JP2005077018A - ループ型サーモサイフォンおよびスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造 - Google Patents

ループ型サーモサイフォンおよびスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造 Download PDF

Info

Publication number
JP2005077018A
JP2005077018A JP2003309708A JP2003309708A JP2005077018A JP 2005077018 A JP2005077018 A JP 2005077018A JP 2003309708 A JP2003309708 A JP 2003309708A JP 2003309708 A JP2003309708 A JP 2003309708A JP 2005077018 A JP2005077018 A JP 2005077018A
Authority
JP
Japan
Prior art keywords
pipe
working fluid
condenser
return pipe
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309708A
Other languages
English (en)
Inventor
Isamu Chin
陳  偉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003309708A priority Critical patent/JP2005077018A/ja
Priority to US10/570,132 priority patent/US20070028626A1/en
Priority to EP04771575A priority patent/EP1669710A1/en
Priority to PCT/JP2004/011600 priority patent/WO2005024331A1/ja
Priority to CNA2004800251409A priority patent/CN1846110A/zh
Priority to KR1020067004114A priority patent/KR100746795B1/ko
Publication of JP2005077018A publication Critical patent/JP2005077018A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】 設置状態に起因するループ型サーモサイフォンの動作不良を低減する。
【解決手段】 ループ型サーモサイフォン100Aは、蒸発器110と、凝縮器130Aと、送り管120と、戻り管140とによって構成された閉回路を備えており、蒸発器130Aは、送り管側母管131と、戻り管側母管132と、複数の並行管とを含む組立体からなる。複数の並行管の各々は、蒸発した作動流体を凝縮せしめる部位であり、複数段にわたって上下方向に平行に積層された直進部と、これら直進部を接続する湾曲部とを含む蛇行管からなる。蛇行管の直進部のうち最下段に位置する直進部が、戻り管側母管131側に向かうにつれて、このループ型サーモサイフォン100Aが搭載される筐体300の底面301との距離が減ずる方向に傾斜して配置されるように、組立体からなる凝縮器130Aの全体が、筐体300の底面301に対して傾斜して配置されている。
【選択図】 図5

