる。
一実施形態では、図2、3及び図7、8に示すように、ペルチェ素子40を挟むように、第1ブロック52(52a、52b)及び第2ブロック62(62a、62b)が設けられている。第1ブロック52は、冷媒管36が貫通する第1貫通孔54及び吸熱面40aに当接する第1伝熱面56を有し、冷媒管36の周囲に設けられている。第2ブロック62は、循環管38が貫通する第2貫通孔64及び放熱面40bに当接する第2伝熱面66を有し、循環管38の周囲に設けられている。このような第1ブロック52及び第2ブロック62を備えるため、吸熱面40a及び放熱面40bの形成が容易になる。
図2、3及び図7、8に示す例示的な実施形態では、第2ブロック62は循環管38の上昇管部38bの周囲に設けられている。これによって、上述のように、循環管38に飽和液冷媒Lrの自然循環流を形成できる。
一実施形態では、図2及び図3に示すように、吸熱面40a及び放熱面40bは、冷媒管36及び循環管38の管軸方向に沿って互いに平行に配置され、第1ブロック52(52a)又は第2ブロック62(62a)の少なくとも一方は、吸熱面40a又は放熱面40bに沿う第1分割面55a又は第2分割面65aに沿って分割された2つ以上の分割片53a、53b又は63a、63bで構成される。分割片53a及び53bの各々は、第1貫通孔54を形成する凹部を有し、分割片53a及び53bの少なくとも1つは、第1伝熱面56を有する。また、分割片63a及び63bの各々は、第2貫通孔64を形成する凹部を有し、分割片63a及び63bの少なくとも1つは、第2伝熱面66を有する。このように、第1ブロック52(52a)又は第2ブロック62(62a)が、2つ以上の分割片で構成されるため、第1ブロック52(52a)又は第2ブロック62(62a)の冷媒管36又は循環管38への装着が容易になる。
図2及び図3に示す例示的な実施形態では、第2ブロック62(62a)は循環管38の上昇管部38bの周囲に設けられている。これによって、上述のように、循環管38に飽和液冷媒Lrの自然循環流を形成できる。
図2及び図3に示す例示的な実施形態では、第1ブロック52(52a)は、吸熱面40aに沿う面を第1分割面55aとし、第1分割面55aに沿って分割された2つの分割片53a及び53bで構成される。また、第2ブロック62(62a)は、放熱面40bに沿う面を第2分割面65aとし、第2分割面65aに沿って分割された2つの分割片63a及び63bで構成される。
図2及び図3に示す例示的な実施形態では、第1ブロック52(52a)及び第2ブロック62(62a)は直方体の形状に形成される。これによって、第1伝熱面56及び第2伝熱面66の面積を大きく取ることができる。また、第1ブロック52(52a)は第1分割面55aに沿って半割りに分割された2つの分割片53a及び53bで構成され、夫々横断面が半円形の凹部が形成されている。該凹部で冷媒管36を挟み込むように分割片53a及び53bを配置することで、第1ブロック52(52a)を冷媒管36の周囲に容易に配置できる。同様に、第2ブロック62(62a)は第2分割面65aに沿って半割りに分割された2つの分割片63a及び63bで構成され、夫々横断面が半円形の凹部が形成されている。該凹部で循環管38の上昇管部38bを挟み込むように分割片63a及び63bを配置することで、第2ブロック62(62a)を循環管38の上昇管部38bの周囲に容易に配置できる。
図2及び図3に示す例示的な実施形態では、分割片53aと53b、及び分割片63aと63bとは、夫々第1分割面55a又は第2分割面65aにおいて互いの面が当接された状態で、法線Nの方向に沿って延在するように配置されたボルト70で結合される。
一実施形態では、図7及び図8に示すように、吸熱面40a及び放熱面40bは、冷媒管36及び循環管38の管軸方向に沿って互いに平行に配置され、第1ブロック52(52b)又は第2ブロック62(62b)の少なくとも一方は、冷媒管36及び循環管38の管軸を含み吸熱面40a及び放熱面40bに交差する面に沿う第1分割面55b又は第2分割面65bによって分割された2つ以上の分割片53c、53d又は63c、63dで構成される。分割片53c及び53dの各々は、第1貫通孔54を形成する凹部を有し、分割片53c及び53dの少なくとも1つは、第1伝熱面56を有する。また、分割片63c及び63dの各々は、第2貫通孔64を形成する凹部を有し、分割片63c及び63dの少なくとも1つは、第2伝熱面66を有する。