Description

本発明は、ループ型サーモサイフォンおよびそのループ型サーモサイフォンを搭載したスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造に関するものである。
熱源にて発生する熱を放熱する放熱システムとして、ヒートシンクやヒートパイプ、サーモサイフォン等を用いた放熱システムが知られている。ヒートシンクを用いた放熱システムにあっては、熱源に取り付けたヒートシンクに顕著な温度分布が生じるため、熱源から離れれば離れるほど放熱に寄与しなくなり、放熱性能の向上には自ずと限界がある。これに対し、ヒートパイプやサーモサイフォンを用いた放熱システムでは、熱源にて生じた熱を作動流体を用いて伝達するため、熱搬送能力がヒートシンクに比べて非常に高く、放熱性能を高く維持することが可能になる。
ヒートパイプは、閉回路内に配設されたウィック毛管力を用いて作動流体を循環させる毛管力駆動型熱輸送デバイスである。これに対しサーモサイフォンは、作動流体が蒸発および凝縮することによって生じる作動流体の密度差を利用した重力駆動型熱輸送デバイスである。なお、ループ型サーモサイフォンとはループ状に構成された閉回路内を作動流体が循環するように構成されたサーモサイフォンである。
図17は、一般的なループ型サーモサイフォンの構造を示す模式図である。このうち、図17(a)はループ型サーモサイフォンを正面から見た図であり、図17(b)は側方から見た図である。
図17(a)および(b)に示すように、ループ型サーモサイフォン100Iは、熱源から熱を奪う蒸発器110と、熱を外部へ放出する凝縮器130Iとを備えている。蒸発器110と凝縮器130Iは、送り管120および戻り管140によって接続されており、これら蒸発器110、送り管120、凝縮器130Iおよび戻り管140によって閉回路が構成されている。なお、凝縮器130Iは、蒸発器110よりも高い位置に設けられている。
蒸発器110内において熱源から熱を奪って蒸発した作動流体は、蒸発器110と凝縮器130Iとの蒸気圧力差によって重力に抗して上昇し、送り管120を通って凝縮器130Iに導入される。凝縮器130I内で冷却され凝縮した作動流体は、重力によって落下し、戻り管140を通って蒸発器110に導入される。以上のような相変化を伴う作動流体の対流作用により、熱源にて生じた熱を外部へと放熱することが可能になる。
このような構成のループ型サーモサイフォンを備えたスターリング冷却庫を開示した文献として、たとえば特開2003−50073号公報(特許文献1)がある。また、スターリング冷凍機の高温部側ではないが、低温部側にループ型サーモサイフォンを適用した文献として、たとえば特開2001−33139号公報(特許文献2)がある。
特開2003−50073号公報 特開2001−33139号公報
上述の構成のループ型サーモサイフォン100Iにおいては、凝縮器130Iは各種の配管と放熱フィンとを組合わせた組立体としてユニット化されて製作される場合が多い。具体的には、送り管120によって導入された作動流体を分流する送り管側母管(送り管側ヘッダーパイプ)131と、分流された作動流体を再び合流させる戻り管側母管(戻り管側ヘッダーパイプ)132と、これら送り管側母管131と戻り管側母管132とを接続し、互いに並行するように配置された複数の並行管133(図18参照)と、これら複数の並行管133に接触するように組付けられた放熱フィン(図示せず)とからなる組立体として製作される。
通常、図18に示すように、複数の並行管133の各々は、一方向に向かって直線状に延びる直進部134a〜134dを上下方向に複数段(図18に示す並行管においては4段)にわたって平行に積層し、積層されたこれら直進部134a〜134d同士を湾曲部135a〜135cによって接続した形状として製作される。すなわち、複数の並行管133の各々は、図18に示す如くの蛇行管として構成される。このように、複数の直進部134a〜134dが互いに平行に積層される理由は、主に組立て作業の容易性の観点からであり、また省スペースで最大限の伝熱面積を確保することができるようにもなる。
以上の構成の組立体からなる凝縮器130Iは、図17に示すように、ループ型サーモサイフォン100Iを搭載した機器(たとえばスターリング冷却庫)の筐体300の底面301上に設置される。このとき、組立体からなる凝縮器130Iは、筐体300の底面301と平行となるように設置される。
図18に示すように、ループ型サーモサイフォン100Iを搭載した機器の筐体300の底面301が、設置面である床面401に対して平行に設置された場合には、凝縮器130Iの並行管133の直進部134a〜134dも設置面である床面401に対して平行に配置されることになる。この場合には、凝縮器130Iの並行管133中で凝縮し液化した作動流体は、並行管133中をスムーズに流動し、戻り管側母管132および戻り管140を介して蒸発器110へと送り出される。なお、図18においては、作動流体の流動方向を矢印500で表わしている。
このように、床面に対して筐体の底面が平行となるように機器が設置されている場合には特に問題は生じない。ところが、水平な床面に対して筐体の底面が傾斜して設置された場合や、床面自体が傾斜しており、この傾斜した床面と平行に筐体が設置された場合等においては、ループ型サーモサイフォンも水平面に対して傾斜して設置されることになり、作動流体の流動に大きな影響を与える場合がある。
たとえば、図19に示すように、水平な床面401に対して機器の筐体300が角度α0だけ傾斜して設置された場合を考える。この場合、凝縮器130Iの並行管133の直進部134a〜134dも機器の筐体300の底面301に対して平行に配置されているため、水平面から角度α0だけ傾斜して配置されることになる。なお、図示する状態は、最下段における直進部134dの湾曲部135c寄りの端部が、戻り管側母管132寄りの端部よりも低い位置となるように、機器の筐体300が傾斜して設置された場合を示している。
このような状態で凝縮器130Iが設置された場合には、凝縮器130Iの最下段の直進部134d中にて凝縮し液化した作動流体が重力によって逆流し、最下段に位置する直進部134dの湾曲部135c側に滞留することになる。この凝縮した作動流体502は、戻り管側母管132へ流入することがないため、機器の動作に伴って徐々に増加し、遂には並行管133を閉塞する状態にまで凝縮した作動流体502の液面503が上昇することになる。
このような状態に至った場合には、並行管133の送り管側母管131側の圧力が相当程度上昇しない限り作動流体の流動が阻害されることになる。このため、作動流体の循環動作が予期せぬものとなり、熱源にて生じた熱を十分に放熱することができなくなる。この結果、ループ型サーモサイフォンの動作不良を引き起こし、最悪の場合にはループ型サーモサイフォンを搭載した機器本体の故障につながるおそれもある。
このように、従来のループ型サーモサイフォンにおいては、設置状態によって動作不良を引き起こす場合があり、この点が重大な問題となっていた。
また、従来、上述のスターリング冷凍機の高温部の如く、外形が略円筒形状である熱源に対して、ループ型サーモサイフォンの半円弧状に2分割された蒸発器を組付ける作業は非常に煩雑であり、より容易に組付けることが可能なループ型サーモサイフォンの組付け構造の開発が要求されていた。
そこで、本発明は、このような問題を解決すべくなされたものであり、設置状態の如何を問わず動作不良を防止することが可能なループ型サーモサイフォンおよびこのループ型サーモサイフォンを備えたスターリング冷却庫を提供するものである。
また、本発明の他の目的は、組付け作業が容易に行なえるループ型サーモサイフォンの組付け構造を提供することにある。
本発明の第1の局面に基づくループ型サーモサイフォンは、熱源を有する機器の筐体に搭載される(ここで、「搭載される」とは、ループ型サーモサイフォンの全体が筐体の内部に収容されている場合と、ループ型サーモサイフォンの一部が筐体の外部に露出して搭載された場合とを含むものとする。)ものであり、閉回路内に封入された作動流体を用いて熱源から熱を外部へ放熱するものである。上記閉回路は、蒸発器と、凝縮器と、送り管と、戻り管とによって構成される。蒸発器は、熱源から熱を奪い、作動流体を蒸発させる部位であり、凝縮器は、蒸発器にて蒸発した作動流体を凝縮させる部位である。送り管は、蒸発器にて蒸発した作動流体を凝縮器へ導入する部位であり、戻り管は、凝縮器にて凝縮した作動流体を蒸発器へ導入する部位である。凝縮器は、一方向に向かって延びる直進部が上下方向に複数段にわたって積層されかつ複数段にわたって積層された直進部同士が湾曲部によって接続されてなる蛇行管を有している。この蛇行管の直進部のうち最下段に位置する直進部が、戻り管側に向かうにつれて、上記筐体の底面との距離が減ずる方向に傾斜して配置されている。
このように構成することより、凝縮して液化した作動流体が蛇行管中に滞留するおそれが低くなるため、設置状態に起因するループ型サーモサイフォンの動作不良を低減することができるようになる。
本発明の第2の局面に基づくループ型サーモサイフォンは、熱源を有する機器の筐体に搭載されるものであり、閉回路内に封入された作動流体を用いて熱源から熱を外部へ放熱するものである。上記閉回路は、蒸発器と、凝縮器と、送り管と、戻り管とによって構成される。蒸発器は、熱源から熱を奪い、作動流体を蒸発させる部位であり、凝縮器は、蒸発器にて蒸発した作動流体を凝縮させる部位である。送り管は、蒸発器にて蒸発した作動流体を凝縮器へ導入する部位であり、戻り管は、凝縮器にて凝縮した作動流体を蒸発器へ導入する部位である。凝縮器は、送り管側母管と、戻り管側母管と、複数の並行管とを含む組立体からなる。送り管側母管は、上記送り管に接続されており、導入された作動流体を分流する部位である。戻り管側母管は、上記戻り管に接続されており、分流された作動流体を合流せしめる部位である。複数の並行管は、送り管側母管と戻り管側母管とを接続し、互いに並行するように配置されている。上記並行管の各々は、第1の方向に向かって延びる直進部が上下方向に複数段にわたって平行に積層されかつ複数段にわたって積層された直進部同士が湾曲部によって接続されてなる蛇行管によって構成されている。上記蛇行管の直進部のうち最下段に位置する直進部が、戻り管側母管側に向かうにつれて、筐体の底面との距離が減ずる方向に傾斜して配置されるように、組立体からなる凝縮器の全体が、筐体の底面に対して傾斜して配置されている。
このように構成とすることにより、蛇行管の直進部が上下方向に平行に積層されるように凝縮器をユニット化して製作した場合にも、凝縮して液化した作動流体が蛇行管中に滞留するおそれが低くなるため、設置状態に起因するループ型サーモサイフォンの動作不良を低減することができるようになる。
上記本発明の第2の局面に基づくループ型サーモサイフォンにあっては、傾斜して配置された組立体からなる凝縮器の筐体の底面に対する傾斜角が0°より大きく6°以下であることが好ましい。
このような条件を満たすように、凝縮器を予め傾斜させて配置することにより、設置状態に起因するループ型サーモサイフォンの動作不良を大幅に抑制することが可能になる。
上記本発明の第2の局面に基づくループ型サーモサイフォンにあっては、上記戻り管側母管が第1の方向と交差する第2の方向に向かって延びており、上記戻り管が第2の方向に向かって延びる戻り管側母管の一方端近傍に接続されており、かつ上記戻り管側母管が上記一方端とは反対側に位置する他方端側から上記一方端側に向かうにつれて、筐体の底面との距離が減ずる方向に傾斜して配置されていることが好ましい。
このように構成することにより、凝縮して液化した作動流体が戻り管側母管中に滞留するおそれが低くなるため、設置状態に起因するループ型サーモサイフォンの動作不良を低減することができるようになる。
本発明の第3の局面に基づくループ型サーモサイフォンは、熱源を有する機器の筐体に搭載されるものであり、閉回路内に封入された作動流体を用いて熱源から熱を外部へ放熱するものである。上記閉回路は、蒸発器と、凝縮器と、送り管と、戻り管とによって構成される。蒸発器は、熱源から熱を奪い、作動流体を蒸発させる部位であり、凝縮器は、蒸発器にて蒸発した作動流体を凝縮させる部位である。送り管は、蒸発器にて蒸発した作動流体を凝縮器へ導入する部位であり、戻り管は、凝縮器にて凝縮した作動流体を蒸発器へ導入する部位である。凝縮器は、送り管側母管と、戻り管側母管と、複数の並行管とを含む組立体からなる。送り管側母管は、上記送り管に接続されており、導入された作動流体を分流する部位である。戻り管側母管は、上記戻り管に接続されており、分流された作動流体を合流せしめる部位である。複数の並行管は、送り管側母管と戻り管側母管とを接続し、互いに並行するように配置されている。戻り管側母管は、一方向に向かって延びており、上記戻り管は、上記一方向に向かって延びる戻り管側母管の一方端近傍に接続されている。戻り管側母管は、上記一方端とは反対側に位置する他方端側から上記一方端側に向かうにつれて、上記筐体の底面との距離が減ずる方向に傾斜して配置されている。