このように、第1ブロック52(52b)又は第2ブロック62(62b)が、2つ以上の分割片で構成されるため、第1ブロック52(52b)又は第2ブロック62(62b)の冷媒管36又は循環管38への装着が容易になる。また、2つ以上の分割片は、冷媒管36及び循環管38の管軸を含み吸熱面40a及び放熱面40bに交差する面に沿って分割され、これらの分割面が吸熱面40a及び放熱面40bと交差する方向に沿って生じる熱伝達を遮らない方向に配置され、伝熱抵抗とならないため、伝熱性能を向上できる。
図7及び図8に示す例示的な実施形態では、第2ブロック62(62b)は循環管38の上昇管部38bの周囲に設けられている。これによって、上述のように、循環管38に飽和液冷媒Lrの自然循環流を形成できる。
図7及び図8に示す例示的な実施形態では、第1ブロック52(52b)及び第2ブロック62(62b)は、冷媒管36及び循環管38の管軸を含みかつ法線Nを含む面を第1分割面55b又は第2分割面65bとし、第1分割面55b又は第2分割面65bに沿って分割された2つの分割片53c、53d及び63c、63dで構成される。これによって、第1分割面55b又は第2分割面65bは、吸熱面40a及び放熱面40bと直交する方向に沿って生じる熱伝達を遮らない方向に配置され、伝熱抵抗とならないため、伝熱性能を向上できる。
図7及び図8に示す例示的な実施形態では、第1ブロック52(52b)及び第2ブロック62(62b)は直方体の形状に形成される。これによって、第1伝熱面56及び第2伝熱面66の面積を大きく取ることができる。また、第1ブロック52(52b)は第1分割面55bに沿って半割りに分割された2つの分割片53c及び53dで構成され、夫々横断面が半円形の凹部が形成されている。該凹部で冷媒管36を挟み込むように分割片53c及び53dを配置することで、第1ブロック52(52b)を冷媒管36の周囲に容易に配置できる。同様に、第2ブロック62(62b)は第2分割面65bに沿って半割りに分割された2つの分割片63c及び63dで構成され、夫々横断面が半円形の凹部が形成されている。該凹部で循環管38の上昇管部38bを挟み込むように分割片63c及び63dを配置することで、第2ブロック62(62b)を循環管38の上昇管部38bの周囲に容易に配置できる。
図7及び図8に示す例示的な実施形態では、分割片53cと53d、及び分割片63cと63dとは、夫々第1分割面55b又は第2分割面65bにおいて互いの面が当接された状態で、管軸方向及び法線Nの方向に直交する方向に沿って延在するように配置されたボルト71で結合される。
なお、さらに別な実施形態として、図2及び図3に示す第1ブロック52(52a)と、図7及び図8に示す第2ブロック62(62b)とを組み合わせて用いることができる。また、図2及び図3に示す第2ブロック62(62a)と、図7及び図8に示す第1ブロック52(52b)とを組み合わせて用いることができる。
さらに、図2及び図3に示す例示的な実施形態では、第1ブロック52(52a)の吸熱面40a側で第1ブロック52(52a)の縦横2辺より大きな2辺を有する結合板58aが第1ブロック52(52a)に一体に形成されている。また、第2ブロック62(62a)の放熱面40b側で第2ブロック62(62a)の縦横2辺より大きな2辺を有する結合板68aが第2ブロック62(62a)に一体に形成されている。図7及び図8に示す例示的な実施形態では、冷媒管36の管軸方向と直交する方向に沿う一辺が第1ブロック52(52b)の辺より大きな辺を有する結合板58bが第1ブロック52(52b)と一体に設けられ、循環管38の上昇管部38bの管軸方向と直交する方向に沿う一辺が第2ブロック62(62b)の辺より大きな辺を有する結合板68bが第2ブロック62(62b)と一体に設けられている。このように、結合板58a、58b及び68a、68bを備えるため、広い吸熱面40a、放熱面40b及び第1伝熱面56、第2伝熱面66の形成が可能になる。
図2、図3及び図7、8に示す例示的な実施形態では、結合板58a、58b及び68a、68bにボルト孔を形成し、結合板58a、58b及び68a、58bをボルト72及びナット74で結合することで、ペルチェ素子40の両側面に結合板58a、58b及び68a、68bを容易に固定できる。
一実施形態では、図7及び図8に示すように、伝熱促進部材46は、冷媒管36及び循環管38の両方に設けられている。そして、冷媒管36又は循環管38の管軸方向において、伝熱促進部材46が設けられた循環管38の第1領域Lは、伝熱促進部材46が設けられた冷媒管36の第2領域Lより広範囲である。冷媒管36で発生する飽和液冷媒Lrの圧力損失は、ペルチェ素子40による過冷却で低減した沸点圧力の低減分を相殺してしまい、液ポンプ34でキャビテーションが発生しやすくなる。そこで、第2領域L<第1領域Lとすることで、冷媒管36を流れる飽和液冷媒Lrの圧力損失を小さくすることができる。一方、循環管38を流れる冷媒は放熱面40bで加熱されて沸騰領域にあり、また、上昇流であるため流速も遅い。従って、圧力損失は大きくならない。そのため、第2領域Lを管軸方向に沿って広げることで伝熱を促進できる。
図7に示す例示的な実施形態では、吸熱面40aと放熱面40bとは、管軸方向の全領域で互いにオーバラップし、冷媒管36に充填された伝熱促進部材46の第2領域Lは該オーバラップ領域より狭い範囲であり、循環管38の上昇管部38bに充填された伝熱促進部材46の第1領域Lは該オーバラップ領域より広範囲である。これによって、冷媒管36において圧力損失を低減できると共に、循環管38において熱伝達を促進できる。
一実施形態では、冷媒管36と第1貫通孔54を形成する第1ブロック52の壁面との間、吸熱面40aと第1伝熱面56との間、循環管38と第2貫通孔64を形成する第2ブロック62の壁面との間、及び放熱面40bと第2伝熱面66との間の少なくとも1か所に、伝熱性グリスが充填されている。これによって、吸熱面40a及び放熱面40bを介した冷媒管36から循環管38への熱伝達をさらに促進できる。
図2及び図3に示す実施形態において、第1分割面55a又は第2分割面65aに伝熱性グリスを充填することができる。これによって、分割片53a、53b間及び分割片63a、63b間の伝熱を促進できる。また、図7及び図8に示す実施形態において、第1分割面55b又は第2分割面65bに伝熱性グリスを充填することができる。これによって、分割片53c、53d間及び分割片63c、63d間の伝熱を促進できる。
なお、図7及び図8に示す実施形態では、第1分割面55b及び第2分割面65bが法線Nに沿う方向に形成されているので、第1分割面55b及び第2分割面65bが吸熱面40aから冷媒管36側へ向かう熱伝達及び放熱面40bから循環管38側へ向かう熱伝達を妨げないため、伝熱性能を向上できるという利点がある。
図9及び図10は、図2及び図3に示す冷却装置30において、冷媒管36及び循環管38に温度-20℃の液冷媒(二酸化炭素液)を流して熱伝達係数を求めた実験データを示す。図9及び図10中、黒丸は、図6に示すアルミ製の多孔質材料を冷媒管36及び循環管38に充填した場合であり、白丸は、冷媒管36及び循環管38に該多孔質材料を充填していない場合を示す。図9の横軸は液冷媒の流量を表す指標となるレイノルズ数Reを示し、図10の横軸は熱流束を示す。図9から、多孔質材料を充填したときに得られた熱伝達係数は、多孔質材料を充填しないときの熱伝達係数の4倍程度増加することがわかった。また、図10から、多孔質材料を充填したときに得られた熱伝達係数は、多孔質材料を充填しないときの熱伝達係数の1.5倍程度増加することがわかった。
一実施形態では、制御部50は、冷凍システム10の負荷が増加したとき、ペルチェ素子40に流す電流値を減少させ、冷凍システム10の負荷が減少したとき、ペルチェ素子40に流す電流値を増加させるように構成されている。即ち、冷凍システム10の負荷が増加したとき、液レシーバ32内の圧力も増加するので、必要有効吸込ヘッドは減少する。従って、ペルチェ素子40に流す電流値を減少させ、液冷媒の過冷却度を減少させても、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションの発生を抑制できる。逆に、冷凍システム10の負荷が減少したとき、液レシーバ32内の圧力も減少するので、逆に必要有効吸込ヘッドは増加する。従って、ペルチェ素子40に流す電流値を増加させ液冷媒の過冷却度を増加させることで、液ポンプ34や液ポンプ34の吸込側配管の内部でキャビテーションの発生を抑制できる。
上記各実施形態に記載の内容は、例えば以下のように把握される。
1)一つの態様に係る冷却装置(30)は、液レシーバ(32)と、前記液レシーバ(32)内の液冷媒を冷却負荷に送るための液ポンプ(34)と、前記液レシーバ(32)と前記液ポンプ(34)との間に設けられた冷媒管(36)と、入口及び出口が前記液レシーバ(32)に接続された前記液冷媒の循環管(38)と、前記冷媒管(36)側に設けられた吸熱面(40a)及び前記循環管(38)側に設けられた放熱面(40b)を有するペルチェ素子(40)と、を備える。