このように構成することにより、凝縮して液化した作動流体が戻り管側母管中に滞留するおそれが低くなるため、設置状態に起因するループ型サーモサイフォンの動作不良を低減することができるようになる。
本発明の第4の局面に基づくループ型サーモサイフォンは、熱源を有する機器の筐体に搭載されるものであり、閉回路内に封入された作動流体を用いて熱源から熱を外部へ放熱するものである。上記閉回路は、蒸発器と、凝縮器と、送り管と、戻り管とによって構成される。蒸発器は、熱源から熱を奪い、作動流体を蒸発させる部位であり、凝縮器は、蒸発器にて蒸発した作動流体を凝縮させる部位である。送り管は、蒸発器にて蒸発した作動流体を凝縮器へ導入する部位であり、戻り管は、凝縮器にて凝縮した作動流体を蒸発器へ導入する部位である。凝縮器は、送り管側母管と、戻り管側母管と、複数の直行管とを含む組立体からなる。送り管側母管は、上記送り管に接続されており、導入された作動流体を分流する部位である。戻り管側母管は、上記戻り管に接続されており、分流された作動流体を合流せしめる部位である。複数の直行管は、送り管側母管と戻り管側母管とを接続し、互いに並行するように配置されている。上記直行管の各々は、上記戻り管側母管側に向かうについて上記筐体の底面との距離が減ずる方向に傾斜して配置されている。
このように構成することにより、蛇行管ではなく直行管にて送り管側母管と戻り管側母管とが接続された凝縮器を採用した場合にも、作動流体が管中に対流することがなくなるため、設置状態に起因するループ型サーモサイフォンの動作不良を低減することができるようになる。
本発明に基づくスターリング冷却庫は、スターリング冷凍機を搭載したスターリング冷却庫である。スターリング冷凍機は上述のいずれかのループ型サーモサイフォンを備えており、このループ型サーモサイフォンの蒸発器がスターリング冷凍機の高温部と熱交換するように構成されている。
このようにな構成のスターリング冷却庫とすることにより、筐体の設置状態によって性能が左右されることのない高性能のスターリング冷却庫を提供することが可能になる。
本発明に基づくループ型サーモサイフォンの組付け構造は、外形が略円筒状の熱源に対して組付けられるループ型サーモサイフォンの組付け構造であって、半円弧状に2分割されてなる第1および第2の蒸発器と、第1および第2の蒸発器が円形に組み合わされた状態にてこれら第1および第2の蒸発器を受入れる載置部を有する載置台と、この載置台に少なくとも一箇所が固定されてなる締着バンドとを備えている。そして、第1および第2の蒸発器のそれぞれの内周面が熱源の外周面に当接した状態にてこれら第1および第2の蒸発器が載置部に載置されており、かつ上記締着バンドによってこれら第1および第2の蒸発器が載置台に固定されている。
このような組付け構造を採用することにより、ループ型サーモサイフォンの蒸発器を熱源に対して固定する作業と、これら熱源およびループ型サーモサイフォンの蒸発器を同時に載置台に組付けることが可能になるため、容易にループ型サーモサイフォンを組付けることが可能になるとともに、作業の効率化が図られるようになる。
上記本発明に基づくループ型サーモサイフォンの組付け構造にあっては、一端が載置台に固定されてなる第1および第2バンド部によって上記締着バンドが構成されていることが好ましく、またこれら第1および第2バンド部の他端側が締結手段によって締め付けられることにより、第1および第2の蒸発器が載置台に固定されていることが好ましい。
このように構成することにより、締結手段によって簡便にループ型サーモサイフォンの固定が実現されるようになる。
本発明によれば、設置状態の如何を問わずループ型サーモサイフォンの動作不良を防止することが可能なループ型サーモサイフォンおよびこれを備えたスターリング冷却庫を提供することが可能になる。
また、本発明によれば、ループ型サーモサイフォンの組付けが容易に行なえるようになる。
以下、本発明の実施の形態について、図を参照して説明する。
(実施の形態1)
図1は、本発明の実施の形態1におけるループ型サーモサイフォンの設置構造を示す概略斜視図である。また、図2は、図1に示すループ型サーモサイフォンの凝縮器の構成を示す模式図である。なお、本実施の形態におけるループ型サーモサイフォンは、スターリング冷凍機の高温側熱搬送システムとして利用されるものである。
まず、図1を参照して、ループ型サーモサイフォンおよびこのループ型サーモサイフォンが取り付けられたスターリング冷凍機の設置構造について説明する。
図1に示すように、スターリング冷凍機200は、支持台250上に載置され、支持台250の底板252に設けられた支持部254a,254bによって支持されている。また、ループ型サーモサイフォン100Aも支持台250上に載置され、支持台250の底板252に設けられた支持部254a,254cによって支持されている。支持台250にて支持されたスターリング冷凍機200およびループ型サーモサイフォン100Aは、所定の機器(たとえば、冷却庫等)の筐体に設置される。ここで、支持台250の底板252は、機器の筐体の底面に対して平行になるように設置される。
次に、スターリング冷凍機200の構造および動作について説明する。
図1に示すように、スターリング冷凍機200は、圧力容器202を備えている。圧力容器202内には、ピストンおよびディスプレーサが嵌装されたシリンダが設けられている。シリンダ内はヘリウム等の作動媒体によって充填されている。シリンダ内の空間は、ピストンおよびディスプレーサによって圧縮室と膨張室に区画されている。圧縮室の周囲には高温部204が設けられており、膨張室の周囲には低温部206が設けられている。
シリンダ内に嵌装されたピストンは、リニアアクチュエータによって駆動され、シリンダ内を往復動する。ディスプレーサは、ピストンが往復動することによって生じる圧力変化により、シリンダ内をピストンの往復動と一定の位相差をもって往復動する。このピストンおよびディスプレーサの往復動により、シリンダ内に逆スターリングサイクルが実現される。これにより、圧縮室を取り囲むように設けられた高温部204は昇温し、膨張室を取り囲むように設けられた低温部206は極低温にまで冷却される。
次に、ループ型サーモサイフォン100Aの構造および動作について説明する。
図1に示すように、ループ型サーモサイフォン100Aは、蒸発器110と凝縮器130Aとを備える。蒸発器110は、スターリング冷凍機200の高温部204と接するように配置され、高温部204に生じる熱を奪い、蒸発器110内に充填された作動流体を蒸発させる部位である。凝縮器130Aは、蒸発器110よりも高所に配置され、蒸発器110にて蒸発した作動流体を凝縮させる部位である。蒸発器110と凝縮器130Aとは、送り管120および戻り管140によって接続されており、これらによって閉回路が構成されている。なお、図示するループ型サーモサイフォン100Aにあっては、熱源である高温部204の外形が円筒形状であるため、蒸発器110は円弧状に分割された2つの部位から構成されている。
図1および2を参照して、凝縮器130Aは、送り管側母管(送り管側ヘッダーパイプ)131と、戻り管側母管(戻り管側ヘッダーパイプ)132と、これら送り管側母管131と戻り管側母管132とを接続する複数の並行管133と、並行管133に接触して設けられた放熱フィン136とからなる組立体としてユニット化されて構成されている。
送り管側母管131は、送り管120に接続され、導入された作動流体を分流する分配器である。これに対して、戻り管側母管132は、戻り管140に接続され、分流された作動流体を合流させる管寄せである。
図2に示すように、個々の並行管133は、第1の方向(図中矢印A方向)に向かって直線状に延びる直進部134a〜134d(本実施の形態における凝縮器130Aにおいては4段)と、これら直進部134a〜134dを接続する湾曲部135a〜135cとによって構成されている。直進部134a〜134dの各々は、平行に上下方向に積層して配置されており、湾曲部135a〜135cは、これら直進部134a〜134dの端部同士を連結している。すなわち、凝縮器130Aは、蛇行管からなる並行管133を横方向に並べて配置した構成を有している。この複数の並行管133の直進部134a〜134dには、放熱フィン136が複数枚組付けられている。
蒸発器110内においてスターリング冷凍機200の高温部204から熱を奪って蒸発した作動流体は、蒸発器110と凝縮器130Aとの蒸気圧力差によって重力に抗して上昇し、送り管120を通って凝縮器130Aに導入される。凝縮器130A内で冷却され凝縮した作動流体は、重力によって落下し、戻り管140を通って蒸発器110に導入される。以上のような相変化を伴う作動流体の対流作用により、スターリング冷凍機200の高温部204にて生じる熱を外部へと放熱することが可能になる。
次に、上記構造のスターリング冷凍機200およびループ型サーモサイフォン100Aを支持台250に組付ける際の組付け構造について説明する。図3は、図1に示すスターリング冷凍機およびループ型サーモサイフォンの組付け構造を示す模式図である。ここで、図3(a)は組付け前を示しており、図3(b)は組付け後を示している。
図1および図3に示すように、支持台250は、底板252と、この底板252から上方に向かって延びる支持部254a,254b,254cとを備える。底板252および支持部254a,254b,254cは、たとえば肉厚の鋼板をプレス加工等することによって形成される。また、支持部254a上には、締着バンド255が取り付けられている。締着バンド255は、たとえばフレキシブルな鋼板からなり、支持部254aに固定された円弧状部255aと、自在に移動可能なように取り付けられた締め付け部255bと、締め付け部255bの先端に位置する締結部255cとを有する。締結部255cには、締結手段であるボルトナット260が挿通する孔が設けられている。
以上の構造の支持台250に対して、スターリング冷凍機200およびループ型サーモサイフォン100Aを組付ける作業について説明する。
図3(a)を参照して、まず、ループ型サーモサイフォン100Aの半円弧状に二分割された第1蒸発器および第2蒸発器の2つの部分からなる蒸発器110を外形が円筒形状であるスターリング冷凍機200の高温部204に組付ける。このとき、蒸発器110の内周面112が円筒状の高温部204の外周面に接触するように、高温部204を両側から蒸発器110で挟み込むように組付ける。なお、この状態においては、蒸発器110と高温部204の直接的な固定は行なわない。
次に、高温部204の外周面に蒸発器110の内周面112が接触した状態のまま、これらを支持台250の載置部である円弧状部255aに嵌め入れる。そして、図3(b)に示すように、支持台250に取り付けられた締着バンド255を蒸発器110に巻き付け、締結手段であるボルトナット260によって締着バンド255の締結部255cを締め付ける。
以上により、スターリング冷凍機200とループ型サーモサイフォン100Aの蒸発器110との固定が完了することになる。すなわち、円弧状に二分割されたループ型サーモサイフォン100Aの蒸発器110は、その内周面112が熱源であるスターリング冷凍機200の高温部204に当接するように組み合わされた状態にて支持台250の円弧状部255a上に載置され、円弧状部255aの両端から延びる締め付け部255bによって締め付けられて支持台250に固定される。
次に、支持台250上に固定されたスターリング冷凍機200の上方に、組立体としてユニット化されて製作された凝縮器130Aを組付ける。凝縮器130Aの送り管側母管131には予め送り管120を溶接等によって組付けておき、また戻り管側母管132には戻り管140を溶接等によって組付けておく。そして、これら送り管120および戻り管140が組付けられた凝縮器130Aを支持台250上に位置決めして載置し、凝縮器130Aの後方端を支持台250の支持部254cに固定するとともに、送り管120および戻り管140を蒸発器110に溶接等によって接続することにより、凝縮器130Aを支持台250上に固定する。