このような構成によれば、上記ペルチェ素子によって上記冷媒管を流れる液冷媒から循環管を流れる液冷媒への熱移動が起り、液ポンプの吸込側で液冷媒が過冷却するので、液冷媒が気化する圧力を下げることができる。これによって、液ポンプや吸込側配管の内部でキャビテーションが起るのを抑制できるため、有効吸込ヘッドを確保するための制約を緩和でき、冷却装置のコンパクト化と安定運転が可能になる。また、特許文献1及び2のように、冷凍機及び熱交換器等を新たに設ける必要がないため、装置の設置スペースの増加及び装置コストの増加を抑制できる。さらに、ペルチェ素子は吸熱面と放熱面との温度差が小さいほど、吸熱特性が向上するが、吸熱側の液冷媒と放熱側の液冷媒とは同じ液レシーバから供給され、両液冷媒の温度差は小さいので、良好な吸熱特性が得られる。また、放熱側の液冷媒は熱吸収時に相変化し、温度変化を伴わないため、良好な吸熱特性を維持できる。
2)別な態様に係る冷却装置は、1)に記載の冷却装置であって、前記冷媒管(36)又は前記循環管(38)の少なくとも一方の配管内において、前記ペルチェ素子(40)の前記吸熱面(40a)又は前記放熱面(40b)の法線(N)の方向から視たとき、前記配管(36、38)のうち前記吸熱面(40a)又は前記放熱面(40b)とオーバラップする領域に設けられる伝熱促進部材(46)を備える。
このような構成によれば、冷媒管又は循環管の内部に設けられた伝熱促進部材によって、冷媒管又は循環管とこれらの配管を流れる液冷媒との熱伝達を促進できるため、吸熱面側から放熱面側への熱伝達を促進でき、これによって、冷媒管を流れる液冷媒の冷却効果を高めることができる。
3)さらに別な態様に係る冷却装置は、2)に記載の冷却装置であって、前記伝熱促進部材(46)は、多孔質材料(46(46a、46b))で構成されている。
このような構成によれば、表面積が大きい多孔質材料によって、多孔質材料を介した配管壁面と液冷媒との熱伝達が促進される。また、多孔質材料の乱流促進効果によって、液冷媒が乱流となることで、液冷媒の圧力損失を抑えながら配管と液冷媒との熱伝達を高めることができる。
4)さらに別な態様に係る冷却装置は、2)又は3)に記載の冷却装置であって、前記伝熱促進部材(46)は、前記冷媒管(36)及び前記循環管(38)の内部に設けられ、前記冷媒管(36)又は前記循環管(38)の管軸方向において、前記伝熱促進部材(46)が設けられた前記循環管(38)の第1領域(L)は、前記伝熱促進部材(46)が設けられた前記冷媒管(36)の第2領域(L)より広範囲である。
冷媒管で発生する飽和液冷媒の圧力損失は、ペルチェ素子による過冷却で低減した沸点圧力(液冷媒が気化する圧力)の低減分を相殺してしまい、液ポンプの吸込み側でキャビテーションが発生しやすくなる。上記構成によれば、伝熱促進部材が充填された冷媒管の第1領域を狭い範囲とすることで、冷媒管を流れる飽和液冷媒の圧力損失を小さくすることができる。一方、循環管を流れる冷媒は加熱されて沸騰領域にありかつ上昇流であるため流速も遅い。従って、圧力損失は大きくならないため、第2領域を広げることで伝熱を促進できる。
5)さらに別な態様に係る冷却装置は、1)乃至4)の何れかに記載の冷却装置であって、前記循環管(38)は、前記液レシーバ(32)から下方に向かって延びる下降管部(38a)と、折り返し部(38c)を介して該下降管部(38a)に接続されて前記液レシーバ(32)へと上方に向かって延びる上昇管部(38b)と、を含み、前記ペルチェ素子(40)の前記放熱面(40b)は前記上昇管部(38b)側に設けられる。
このような構成によれば、上記上昇管部において、上記放熱面から熱を受けた飽和液冷媒は一部が気化し、気化したガス冷媒は浮力により上昇する。そのため、下降管部を自重により下降し、上昇管部を上昇する冷媒の自然循環が起る。従って、循環管の内部で冷媒を循環させるための動力が不要になる。
6)さらに別な態様に係る冷却装置は、1)乃至5)の何れかに記載の冷却装置であって、前記ペルチェ素子(40)は、前記冷媒管(36)を流れる前記液冷媒(Lr)を前記液ポンプ(34)の必要吸込ヘッド(NPSHR)に相当する過冷却温度以上に冷却可能に構成されている。
このような構成によれば、ペルチェ素子によって冷媒管を流れる液冷媒を液ポンプの必要吸込ヘッド以上に沸点圧力を降下できるため、冷媒管に必要吸込ヘッドを形成しなくても、液ポンプや液ポンプの吸込側配管の内部におけるキャビテーションの発生を抑制できる。
7)さらに別な態様に係る冷却装置は、1)乃至6)の何れかに記載の冷却装置であって、前記液レシーバ(32)内の圧力を検出する圧力センサ(48)と、前記液ポンプ(34)の入口側の前記液冷媒の温度を検出する温度センサ(49)と、前記圧力センサ(48)及び前記温度センサ(49)の検出値に基づいて前記ペルチェ素子(40)を制御する制御部(50)と、を備える。
このような構成によれば、上記制御部が、上記圧力センサの検出値に基づいてペルチェ素子の作動を制御し、かつ上記温度センサの検出値に基づいてペルチェ素子をフィードバック制御する。これによって、冷却負荷が変動して液レシーバ内の圧力又は温度が変動しても、液ポンプや液ポンプの吸込側配管の内部におけるキャビテーションの発生を確実に抑制できる。