以上により、スターリング冷凍機200およびループ型サーモサイフォン100Aの支持台250上への組付け作業が完了する。
このような組付け構造を採用することにより、スターリング冷凍機200の高温部204にループ型サーモサイフォン100Aの蒸発器110を固定する作業と、これらスターリング冷凍機200およびループ型サーモサイフォン100Aの蒸発器110を支持台250に固定する作業とが、単一の固定作業によって同時に行なわれるようになる。これにより、固定作業が容易に行えるようになるとともに作業の効率化が図られるようになる。
なお、図3においては、支持台250が鋼板によって形成された場合を例示したが、特にこれに限定されるものではない。たとえば、図4(a)および(b)に示すように、支持台250が円弧状の受け部257aを有する台座257によって構成されており、この台座257の受け部257aの両端にその一端が固定されている第1バンド部および第2バンド部からなる一対の締着バンド255が取り付けられていてもよい。この場合には、図3の構造に比べてスターリング冷凍機200の設置安定性が増す効果が得られるようになる。
次に、本実施の形態におけるループ型サーモサイフォン100Aの凝縮器130Aの設置状態について説明する。図5は、本実施の形態におけるループ型サーモサイフォンの凝縮器の設置状態を示す模式図であり、図5(a)はループ型サーモサイフォンを正面から見た場合を示す図であり、図5(b)は側方から見た場合を示す図である。
図5(a)および(b)に示すように、本実施の形態におけるループ型サーモサイフォン100Aの凝縮器130Aは、冷却庫等の機器の筐体300の底面301に対して傾斜して配置されている。具体的には、筐体300の底面301に対して、戻り管側母管132が位置する方の凝縮器130Aの端部が戻り管側母管132が位置しない方の端部よりもより近い位置に配置されるように、組立体からなる凝縮器130Aの全体が角度θ1だけ傾斜して配置されている。
すなわち、組立体からなる凝縮器130Aの蛇行管からなる並行管133の直進部134a〜134dのうち最下段に位置する直進部134dが、戻り管側母管132側に向かうにつれて筐体300の底面301との距離が減ずる方向に傾斜して配置されるように、凝縮器130Aの全体が角度θ1だけ傾斜して配置されている。ここで、筐体300の底面301に対する凝縮器130Aの傾斜角θ1は、好ましくは0°より大きく6°以下であり、さらに好ましくは3°程度とする。なお、このように凝縮器130Aを筐体300の底面301に対して傾斜させて設置するためには、たとえば、支持台250の支持部254cの高さを調節することによって実現可能である(図1参照)。
このように、凝縮器130Aを筐体300の底面301に対して角度θ1だけ傾斜させて配置した場合には、筐体300の設置状態の如何に関わらず、安定してループ型サーモサイフォン100Aが動作するようになる。以下にその理由について説明する。
まず、水平な床面に対して筐体300の底面301が平行に配置された場合を考える。この場合、筐体300の底面301に対して凝縮器130Aは予め角度θ1だけ傾斜して配置されているため、水平面に対しても角度θ1だけ傾斜した状態で設置されることになる。
凝縮器130Aの並行管133内を流動する作動流体は、主に最下段に位置する直進部134dにて凝縮し液化する。このため、直進部134d内で液化した作動流体は、重力の作用により傾斜して配置された直進部134d内を戻り管側母管132側に向かって流動し、並行管133から流出する。この結果、並行管133内に作動流体が滞留することはない。このため、作動流体のスムーズな流動が実現され、安定したループ型サーモサイフォン100Aの動作が実現される。
次に、水平な床面に対して筐体300の底面301が傾斜して設置された場合を4つの場合にケース分けして考える。
第1のケースとして、図5(b)中の矢印B方向に機器の筐体300が傾斜して設置された場合を考える。この場合、設置後の凝縮器130Aは、水平面に対して角度θ1よりもさらに大きい角度傾斜した状態で配置されることになる。
上述のように、凝縮器130Aの並行管133内を流動する作動流体は、主に最下段に位置する直進部134dにて凝縮し液化するため、直進部134d内で液化した作動流体は、重力の作用により傾斜して配置された直進部134d内を戻り管側母管132側に向かって流動し、並行管133から流出する。このため、並行管133内に作動流体が滞留することはない。この結果、作動流体のスムーズな流動が実現され、安定したループ型サーモサイフォン100Aの動作が実現されるようになる。
しかしながら、ある所定の角度以上に傾斜して凝縮器130Aが設置されることとなった場合には、環境温度の変化等により、並行管133の最下段に位置する直進部134dのみならず、この最下段の直進部134d上に位置する直進部134cにおいても作動流体が凝縮し液化する現象が稀に発生する。この場合、直進部134cの湾曲部135b近傍において凝縮した作動流体が滞留し、並行管133を閉塞させてしまう場合も考えられる。このような現象が発生する臨界角は、凝縮器130Aの設計寸法等によって多少異なるが、概ね6°程度であることが発明者によって確認されている。
しかし、通常、機器が設置される床面が3°以上傾いていることは考え難く、また、水平な床面に対して機器の筐体が3°以上傾斜して設置されることも考え難いため、凝縮器130Aの底面301に対する傾斜角θ1を3°程度に設定しておけばこのような事態に陥ることはほとんど皆無と考えてよい。したがって、大部分の場合において、安定したループ型サーモサイフォン100Aの動作が実現されるようになる。
第2のケースとして、図5(b)中の矢印C方向に機器の筐体300が角度α1(ただし、α1<θ1)だけ傾斜して設置された場合を考える。このような状態にて機器の筐体300が設置された場合には、設置後の凝縮器130Aは水平面に対して角度θ1−α1だけ傾斜して配置されることになる。なお、図6は、この場合の作動流体の流れを示す模式図である。
上述のように、凝縮器130Aの並行管133内を流動する作動流体は、主に最下段に位置する直進部134dにて凝縮し液化する。しかしながら、図6に示すように、凝縮器130Aは水平面に対して傾斜角θ1−α1だけ傾斜しているため、最下段に位置する直進部134dにて液化した作動流体は直進部134d内を戻り管側母管132側に向かって流動し、平行管133から流出する。このため、作動流体が並行管133内に滞留することはない。この結果、作動流体のスムーズな流動が実現され、安定したループ型サーモサイフォン100Aの動作が実現されるようになる。
第3のケースとして、図5(b)中の矢印C方向に機器の筐体300が角度α2(ただし、α2=θ1)だけ傾斜して設置された場合を考える。このような状態にて機器の筐体300が設置された場合には、設置後の凝縮器130Aは水平に配置されることになる。
上述のように、凝縮器130Aの並行管133内を流動する作動流体は、主に最下段に位置する直進部134dにて凝縮し液化する。この場合、最下段に位置する直進部134dは水平に配置されているため、並行管133内に生じる作動流体の対流作用により、液化した作動流体は戻り管側母管132側へと向かって流動し、並行管133から流出する。このため、並行管133内に作動流体が滞留することはない。この結果、作動流体のスムーズな流動が実現され、安定したループ型サーモサイフォン100Aの動作が実現される。
第4のケースとして、図5(b)中の矢印C方向に機器の筐体300が角度α3(ただし、α3>θ1)だけ傾斜して設置された場合を考える。このような状態にて機器の筐体300が設置された場合には、設置後の凝縮器130Aは、水平面に対して角度α3−θ1だけ傾斜して配置されることになる。なお、図7は、この場合の作動流体の流れを示す模式図である。
上述のように、凝縮器130Aの並行管133内を流動する作動流体は、主に最下段に位置する直進部134dにて凝縮し液化する。このため、図7に示すように、直進部134d内で液化した作動流体は、重力の作用により傾斜して配置された直進部134d内を戻り管側母管132側とは反対側に向かって流動する。この結果、最下段に位置する直進部134dの湾曲部135c側に液化した作動流体502が滞留することになる。
しかしながら、予め凝縮器130Aを筐体300の底面301に対して傾斜して配置しているため、筐体300の底面301に対して凝縮器130Aを平行に配置した場合よりも、並行管133内にて滞留した作動流体502の液面503が並行管133を閉塞する可能性は低くなる。すなわち、図7に示すように、最下段に位置する直進部134dと湾曲部135cの接続部における並行管133の上部(図7中のD点)が、最下段に位置する直進部134dと戻り管側母管132との接続部の下部よりも上方に位置している限りは、逆流して滞留した作動流体502によって並行管133が閉塞されることはない。この結果、作動流体の流動が阻害されることがなくなり、結果として作動流体のスムーズな流動が実現されるようになる。
ただし、凝縮器130Aがさらに傾斜して配置されることとなった場合(すなわち、最下段に位置する直進部134dと湾曲部135cの接続部における並行管133の上部(図7中のD点)が、最下段に位置する直進部134dと戻り管側母管132との接続部の下部よりも下方に位置することとなった場合)には、並行管133が液化した作動流体によって閉塞されるため、作動流体の流動が阻害されることになる。しかし、通常、水平な床面に対して機器の筐体が3°以上傾斜して設置されることも考え難いため、凝縮器130Aの底面301に対する傾斜角θ1を3°程度に設定しておけばこのような事態に陥ることはほとんど皆無と考えてよい。したがって、大部分の場合において、安定したループ型サーモサイフォン100Aの動作が実現されるようになる。
なお、上記においては、水平な床面に対して筐体が傾斜して配置された場合を例示して説明を行なったが、元々傾斜している床面に対して筐体が平行に設置された場合にも同様のことが言える。
以上において説明したように、本実施の形態の如く、予め組立体からなる凝縮器を所定方向に所定角度だけ傾斜して配置させておくことにより、設置状態に起因するループ型サーモサイフォンの動作不良が生じなくなり、安定したループ型サーモサイフォンの動作が実現されるようになる。この結果、予期せぬ動作不良によるスターリング冷凍機の破損が回避されるようになるとともに、スターリング冷凍機の高温部を安定して冷却することが可能になるため、スターリング冷凍機の高効率運転が実現されるようになる。
(実施の形態2)
図8は、本発明の実施の形態2におけるループ型サーモサイフォンの凝縮器の設置状態を示す模式図であり、図8(a)はループ型サーモサイフォンを正面から見た場合を示す図であり、図8(b)は側方から見た場合を示す図である。なお、本実施の形態におけるループ型サーモサイフォン100Bも、上述の実施の形態1と同様にスターリング冷凍機の高温側熱搬送システムとして利用されるものである。このため、上述の実施の形態1と同様の部分については図中同一の符号を付し、その説明はここでは繰り返さない。
図8(a)および(b)に示すように、本実施の形態におけるループ型サーモサイフォン100Bの凝縮器130Bは、上述の実施の形態1におけるループ型サーモサイフォン100Aの凝縮器130Aと同様に、送り管側母管131と、戻り管側母管132と、これら送り管側母管131と戻り管側母管132とを接続する複数の並行管133と、並行管133に接触して設けられた放熱フィン136とからなる組立体としてユニット化されて構成されている。
戻り管側母管132は、並行管133の直進部の延伸方向である第1の方向(図中矢印A方向)と交差する第2の方向(図中矢印E方向)に向かって延びている。戻り管140は、この一方向に向かって延びる戻り管側母管132の一方端近傍に接続されている。
凝縮器130Bは、冷却庫等の機器の筐体300の底面301に対して傾斜して配置されている。具体的には、筐体300の底面301に対して、戻り管140が接続された一方端が、この一方端とは反対側の端部である他方端よりも近い位置に配置されるように、組立体からなる凝縮器130Bの全体が角度θ2だけ傾斜して配置されている。
すなわち、組立体からなる凝縮器130Aの戻り管側母管132が、戻り管140が接続された一方端とは反対側に位置する他方端側から当該一方端側に向かうにつれて、筐体300の底面301との距離が減ずる方向に傾斜して配置されるように、凝縮器130Bの全体が角度θ2だけ傾斜して配置されている。ここで、筐体300の底面301に対する凝縮器130Bの傾斜角θ2は特に限定されるものではないが、好ましくは数度〜十数度程度とする。なお、このように凝縮器130Bを筐体300の底面301に対して傾斜させて設置するためには、たとえば、支持台250の支持部254cの上端の形状を調節することによって実現可能である(図1参照)。
このように、凝縮器130Bを筐体300の底面301に対して角度θ2だけ傾斜させて配置し、筐体300の底面301との距離が小さい方の戻り管側母管132の端部に戻り管140を接続することにより、筐体300の設置状態の如何に関わらず、安定してループ型サーモサイフォン100Bが動作するようになる。以下にその理由について説明する。
複数の並行管133内にて凝縮し液化した作動流体は、それぞれの並行管133から戻り管側母管132に流入して合流する。戻り管側母管132にて合流した作動流体は、戻り管140を介して蒸発器110へと導入される。
ここで、戻り管側母管132が筐体300の底面301に対して平行に配置された場合には、筐体300の床面に対する設置状態や床面の傾斜等により、戻り管側母管132が水平に配置されるとは限らない。このため、従来のループ型サーモサイフォンにあっては、図17に示すように、戻り管140を各並行管133との距離が最も短くなる戻り管側母管132の中央部に接続する構成をとり、作動流体の流動が阻害されないように設計されていた。
しかしながら、このような構成を採用した場合には、実際に戻り管側母管132が傾斜して配置された場合に、戻り管側母管132と戻り管140との接続箇所より低所に位置する戻り管側母管132内における作動流体の流動が、戻り管側母管132と戻り管140との接続箇所より高所に位置する戻り管側母管132内における作動流体の流動に比べて著しく阻害されるため、結果として複数の並行管133内における作動流体の流動抵抗にそれぞれ差が生じ、効率のよいループ型サーモサイフォンの動作が実現されなかった。
本実施の形態におけるループ型サーモサイフォン100Bにあっては、予め戻り管側母管132を機器の筐体300の底面301に対して傾斜させて配置し、より底面301との距離が小さい方の戻り管側母管132の端部に戻り管140を接続することにより、作動流体のスムーズな流動が実現されている。この結果、設置状態に起因するループ型サーモサイフォンの動作不良が生じなくなり、安定したループ型サーモサイフォンの動作が実現されるようになる。
(実施の形態3)
図9は、本発明の実施の形態3におけるループ型サーモサイフォンの凝縮器の設置状態を示す模式図であり、図9(a)はループ型サーモサイフォンを正面から見た場合を示す図であり、図9(b)は側方から見た場合を示す図である。なお、本実施の形態におけるループ型サーモサイフォン100Cも、上述の実施の形態1または2と同様にスターリング冷凍機の高温側熱搬送システムとして利用されるものである。このため、上述の実施の形態1または2と同様の部分については図中同一の符号を付し、その説明はここでは繰り返さない。
図9(a)および(b)に示すように、本実施の形態におけるループ型サーモサイフォン100Cの凝縮器130Cは、上述の実施の形態1または2におけるループ型サーモサイフォン100A,100Bの凝縮器130A,130Bと同様に、送り管側母管131と、戻り管側母管132と、これら送り管側母管131と戻り管側母管132とを接続する複数の並行管133と、並行管133に接触して設けられた放熱フィン136とからなる組立体としてユニット化されて構成されている。
本実施の形態におけるループ型サーモサイフォン100Cの凝縮器130Cは、蛇行管からなる並行管133の直進部134a〜134dが、戻り管側母管132側に向かうにつれて筐体300の底面301との距離が減ずる方向に傾斜して配置されるように、凝縮器130Aの全体が角度θ1だけ傾斜して配置されている。また、本実施の形態におけるループ型サーモサイフォン100Cにあっては、戻り管側母管132が戻り管140が接続された一方端とは反対側に位置する他方端側から当該一方端側に向かうにつれて、筐体300の底面301との距離が減ずる方向に傾斜して配置されるように、凝縮器130Bの全体が角度θ2だけ傾斜して配置されている。
以上の構成とすることにより、上述の実施の形態1および2の効果の両立が実現されるようになる。この結果、設置状態に起因するループ型サーモサイフォンの動作不良の発生を大幅に減少させることが可能になる。このため、安定したループ型サーモサイフォンの動作が実現されるようになり、スターリング冷凍機の高効率運転が実現されるようになる。
(実施の形態4)
図10は、本発明の実施の形態4におけるループ型サーモサイフォンの凝縮器の構成を示す模式図である。また、図11は、本実施の形態におけるループ型サーモサイフォンの設置状態を示す模式図であり、ループ型サーモサイフォンを側方から見た場合の図である。なお、本実施の形態におけるループ型サーモサイフォン100Dも、上述の実施の形態1〜3と同様にスターリング冷凍機の高温側熱搬送システムとして利用されるものである。このため、上述の実施の形態1〜3と同様の部分については図中同一の符号を付し、その説明はここでは繰り返さない。
図10に示すように、本実施の形態におけるループ型サーモサイフォン100Dの凝縮器130Dにおいては、複数の並行管133の各々は、第1の方向(図中矢印A方向)に向かって直線状に延びる直進部134a〜134eと、これら直進部134a〜134eを接続する湾曲部135a〜135dとによって構成されている。直進部134a〜134eの各々は、平行に上下方向に積層して配置されており(本実施の形態における凝縮器130Dにおいては5段)、湾曲部135a〜135dは、これら直進部134a〜134eの端部同士を連結している。すなわち、凝縮器130Dは、蛇行管からなる並行管133を横方向に並べて配置した構成を有している。この複数の並行管133の直進部134a〜134eには、放熱フィン136が複数枚組付けられている。
このように、蛇行管からなる並行管133を奇数段有する組立体からなる凝縮器を採用した場合には、送り管側母管131と戻り管側母管132とが凝縮器の相対する端部に別々に配置されることになる。このため、上述の実施の形態1または3の場合とは異なり、凝縮器130Dの後部側が機器の筐体300の底面301に対してより近い位置に配置されるように、凝縮器130Dを傾斜させて配置する必要がある。このように配置することにより、蛇行管からなる並行管133の直進部134a〜134eが、戻り管側母管132側に向かうにつれて筐体300の底面301との距離が減ずる方向に傾斜して配置されるようになる。なお、このように凝縮器130Dを筐体300の底面301に対して傾斜させて設置するためには、たとえば、支持台250の支持部254cの高さを調節することによって実現可能である(図1参照)。
このように、並行管133が奇数段積層された凝縮器にあっても、凝縮器全体を筐体の底面に対して角度θ1だけ傾斜させて配置することにより、筐体の設置状態の如何に関わらず、安定したループ型サーモサイフォンの動作が実現されるようになる。
(実施の形態5)
図12は、本発明の実施の形態5におけるループ型サーモサイフォンの構成を示す模式図である。なお、本実施の形態におけるループ型サーモサイフォン100Eも、上述の実施の形態1〜4と同様にスターリング冷凍機の高温側熱搬送システムとして利用されるものである。このため、上述の実施の形態1〜4と同様の部分については図中同一の符号を付し、その説明はここでは繰り返さない。
図12に示すように、本実施の形態におけるループ型サーモサイフォン100Eの凝縮器130Eにおいては、複数の並行管133の各々は、機器の筐体300の底面301と平行な方向である第1の方向(図中矢印A方向)に向かって直線状に延びる直進部134a〜134cと、最下段に位置し、機器の筐体300の底面301に対して傾斜するように配置された直進部134dと、これら直進部134a〜134dを接続する湾曲部135a〜135cとによって構成されている。直進部134a〜134dの各々は、湾曲部135a〜135cによってその端部同士が連結されている。この複数の並行管133の直進部134a〜134dには、放熱フィン136が複数枚組付けられている。
ここで、凝縮器130Eの最下段に位置する直進部134dは、戻り管側母管132側に向かうにつれ、筐体300の底面301との距離が減ずる方向に傾斜して配置されている。すなわち、最下段に位置する直進部134dは、筐体300の底面301に対して角度θ3だけ傾斜して配置されている。
凝縮器130Eの並行管133内を流動する作動流体は、主に最下段に位置する直進部134dにて凝縮し液化する。このため、直進部134d内で液化した作動流体は、重力の作用により傾斜して配置された直進部134d内を戻り管側母管132側へと向かって流動し、並行管133から流出する。このため、並行管133内に液化した作動流体が滞留することはない。この結果、予め最下段に位置する直進部134dのみを筐体300の底面301に対して所定角度傾斜させて配置しておくことにより、筐体の設置状態の如何を問わずスムーズな作動流体の流動が実現され、安定したループ型サーモサイフォン100Eの動作が実現されるようになる。
(実施の形態6)
図13は、本発明の実施の形態6におけるループ型サーモサイフォンの構成を示す模式図である。なお、本実施の形態におけるループ型サーモサイフォン100Fも、上述の実施の形態1〜5と同様にスターリング冷凍機の高温側熱搬送システムとして利用されるものである。このため、上述の実施の形態1〜5と同様の部分については図中同一の符号を付し、その説明はここでは繰り返さない。
図13に示すように、本実施の形態におけるループ型サーモサイフォン100Fの凝縮器130Fにおいては、複数の並行管133の各々は、直線状に延びる直進部134a〜134dと、これら直進部134a〜134dを接続する湾曲部135a〜135cとによって構成されている。直進部134a〜134eの各々は、湾曲部135a〜135cによってその端部同士が連結されている。この複数の並行管133の直進部134a〜134eには、放熱フィン136が複数枚組付けられている。
ここで、凝縮器130Eの各々の直進部134a〜134dは、作動流体の流動方向において、上流側から下流側(すなわち、送り管側母管131側から戻り管側母管132側)に向かうにつれて、機器の筐体300の底面301に対する距離が減ずる方向に傾斜して配置されている。特に、最下段に位置する直進部134dは、筐体300の底面301に対して角度θ4だけ傾斜して配置されている。
凝縮器130Eの並行管133内を流動する作動流体は、主に最下段に位置する直進部134dにて凝縮し液化する。しかしながら、環境温度の変化等により、最下段の直進部134dより上段に位置する直進部134a〜134cにおいても作動流体が凝縮し液化する場合がある。このため、直進部134a〜134d内で凝縮し液化した作動流体が、重力の作用により傾斜して配置された直進部134a〜134c内を戻り管側母管132側へと向かって流動するように、予め各々の直進部134a〜134dを所定角度傾斜させて配置しておくことにより、並行管133内に作動流体が滞留することが回避されるようになる。
このように、予め直進部134a〜134dを筐体300の底面301に対して所定角度傾斜させて配置しておくことにより、筐体300の設置状態の如何を問わずスムーズな作動流体の流動が実現されるようになり、結果として安定したループ型サーモサイフォン100Fの動作が実現されるようになる。
(実施の形態7)
図14は、本発明の実施の形態7におけるループ型サーモサイフォンの構成を示す模式図である。なお、本実施の形態におけるループ型サーモサイフォン100Gも、上述の実施の形態1〜6と同様にスターリング冷凍機の高温側熱搬送システムとして利用されるものである。このため、上述の実施の形態1〜6と同様の部分については図中同一の符号を付し、その説明はここでは繰り返さない。
図14に示すように、本実施の形態におけるループ型サーモサイフォン100Gの凝縮器130Gにおいては、上下方向に延びる送り管側母管131と、同じく上下方向に延びる戻り管側母管132と、これら送り管側母管131と戻り管側母管132とを接続する複数の並行管133とを有する。複数の並行管133の各々は直線状に延びる直行管からなり、これら複数の直行管が上下方向に平行に積層されて凝縮器130Gが構成されている。この複数の並行管133には、放熱フィン136が複数枚組付けられている。なお、凝縮器130Gにおいては、送り管側母管131の延伸方向と各々の並行管133の延伸方向とが直交しかつ戻り管側母管132の延伸方向と各々の並行管133の延伸方向とが直交するように構成されている。