8)さらに別な態様に係る冷却装置は、1)乃至7)の何れかに記載の冷却装置であって、前記冷媒管(36)と前記循環管(38)とは、少なくとも、前記ペルチェ素子(40)が設置される設置領域内において、互いに平行に配置され、前記ペルチェ素子(40)は、前記冷媒管(36)および前記循環管(38)の間において、前記冷媒管(36)および前記循環管(38)の管軸方向に沿って延在する。
このような構成によれば、冷媒管、循環管及びペルチェ素子が同一方向に沿って延在するので、冷媒管と循環管との間のペルチェ素子の配置スペースを縮小でき、ペルチェ素子の配置が容易になる。また、広い吸熱面及び放熱面を容易に確保できるため、ペルチェ素子の効率を向上できる。
9)さらに別な態様に係る冷却装置は、1)乃至8)の何れかに記載の冷却装置であって、前記冷媒管が貫通する第1貫通孔(54)および前記吸熱面(40a)に当接する第1伝熱面(56)を有し、前記冷媒管(36)の周囲に設けられた第1ブロック(52)と、前記循環管(38)が貫通する第2貫通孔(64)および前記放熱面(40b)に当接する第2伝熱面(66)を有し、前記ペルチェ素子(40)を挟んで前記第1ブロックに対向する位置で前記循環管の周囲に設けられた第2ブロック(62)と、を備える。
このような構成によれば、上記構成の第1ブロック及び上記第2ブロックを備えるため、ペルチェ素子の配置と吸熱面及び放熱面の形成とが容易になる。
10)さらに別な態様に係る冷却装置は、9)に記載の冷却装置であって、前記吸熱面(40a)及び前記放熱面(40b)は、前記冷媒管(36)及び前記循環管(38)の管軸方向に沿って互いに平行に配置され、前記第1ブロック(52)又は前記第2ブロック(62)の少なくとも一方は、前記吸熱面(40a)又は前記放熱面(40b)に沿って分割された2つ以上の分割片(53a、53b、63a、63b)で構成され、前記分割片の各々は、前記第1貫通孔(54)又は前記第2貫通孔(64)を形成する凹部を有し、前記分割片の少なくとも1つは、前記第1伝熱面(56)又は前記第2伝熱面(66)を有する。
このような構成によれば、第1ブロック又は第2ブロックが、2つ以上の分割片で構成されるため、第1ブロック又は第2ブロックの冷媒管又は循環管への装着が容易になる。
11)さらに別な態様に係る冷却装置は、9)に記載の冷却装置であって、前記吸熱面(40a)及び前記放熱面(40b)は、前記冷媒管(36)及び前記循環管(38)の管軸方向に沿って互いに平行に配置され、前記第1ブロック(52)又は前記第2ブロック(62)の少なくとも一方は、前記冷媒管(36)および前記循環管(38)の管軸を含み前記吸熱面(40a)及び前記放熱面(40b)に交差する面に沿って分割された2つ以上の分割片(53c、53d、63c、63d)で構成され、前記分割片の各々は、前記第1貫通孔(54)又は前記第2貫通孔(64)を形成する凹部を有し、前記分割片の少なくとも1つは、前記吸熱面(40a)又は前記放熱面(40b)を有する。
このような構成によれば、第1ブロック又は第2ブロックが、2つ以上の分割片で構成されるため、第1ブロック又は第2ブロックの冷媒管又は循環管への装着が容易になる。また、2つ以上の分割片は、冷媒管及び循環管の管軸を含み吸熱面及び放熱面に交差する面に沿って分割され、分割面が熱伝達を遮らない方向に配置され、伝熱抵抗とならないため、吸熱面から冷媒管に向かう伝熱性能及び放熱面から循環管に向かう伝熱性能を向上できる。
12)さらに別な態様に係る冷却装置は、9)乃至11)の何れかに記載の冷却装置であって、前記冷媒管(36)と前記第1貫通孔(54)を形成する前記第1ブロック(52)の壁面との間、前記吸熱面(40a)と前記第1伝熱面(56)との間、前記循環管(38)と前記第2貫通孔(64)を形成する前記第2ブロック(62)の壁面との間、および、前記放熱面(40b)と前記第2伝熱面(66)との間の少なくとも1か所に、伝熱性グリスが充填されている。
このような構成によれば、上記箇所に伝熱性グリスが充填されるため、吸熱面及び放熱面を介した冷媒管から循環管への熱伝達をさらに促進できる。
13)本開示に係る冷却システム(10)は、一次冷媒が循環する一次冷媒回路(12)と、前記一次冷媒回路(12)に設けられた蒸発器(16)を含む冷凍サイクル構成機器と、前記蒸発器(16)で前記一次冷媒によって冷却された二次冷媒を前記冷却負荷(18)に供給するための二次冷媒回路(14)と、前記二次冷媒回路(14)に設けられた上述の冷却装置(30)と、を備え、前記液冷媒は前記二次冷媒として前記液レシーバ(32)に貯留され、かつ、前記冷媒管(36)は前記液レシーバ(32)と前記液ポンプ(34)との間で前記二次冷媒回路(14)の一部を構成する。