ここで、本実施の形態におけるループ型サーモサイフォン100Gにおいては、凝縮器130Gの各々の並行管133が、作動流体の流動方向において、上流側から下流側(すなわち、送り管側母管131側から戻り管側母管132側)に向かうにつれ、機器の筐体300の底面301に対する距離が減ずる方向に傾斜して配置されるように、凝縮器130Gの全体が機器の筐体300の底面301に対して角度θ5だけ傾斜して配置されている。
このように、並行管133内にて凝縮し液化した作動流体が、重力の作用により並行管133内を戻り管側母管132側へと向かって流動するように、予め凝縮器130G全体を傾斜させて配置しておくことにより、並行管133内に作動流体が滞留することが回避されるようになる。これにより、筐体300の設置状態の如何を問わずスムーズな作動流体の流動が実現されるようになり、安定したループ型サーモサイフォン100Gの動作が実現されるようになる。
なお、本実施の形態においては、送り管側母管と戻り管側母管とが上下方向に延在するように配置された凝縮器を例示して説明を行なったが、送り管側母管と戻り管側母管とが水平方向に延在するように配置することも可能である。このように配置した場合には、送り管側母管と戻り管側母管とを接続する並行管である直行管は、水平方向に平行に配列されることになる。この場合にも、凝縮器の各々の並行管が、作動流体の流動方向において、上流側から下流側(すなわち、送り管側母管側から戻り管側母管側)に向かうにつれ、機器の筐体の底面に対する距離が減ずる方向に傾斜して配置されるように、凝縮器の全体を機器の筐体の底面に対して所定角度だけ傾斜して配置することにより、安定したループ型サーモサイフォンの動作が実現されるようになる。
また、送り管側母管と戻り管側母管とを接続する並行管は、必ずしも一列に配置されている必要はない。たとえば、並行管の延伸方向と交差する方向において、並行管が千鳥状に配置されていてもよい。
(実施の形態8)
図15は、本発明の実施の形態8におけるループ型サーモサイフォンの構成を示す模式図である。なお、本実施の形態におけるループ型サーモサイフォン100Hも、上述の実施の形態1〜7と同様にスターリング冷凍機の高温側熱搬送システムとして利用されるものである。このため、上述の実施の形態1〜7と同様の部分については図中同一の符号を付し、その説明はここでは繰り返さない。
図15に示すように、本実施の形態におけるループ型サーモサイフォン100Hの凝縮器130Hにおいては、上下方向に延びる送り管側母管131と、同じく上下方向に延びる戻り管側母管132と、これら送り管側母管131と戻り管側母管132とを接続する複数の並行管133とを有する。複数の並行管133の各々は直線状に延びる直行管からなり、これら複数の直行管が上下方向に平行に積層されて凝縮器130Hが構成されている。この複数の並行管133には、放熱フィン136が複数枚組付けられている。なお、本実施の形態におけるループ型サーモサイフォン100Hにおいては、送り管側母管131および戻り管側母管132の延伸方向が機器の筐体300の底面301の法線方向と重なるように、送り管側母管131および戻り管側母管132が配置されている。
ここで、本実施の形態におけるループ型サーモサイフォン100Gにおいては、凝縮器130Gの直行管からなる並行管133の各々が、作動流体の流動方向において、上流側から下流側(すなわち、送り管側母管131側から戻り管側母管132側)に向かうにつれ、機器の筐体300の底面301に対する距離が減ずる方向に傾斜して配置されるように、直行管からなる並行管133が機器の筐体300の底面301に対して角度θ6だけ傾斜して配置されている。
このように、並行管133内にて凝縮し液化した作動流体が、重力の作用により並行管133内を戻り管側母管132側へと向かって流動するように、予め並行管133を傾斜させて配置しておくことにより、並行管133内に作動流体が滞留することが回避されるようになる。これにより、筐体300の設置状態の如何を問わずスムーズな作動流体の流動が実現されるようになり、安定したループ型サーモサイフォン100Gの動作が実現されるようになる。
なお、本実施の形態においては、送り管側母管と戻り管側母管とが上下方向に延在するように配置された凝縮器を例示して説明を行なったが、送り管側母管と戻り管側母管とが水平方向に延在するように配置することも可能である。このように配置した場合には、送り管側母管と戻り管側母管とを接続する並行管である直行管は、水平方向に平行に配列されることになる。この場合にも、凝縮器の各々の並行管が、作動流体の流動方向において、上流側から下流側(すなわち、送り管側母管側から戻り管側母管側)に向かうにつれ、機器の筐体の底面に対する距離が減ずる方向に傾斜して配置されるように、凝縮器の全体を機器の筐体の底面に対して所定角度だけ傾斜して配置することにより、安定したループ型サーモサイフォンの動作が実現されるようになる。
また、送り管側母管と戻り管側母管とを接続する並行管は、必ずしも一列に配置されている必要はない。たとえば、並行管の延伸方向と交差する方向において、並行管が千鳥状に配置されていてもよい。
(実施の形態9)
図16は、本実施の形態におけるスターリング冷却庫の構造を示す模式断面図である。本実施の形態におけるスターリング冷却庫は、筐体内部に設置されるスターリング冷凍機の高温側熱搬送システムとして、上述の実施の形態1から8のいずれかに記載のループ型サーモサイフォンを搭載している。
図16に示すように、本実施の形態におけるスターリング冷却庫10は、冷却空間として冷凍空間28と冷蔵空間29とを備える。スターリング冷却庫10は、スターリング冷凍機200の高温部204の冷却を行なう高温側熱搬送システムとしてループ型サーモサイフォン100を備えている。なお、スターリング冷凍機200の低温部206に発生する極低温は、低温側熱搬送システム20(図16中の破線部分参照)によって庫内の冷却に利用される。この低温側の熱搬送システムとしては、高温側熱搬送システムと同様にループ型サーモサイフォンによって構成してもよいし、強制対流型の熱搬送システムとしてもよい。
ここで、高温側熱搬送システムであるループ型サーモサイフォン100は、スターリング冷凍機200の高温部204の周囲に接触して取り付けられた蒸発器110と、送り管および戻り管によって上記蒸発器110と接続された凝縮器130とから構成される。この蒸発器110、凝縮器130、送り管120および戻り管140からなる循環回路内には、たとえばエタノールが添加された水などが冷媒として封入される。そして、冷媒の蒸発と凝縮による自然対流を利用して高温部204で発生した熱を伝達することができるように、凝縮器130が蒸発器110より上方(高所)に配置されている。
図16に示すように、スターリング冷凍機200は、スターリング冷却庫10の背面上部に配置される。また、低温側熱搬送システム20は、スターリング冷却庫10の背面側に配置される。これに対し、高温側熱搬送システムであるループ型サーモサイフォン100は、スターリング冷却庫10の上部に配置される。なお、ループ型サーモサイフォン100の凝縮器130はスターリング冷却庫10の上部に設けたダクト24に内設される。
スターリング冷凍機200を動作させると、高温部204で発生した熱が、ループ型サーモサイフォン100の凝縮器130を介してダクト24内の空気と熱交換される。このとき、送風ファン25により、ダクト24内の暖かい空気がスターリング冷却庫10の庫外へ排出されるとともに、スターリング冷却庫10の庫外の空気が取り込まれ、熱交換が促進される。
一方、低温部206で発生した極低温は、冷気ダクト23内の気流(図16中の矢印)と熱交換される。このとき、冷凍空間側ファン26および冷蔵空間側ファン27により、冷却された冷気がそれぞれ冷凍空間28および冷蔵空間29に送風される。各冷却空間28,29からの暖かくなった気流は再び冷気ダクト23に導入され、繰り返し冷却される。
上記のスターリング冷却庫に搭載されたループ型サーモサイフォン100は、上述の実施の形態1〜8のいずれかに記載のループ型サーモサイフォンであるため、スターリング冷却庫10の筐体の設置状態の如何を問わず安定して動作する。このため、スターリング冷凍機200を高効率で運転させることが可能になるため、スターリング冷却庫10の性能も向上するようになる。
なお、上述の実施の形態においては、ループ型サーモサイフォンをスターリング冷凍機の高温側熱搬送システムに採用した場合を例示して説明を行なったが、熱源を有する他のデバイスにも当然に適用可能である。
このように、今回開示した上記各実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
本発明の実施の形態1におけるループ型サーモサイフォンの設置構造を示す概略斜視図である。 図1に示すループ型サーモサイフォンの凝縮器の構成を示す模式図である。 図1に示すスターリング冷凍機およびループ型サーモサイフォンの組付け構造を示す模式図であり、(a)は組付け前を示す図であり、(b)は組付け後を示す図である。 図1に示すスターリング冷凍機およびループ型サーモサイフォンの組付け構造の他の例を示す模式図であり、(a)は組付け前を示す図であり、(b)は組付け後を示す図である。 本発明の実施の形態1におけるループ型サーモサイフォンの凝縮器の設置状態を示す模式図であり、(a)はループ型サーモサイフォンを正面から見た場合を示す図であり、(b)は側方から見た場合を示す図である。 本発明の実施の形態1において、凝縮器が水平面に対して傾斜して配置された場合の作動流体の流れを示す図である。 本発明の実施の形態1において、凝縮器が水平面に対して傾斜して配置された場合の作動流体の流れを示す図である。 本発明の実施の形態2におけるループ型サーモサイフォンの凝縮器の設置状態を示す模式図であり、(a)はループ型サーモサイフォンを正面から見た場合を示す図であり、(b)は側方から見た場合を示す図である。 本発明の実施の形態3におけるループ型サーモサイフォンの凝縮器の設置状態を示す模式図であり、(a)はループ型サーモサイフォンを正面から見た場合を示す図であり、(b)は側方から見た場合を示す図である。 本発明の実施の形態4におけるループ型サーモサイフォンの凝縮器の構成を示す模式図である。 本発明の実施の形態4におけるループ型サーモサイフォンの設置状態を示す模式図であり、ループ型サーモサイフォンを側方から見た場合の図である。 本発明の実施の形態5におけるループ型サーモサイフォンの構成を示す模式図である。 本発明の実施の形態6におけるループ型サーモサイフォンの構成を示す模式図である。 本発明の実施の形態7におけるループ型サーモサイフォンの構成を示す模式図である。 本発明の実施の形態8におけるループ型サーモサイフォンの構成を示す模式図である。 本発明の実施の形態9におけるスターリング冷却庫の構造を示す模式断面図である。 一般的なループ型サーモサイフォンの構造を示す模式図であり、(a)はループ型サーモサイフォンを正面から見た図であり、(b)は側方から見た図である。 一般的な凝縮器の構成を示す模式図であり、凝縮器が水平に設置された場合の作動流体の流れを示す図である。 凝縮器が水平面に対して傾斜して配置された場合の作動流体の流れを示す図である。
符号の説明
10 スターリング冷却庫、20 低温側熱搬送システム、23 冷気ダクト、24 ダクト、25 送風ファン、26 冷凍空間側ファン、27 冷蔵空間側ファン、28 冷凍空間、29 冷蔵空間、100,100A〜100I ループ型サーモサイフォン、110 蒸発器、112 内周面、120 送り管、130,130A〜130I 凝縮器、131 送り管側母管、132 戻り管側母管、133 並行管、134a〜134e 直進部、135a〜135d 湾曲部、136 放熱フィン、140 戻り管、200 スターリング冷凍機、202 圧力容器、204 高温部、206 低温部、250 支持台、252 底板、254a〜254c 支持部、255 締着バンド、255a 円弧状部、255b 巻き付け部、255c 締結部、257 台座、257a 受け部、260 ボルトナット、300 筐体、301 底面、401 床面、500 作動流体の流動方向、502 液化した作動流体、503 液面。

Claims (9)

  1. 熱源を有する機器の筐体に搭載され、閉回路内に封入された作動流体を用いて前記熱源から熱を伝達するループ型サーモサイフォンであって、
    前記閉回路は、
    前記熱源から熱を奪い、前記作動流体を蒸発させる蒸発器と、
    前記蒸発器にて蒸発した作動流体を凝縮させる凝縮器と、
    前記蒸発器にて蒸発した作動流体を前記凝縮器へ送る送り管と、
    前記凝縮器にて凝縮した作動流体を前記蒸発器へ戻す戻り管とによって構成されており、
    前記凝縮器は、一方向に向かって延びる直進部が上下方向に複数段にわたって積層されかつ前記複数段にわたって積層された直進部同士が湾曲部によって接続されてなる蛇行管を有し、
    前記蛇行管の直進部のうち最下段に位置する直進部が、前記戻り管側に向かうにつれて、前記筐体の底面との距離が減ずる方向に傾斜して配置されている、ループ型サーモサイフォン。
  2. 熱源を有する機器の筐体に搭載され、閉回路内に封入された作動流体を用いて前記熱源から熱を伝達するループ型サーモサイフォンであって、
    前記閉回路は、
    前記熱源から熱を奪い、前記作動流体を蒸発させる蒸発器と、
    前記蒸発器にて蒸発した作動流体を凝縮させる凝縮器と、
    前記蒸発器にて蒸発した作動流体を前記凝縮器へ送る送り管と、
    前記凝縮器にて凝縮した作動流体を前記蒸発器へ戻す戻り管とによって構成されており、
    前記凝縮器は、
    前記送り管に接続され、導入された作動流体を分流する送り管側母管と、
    前記戻り管に接続され、分流された作動流体を合流させる戻り管側母管と、
    前記送り管側母管と前記戻り管側母管とを接続し、互いに並行するように配置された複数の並行管とを含む組立体からなり、
    前記並行管の各々は、第1の方向に向かって延びる直進部が上下方向に複数段にわたって平行に積層されかつ前記複数段にわたって積層された直進部同士が湾曲部によって接続されてなる蛇行管によって構成されており、
    前記蛇行管の直進部のうち最下段に位置する直進部が、前記戻り管側母管側に向かうにつれて、前記筐体の底面との距離が減ずる方向に傾斜して配置されるように、前記凝縮器の全体が前記筐体の底面に対して傾斜して配置されている、ループ型サーモサイフォン。
  3. 前記傾斜して配置された凝縮器の前記筐体の底面に対する傾斜角が、0°より大きく6°以下である、請求項2に記載のループ型サーモサイフォン。
  4. 前記戻り管側母管は、前記第1の方向と交差する第2の方向に向かって延びており、
    前記戻り管は、前記第2の方向に向かって延びる戻り管側母管の一方端近傍に接続されており、
    前記戻り管側母管が、前記一方端とは反対側に位置する他方端側から前記一方端側に向かうにつれて、前記筐体の底面との距離が減ずる方向に傾斜して配置されている、請求項2または3に記載のループ型サーモサイフォン。
  5. 熱源を有する機器の筐体に搭載され、閉回路内に封入された作動流体を用いて前記熱源から熱を伝達するループ型サーモサイフォンであって、
    前記閉回路は、
    前記熱源から熱を奪い、前記作動流体を蒸発させる蒸発器と、
    前記蒸発器にて蒸発した作動流体を凝縮させる凝縮器と、
    前記蒸発器にて蒸発した作動流体を前記凝縮器へ送る送り管と、
    前記凝縮器にて凝縮した作動流体を前記蒸発器へ戻す戻り管とによって構成されており、
    前記凝縮器は、
    前記送り管に接続され、導入された作動流体を分流する送り管側母管と、
    前記戻り管に接続され、分流された作動流体を合流させる戻り管側母管と、
    前記送り管側母管と前記戻り管側母管とを接続し、互いに並行するように配置された複数の並行管とを含む組立体からなり、
    前記戻り管側母管は、一方向に向かって延びており、
    前記戻り管は、前記一方向に向かって延びる戻り管側母管の一方端近傍に接続されており、
    前記戻り管側母管が、前記一方端とは反対側に位置する他方端側から前記一方端側に向かうにつれて、前記筐体の底面との距離が減ずる方向に傾斜して配置されている、ループ型サーモサイフォン。
  6. 熱源を有する機器の筐体に搭載され、閉回路内に封入された作動流体を用いて前記熱源から熱を伝達するループ型サーモサイフォンであって、
    前記閉回路は、
    前記熱源から熱を奪い、前記作動流体を蒸発させる蒸発器と、
    前記蒸発器にて蒸発した作動流体を凝縮させる凝縮器と、
    前記蒸発器にて蒸発した作動流体を前記凝縮器へ送る送り管と、
    前記凝縮器にて凝縮した作動流体を前記蒸発器へ戻す戻り管とによって構成されており、
    前記凝縮器は、
    前記送り管に接続され、導入された作動流体を分流する送り管側母管と、
    前記戻り管に接続され、分流された作動流体を合流させる戻り管側母管と、
    前記送り管側母管と前記戻り管側母管とを接続し、互いに並行するように配置された複数の直行管とを含む組立体からなり、
    前記直行管の各々が、前記戻り管側母管側に向かうにつれて、前記筐体の底面との距離が減ずる方向に傾斜して配置されている、ループ型サーモサイフォン。
  7. スターリング冷凍機を搭載したスターリング冷却庫であって、
    前記スターリング冷凍機は、請求項1から6のいずれかに記載のループ型サーモサイフォンを備えており、
    前記蒸発器が、前記スターリング冷凍機の高温部と熱交換させるように構成された、スターリング冷却庫。
  8. 外形が略円筒状の熱源に対して組付けられるループ型サーモサイフォンの組付け構造であって、
    半円弧状に2分割されてなる第1および第2の蒸発器と、
    前記第1および第2の蒸発器が円形に組み合わされた状態にて、前記第1および第2の蒸発器を受入れる載置部を有する載置台と、
    前記載置台に少なくとも一箇所が固定されてなる締着バンドとを備え、
    前記第1および第2の蒸発器のそれぞれの内周面が前記熱源の外周面に当接した状態にて、前記第1および第2の蒸発器が前記載置部に載置され、かつ前記締着バンドによって前記第1および第2の蒸発器が前記載置台に固定されてなる、ループ型サーモサイフォンの組付け構造。
  9. 前記締着バンドは、一端が前記載置台に固定されてなる第1および第2バンド部からなり、前記第1および第2バンド部の他端側が締結手段によって締め付けられることにより、前記第1および第2の蒸発器が前記載置台に固定されている、請求項8に記載のループ型サーモサイフォンの組付け構造。
JP2003309708A 2003-09-02 2003-09-02 ループ型サーモサイフォンおよびスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造 Pending JP2005077018A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003309708A JP2005077018A (ja) 2003-09-02 2003-09-02 ループ型サーモサイフォンおよびスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造
US10/570,132 US20070028626A1 (en) 2003-09-02 2004-08-12 Loop type thermo siphon, stirling cooling chamber, and cooling apparatus
EP04771575A EP1669710A1 (en) 2003-09-02 2004-08-12 Loop type thermo siphon, stirling cooling chamber, and cooling apparatus
PCT/JP2004/011600 WO2005024331A1 (ja) 2003-09-02 2004-08-12 ループ型サーモサイフォン、スターリング冷却庫ならびに冷却装置
CNA2004800251409A CN1846110A (zh) 2003-09-02 2004-08-12 回路型热虹吸管、斯特林冰箱及冷却装置
KR1020067004114A KR100746795B1 (ko) 2003-09-02 2004-08-12 냉각 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309708A JP2005077018A (ja) 2003-09-02 2003-09-02 ループ型サーモサイフォンおよびスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造