このような構成によれば、ペルチェ素子によって液ポンプの吸込側で液冷媒が過冷却するので、沸点圧力を下げることができ、これによって、液ポンプや液ポンプの吸込側配管の内部でキャビテーションが起るのを抑制できるため、有効吸込ヘッドを確保するための制約を緩和できる。従って、冷却装置のコンパクト化と安定運転が可能になる。また、冷凍機及び熱交換器等を新たに設ける必要がないため、装置の設置スペース及び装置コストの増加を抑制できる。
14)別な態様に係る冷却システムは、13)に記載の冷却システムであって、前記冷却負荷(18)は冷却庫に設けられたエアクーラであり、前記二次冷媒回路(14)は前記エアクーラに導設されている。
このような構成によれば、冷却庫に設けられたエアクーラに二次冷媒を供給する場合に、液ポンプや液ポンプの吸込側配管の内部でキャビテーションの発生を抑制できるため、該エアクーラに二次冷媒を安定供給できる。
15)さらに別な態様に係る冷却システムは、13)又は14)に記載の冷却システムであって、前記液レシーバ(32)内の圧力を検出する圧力センサ(48)と、前記液ポンプ(34)の入口側の前記液冷媒の温度を検出する温度センサ(49)と、前記圧力センサ(48)及び前記温度センサ(49)の検出値に基づいて前記ペルチェ素子(40)を制御する制御部(50)と、を備え、前記制御部(50)は、前記冷却システムの負荷が増加したとき、前記ペルチェ素子(40)に流す電流値を減少させ、前記冷却システムの負荷が減少したとき、前記ペルチェ素子(40)に流す電流値を増加させるように構成されている。
このような構成によれば、冷却システムの負荷が変動しても、負荷変動に応じてペルチェ素子に流す電流値を変えることで、液ポンプや液ポンプの吸込側配管の内部でキャビテーションの発生を確実に抑制できる。
10 冷凍システム
12 一次冷媒回路
14 二次冷媒回路
16 蒸発器
22 凝縮器
18 冷却負荷
20 圧縮機
24 膨張弁
30 冷却装置
32 液レシーバ
34 液ポンプ
36 冷媒管
38 循環管
38a 下降管部
38b 上昇管部
38c 折り返し部
40 ペルチェ素子
40a 吸熱面
40b 放熱面
41 電源部
42 導線
44 冷却庫
46 伝熱促進部材
46(46a、46b) 多孔質材料
47 空隙
48 圧力センサ
49 温度センサ
50 制御部
52(52a、52b) 第1ブロック
53a、53b、53c、53d、63a、63b、63c、63d 分割片
54 第1貫通孔
55a、55b 第1分割面
56 第1伝熱面
58a、58b、68a、68b 結合板
62(62a、62b) 第2ブロック
64 第2貫通孔
65a、65b 第2分割面
66 第2伝熱面
70、71、72 ボルト
74 ナット
X 飽和液線
Y 飽和蒸気線
第1領域
第2領域
Lr 飽和液冷媒
N 法線
NPSHR 必要吸込ヘッド
NPSHA 有効吸込ヘッド
Pc 臨界点

Claims (15)

  1. 液レシーバと、
    前記液レシーバ内の液冷媒を冷却負荷に送るための液ポンプと、
    前記液レシーバと前記液ポンプとの間に設けられた冷媒管と、
    入口及び出口が前記液レシーバに接続された前記液冷媒の循環管と、
    前記冷媒管側に設けられた吸熱面および前記循環管側に設けられた放熱面を有するペルチェ素子と、
    を備える冷却装置。
  2. 前記冷媒管又は前記循環管の少なくとも一方の配管内において、前記ペルチェ素子の前記吸熱面又は前記放熱面の法線方向から視たとき、前記配管のうち前記吸熱面又は前記放熱面とオーバラップする領域に設けられる伝熱促進部材を備える請求項1に記載の冷却装置。
  3. 前記伝熱促進部材は、多孔質材料で構成されている請求項2に記載の冷却装置。
  4. 前記伝熱促進部材は、前記冷媒管及び前記循環管の内部に設けられ、
    前記冷媒管又は前記循環管の管軸方向において、前記伝熱促進部材が設けられた前記循環管の第1領域は、前記伝熱促進部材が設けられた前記冷媒管の第2領域より広範囲である請求項2又は3に記載の冷却装置。
  5. 前記循環管は、前記液レシーバから下方に向かって延びる下降管部と、折り返し部を介して該下降管部に接続されて前記液レシーバへと上方に向かって延びる上昇管部と、を含み、
    前記ペルチェ素子の前記放熱面は前記上昇管部側に設けられる請求項1乃至4の何れか一項に記載された冷却装置。
  6. 前記ペルチェ素子は、前記冷媒管を流れる前記液冷媒を前記液ポンプの必要有効吸込ヘッドに相当する過冷却温度以上に冷却可能に構成されている請求項1乃至5の何れか一項に記載の冷却装置。
  7. 前記液レシーバ内の圧力を検出する圧力センサと、
    前記液ポンプの入口側の前記液冷媒の温度を検出する温度センサと、
    前記圧力センサ及び前記温度センサの検出値に基づいて前記ペルチェ素子を制御する制御部と、
    を備える請求項1乃至6の何れか一項に記載の冷却装置。
  8. 前記冷媒管と前記循環管とは、少なくとも、前記ペルチェ素子が設置される設置領域内において、互いに平行に配置され、
    前記ペルチェ素子は、前記冷媒管および前記循環管の間において、前記冷媒管および前記循環管の管軸方向に沿って延在する請求項1乃至7の何れか一項に記載の冷却装置。
  9. 前記冷媒管が貫通する第1貫通孔および前記吸熱面に当接する第1伝熱面を有し、前記冷媒管の周囲に設けられた第1ブロックと、
    前記循環管が貫通する第2貫通孔および前記放熱面に当接する第2伝熱面を有し、前記ペルチェ素子を挟んで前記第1ブロックに対向する位置で前記循環管の周囲に設けられた第2ブロックと、を備える請求項1乃至8の何れか一項に記載の冷却装置。
  10. 前記吸熱面及び前記放熱面は、前記冷媒管及び前記循環管の管軸方向に沿って互いに平行に配置され、
    前記第1ブロック又は前記第2ブロックの少なくとも一方は、前記吸熱面又は前記放熱面に沿って分割された2つ以上の分割片で構成され、
    前記分割片の各々は、前記第1貫通孔又は前記第2貫通孔を形成する凹部を有し、
    前記分割片の少なくとも1つは、前記第1伝熱面又は前記第2伝熱面を有する請求項9に記載の冷却装置。
  11. 前記吸熱面及び前記放熱面は、前記冷媒管及び前記循環管の管軸方向に沿って互いに平行に配置され、
    前記第1ブロック又は前記第2ブロックの少なくとも一方は、前記冷媒管および前記循環管の管軸を含み前記吸熱面及び前記放熱面に交差する面に沿って分割された2つ以上の分割片で構成され、
    前記分割片の各々は、前記第1貫通孔又は前記第2貫通孔を形成する凹部を有し、
    前記分割片の少なくとも1つは、前記吸熱面又は前記放熱面を有する請求項9に記載の冷却装置。
  12. 前記冷媒管と前記第1貫通孔を形成する前記第1ブロックの壁面との間、前記吸熱面と前記第1伝熱面との間、前記循環管と前記第2貫通孔を形成する前記第2ブロックの壁面との間、および、前記放熱面と前記第2伝熱面との間の少なくとも1か所に、伝熱性グリスが充填されている請求項9乃至11の何れか一項に記載の冷却装置。
  13. 一次冷媒が循環する一次冷媒回路と、
    前記一次冷媒回路に設けられた蒸発器を含む冷凍サイクル構成機器と、
    前記蒸発器で前記一次冷媒によって冷却された二次冷媒を前記冷却負荷に供給するための二次冷媒回路と、
    前記二次冷媒回路に設けられた請求項1乃至12の何れか一項に記載の冷却装置と、
    を備え、
    前記液冷媒は前記二次冷媒として前記液レシーバに貯留され、かつ、前記冷媒管は前記液レシーバと前記液ポンプとの間で前記二次冷媒回路の一部を構成する冷却システム。
  14. 前記冷却負荷は冷却庫に設けられたエアクーラであり、前記二次冷媒回路は前記エアクーラに導設されている請求項13に記載の冷却システム。
  15. 前記液レシーバ内の圧力を検出する圧力センサと、
    前記液ポンプの入口側の前記液冷媒の温度を検出する温度センサと、
    前記圧力センサ及び前記温度センサの検出値に基づいて前記ペルチェ素子を制御する制御部と、
    を備え、
    前記制御部は、前記冷却システムの負荷が増加したとき、前記ペルチェ素子に流す電流値を減少させ、前記冷却システムの負荷が減少したとき、前記ペルチェ素子に流す電流値を増加させるように構成された請求項13又は14に記載の冷却システム。
JP2020157406A 2019-11-13 2020-09-18 冷却装置及び冷却システム Active JP7524008B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019205668 2019-11-13
JP2019205668 2019-11-13

Publications (2)

Publication Number Publication Date
JP2021076364A JP2021076364A (ja) 2021-05-20
JP7524008B2 true JP7524008B2 (ja) 2024-07-29

Family