Publications (1)

Publication Number Publication Date
JP2005077018A true JP2005077018A (ja) 2005-03-24

Family

ID=34411782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309708A Pending JP2005077018A (ja) 2003-09-02 2003-09-02 ループ型サーモサイフォンおよびスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造

Country Status (2)

Country Link
JP (1) JP2005077018A (ja)
CN (1) CN1846110A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262314A (ja) * 1985-09-13 1987-03-19 Hitachi Ltd 温度調節機能を有する大口径反射鏡
WO2008038363A1 (fr) * 2006-09-28 2008-04-03 Mitsubishi Kakoki Kaisha, Ltd. Échangeur de chaleur
WO2013111561A1 (ja) * 2012-01-23 2013-08-01 日本電気株式会社 冷却構造及びそれを用いた電子装置
JP2015516061A (ja) * 2012-05-08 2015-06-04 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH 流体用除去装置
JP2017089991A (ja) * 2015-11-12 2017-05-25 日本フリーザー株式会社 並列分散型冷却システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034116A (zh) * 2014-05-08 2014-09-10 宁波华斯特林电机制造有限公司 一种斯特林电冰箱

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262314A (ja) * 1985-09-13 1987-03-19 Hitachi Ltd 温度調節機能を有する大口径反射鏡
WO2008038363A1 (fr) * 2006-09-28 2008-04-03 Mitsubishi Kakoki Kaisha, Ltd. Échangeur de chaleur
WO2013111561A1 (ja) * 2012-01-23 2013-08-01 日本電気株式会社 冷却構造及びそれを用いた電子装置
JPWO2013111561A1 (ja) * 2012-01-23 2015-05-11 日本電気株式会社 冷却構造及びそれを用いた電子装置
JP2015516061A (ja) * 2012-05-08 2015-06-04 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH 流体用除去装置
JP2017089991A (ja) * 2015-11-12 2017-05-25 日本フリーザー株式会社 並列分散型冷却システム

Also Published As

Publication number Publication date
CN1846110A (zh) 2006-10-11

Similar Documents

Publication Publication Date Title
KR100746795B1 (ko) 냉각 장치
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
US7497249B2 (en) Thermosiphon for laptop computer
JP5857964B2 (ja) 電子機器冷却システム
EP2431701B1 (en) Heat dissipation device and radio frequency module with same
US7926553B2 (en) Cooling system for electronic devices, in particular, computers
US20060283579A1 (en) Integrated liquid cooled heat sink for electronic components
US7487643B2 (en) Loop type thermo syphone, heat radiation system, heat exchange system, and stirling cooling chamber
JP2002168547A (ja) 熱サイホンによるcpu冷却装置
US20170010049A1 (en) Heat exchanger
JP5621225B2 (ja) 沸騰冷却装置
JPWO2012161002A1 (ja) 平板型冷却装置及びその使用方法
US10578368B2 (en) Two-phase fluid heat transfer structure
JP2005077018A (ja) ループ型サーモサイフォンおよびスターリング冷却庫ならびにループ型サーモサイフォンの組付け構造
CN104303293A (zh) 冷却装置的连接结构、冷却装置和连接冷却装置的方法
JPH07243782A (ja) ヒートパイプ式放熱器
JP2011142298A (ja) 沸騰冷却装置
JP6825615B2 (ja) 冷却システムと冷却器および冷却方法
CN113347856B (zh) 一种电子设备的散热装置
JP7398428B2 (ja) 放熱システム
CN214581473U (zh) 散热器及空调室外机
WO2005098336A1 (ja) 蒸発器、サーモサイフォン及びスターリング冷却庫
JP5961948B2 (ja) 冷却装置およびそれを用いた電子機器
JP3751623B2 (ja) ループ型サーモサイフォン、放熱システムおよびスターリング冷却庫
JP4358963B2 (ja) ヒートシンク

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050817

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051202