ID=75897288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020157406A Active JP7524008B2 (ja) 2019-11-13 2020-09-18 冷却装置及び冷却システム

Country Status (1)

Country Link
JP (1) JP7524008B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029889A1 (ja) * 2020-08-04 2022-02-10 三菱電機株式会社 冷却装置及び宇宙構造物
JP7081731B1 (ja) * 2021-08-19 2022-06-07 日本電気株式会社 冷却装置および冷却装置の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082855A (ja) 1999-09-16 2001-03-30 Shibaura Mechatronics Corp ペルチェ冷却システム
JP2004340081A (ja) 2003-05-19 2004-12-02 Nippon Soken Inc ランキンサイクル
JP2005172416A (ja) 2003-11-21 2005-06-30 Mayekawa Mfg Co Ltd アンモニア/co2冷凍システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001082855A (ja) 1999-09-16 2001-03-30 Shibaura Mechatronics Corp ペルチェ冷却システム
JP2004340081A (ja) 2003-05-19 2004-12-02 Nippon Soken Inc ランキンサイクル
JP2005172416A (ja) 2003-11-21 2005-06-30 Mayekawa Mfg Co Ltd アンモニア/co2冷凍システム

Also Published As

Publication number Publication date
JP2021076364A (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
KR100746795B1 (ko) 냉각 장치
JP7524008B2 (ja) 冷却装置及び冷却システム
JP5275929B2 (ja) 冷却装置
CN205793890U (zh) 冷媒式散热装置
US5524453A (en) Thermal energy storage apparatus for chilled water air-conditioning systems
WO2018047533A1 (ja) 機器温調装置
WO2018047534A1 (ja) 機器温調装置
JP2019207032A (ja) 機器温調装置
JP2011142298A (ja) 沸騰冷却装置
WO2018008299A1 (ja) 蓄冷熱交換器
US12085345B2 (en) Loop heat pipe evaporator with dual top vapor outlets
WO2019054076A1 (ja) 機器温調装置
CN213483505U (zh) 用于超导磁体的制冷剂冷却系统
WO2020235475A1 (ja) 機器温調装置
CN104613804B (zh) 弯折管件及具有该弯折管件的半导体制冷冰箱
CN109640579A (zh) 换热器和设有电子器件的设备
WO2022190868A1 (ja) 冷却装置
CN115597409A (zh) 散热装置和电子设备
CN113758324A (zh) 用于低压驱动器的回路式热管
JP2005077018A (ja) ループ型サーモサイフォンおよびスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造
WO2018070182A1 (ja) 機器温調装置
CN219640767U (zh) 散热器及散热系统
JP2010206892A (ja) インバータの冷却装置
JP7452080B2 (ja) 沸騰冷却器
JP6622956B2 (ja) ループ型ヒートパイプを備えた熱輸送装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240717

R150 Certificate of patent or registration of utility model

Ref document number: 7524008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150