JP7523820B2 - Separation and purification method for purifying industrial-grade high-concentration HF to electronic-grade FTrPSA - Google Patents

Separation and purification method for purifying industrial-grade high-concentration HF to electronic-grade FTrPSA Download PDF

Info

Publication number
JP7523820B2
JP7523820B2 JP2022506378A JP2022506378A JP7523820B2 JP 7523820 B2 JP7523820 B2 JP 7523820B2 JP 2022506378 A JP2022506378 A JP 2022506378A JP 2022506378 A JP2022506378 A JP 2022506378A JP 7523820 B2 JP7523820 B2 JP 7523820B2
Authority
JP
Japan
Prior art keywords
gas
adsorption
liquid
ahf
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022506378A
Other languages
Japanese (ja)
Other versions
JP2023524919A (en
Inventor
ヤーリン チョン
ランハイ ワン
ユーミン チョン
ユン チェン
ジンカイ タン
ユエミン サイ
Original Assignee
浙江天采云集科技股▲分▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天采云集科技股▲分▼有限公司 filed Critical 浙江天采云集科技股▲分▼有限公司
Publication of JP2023524919A publication Critical patent/JP2023524919A/en
Application granted granted Critical
Publication of JP7523820B2 publication Critical patent/JP7523820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/197Separation; Purification by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/195Separation; Purification
    • C01B7/196Separation; Purification by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、工業レベルの高濃度フッ化水素(HF)を原料として、電子レベルのHFを調製する浄化純化に関する創作である。更に具体的に述べると、工業レベルの高濃度HFを電子レベルのFTrPSA(全温程変圧吸着)に精製する分離及び純化方法に関する創作である。 This invention is a creation related to the purification and purification of electronic-level HF using industrial-level high-concentration hydrogen fluoride (HF) as a raw material. More specifically, this invention is a creation related to a separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA (full-temperature swing pressure adsorption).

フッ化水素(HF)は、フッ素化学の基本的な原料であり、有機フッ素、無機フッ化物塩及びその他含フッ素触媒剤、フッ素ケイ酸等の分野の製造に使用できる。HFは、冷媒、界面活性剤、フッ素ゴム、フッ素塗料、含フッ素樹脂、含フッ素農薬、高純度フッ素樹脂、医薬中間体等の有機フッ素分野における応用はますます増えている。現在、半導体産業の発展につれて、超高純度の電子レベルHF(ガスと液体)は、集積回路(IC)と超大規模集積回路(VLSI)のウエハの洗浄、エッチング及び化学蒸着工程に既に広く応用されており、マイクロ電子業界製造工程において、キーポイントとなる基礎化学材料の一つである。また、分析試薬として用いられ、高純度フッ素含有薬品や半導体材料を調製することもできる。 Hydrogen fluoride (HF) is a basic raw material in fluorine chemistry and can be used in the production of organic fluorine, inorganic fluoride salts and other fluorine-containing catalytic agents, fluorine silicate and other fields. HF is increasingly being used in the field of organic fluorine, such as refrigerants, surfactants, fluorine rubber, fluorine paints, fluorine-containing resins, fluorine-containing pesticides, high-purity fluorine resins and pharmaceutical intermediates. At present, with the development of the semiconductor industry, ultra-high purity electronic level HF (gas and liquid) has been widely used in the cleaning, etching and chemical vapor deposition processes of integrated circuit (IC) and very large scale integrated circuit (VLSI) wafers, and is one of the key basic chemical materials in the manufacturing process of the microelectronics industry. It can also be used as an analytical reagent to prepare high-purity fluorine-containing chemicals and semiconductor materials.

現在、工業的な高純度のHFの調製と抽出は、主に工業レベル高濃度のHFを原料とし、蒸留/精留及び膜分離を主な精製方法として採用しており、精留、蒸留、サブボイリング蒸留、減圧蒸留、ガス吸収、マイクロフィルタ、限外濾過、ナノ濾過及び各種構成等を含む。これらの伝統的な純化工程において、原料(液体/ガス)の各留分とHFとの間で異なる温度下における揮発度(沸点)、溶解度又は分子の大きさの差異を利用して、原料の中の不純物を分別分離して、浄化除去することで、純度相当の非水HF(AHF)商品を得ることができる。原料における主要な不純物留分は、フッ素ケイ酸(HSiF)、水(HO)、塩化物(主に、塩化水素HCl)、リン化物(P)、金属酸化物(MeO)、金属イオン及び固体顆粒(SS)等である。電子レベルのHF商品は、EL(一般電子レベル)、UP(超純)、UPS(超高純)、UPSS(超高高純)に分類され、国際半導体業界協会(SEMI)もSEMI-C/Sレベルに対応する標準を制定し、当該標準はUPS/UPSSレベルに相当する。例えば、中国国内で一般的に使用されているUP電子レベルHF(液体)指標は、HSiF含量は100ppm未満であり、クロライド(Cl)は5ppm未満であり、Pは1ppm未満であり、MeO/Me+は10ppb未満であり、SS(≧1μm)は25単位(個)/ミリリットル未満であるという標準等である。MeO/Me+は、特に、水溶性ヒ素(As)、マグネシウム(Mg)、カルシウム(Ca)、ナトリウム(Na)とカリウム(K)等のMeO/Me+不純物であり、必ずきれいに除去にする必要がある。そうでなければ、半導体ウエハの性能に重大な影響が生じる。半導体ウエハ洗浄剤又はウェットエッチングとしての電子レベルHF液体は、そのHF含量が例えば49%である等様々なレベルであり、残りはいずれも脱イオン水である。したがって、工業的には通常、蛍石法やフッ素ケイ酸法を採用しており、非水HF(AHF)を調製する生産過程の精留及び膜濾過の後に、純度が99.9%である純AHFガスを得られる。脱イオン水で吸収した後、シャワー密度、気液比及び膜濾過等を制御する方法を採用し、電子レベルフッ化水素酸を更に純化させて電子レベルHF液体商品を得ることができる。しかしながら、精留過程において、水、HF、及び蛍石法又はフッ素ケイ酸法工程自体から生成されるその他不純物、例えば、硫酸(HSO)、二酸化硫黄(SO)、塩化水素(HCl)、四フッ化ケイ素(SiF)、アンモニア(NH)及び二酸化炭素(CO)等の相互溶解性、及び精留分離が受ける相平衡の制約によりこれらの不純物とHFとを完全に分離することができないことから、得られる純AHFガスには依然として比較的多くの不純物留分が含まれており、それにより、その後の脱イオン水吸収、シャワー密度と気液比の制御、膜濾過等の工程において、これらその後の純化によって、微量又は極微量の不純物留分を除去することも非常に困難である。したがって、蛍石法やフッ素ケイ酸法からAHFを調製する生産過程において獲得した純AHF商品の純度を制御することは極めて重要である。それゆえに、95~99%含量の工業レベルHFやAHF原料ガスに精留、蒸留、サブ蒸留や特殊精留を直接行うと、不純物濃度が低すぎるため、精留又は蒸留のコストが非常に高い。不純物留分とHFとの間の沸点の相違が比較的大きいが、水分はその他各不純物留分の水中での物質移動の分配に影響するため、精留又は蒸留は相平衡に厳しい制限が課され、純化深度は電子レベルの要求には遠く及ばない。 At present, the preparation and extraction of industrial high purity HF mainly uses industrial high concentration HF as raw material, and adopts distillation/rectification and membrane separation as the main purification method, including rectification, distillation, subboiling distillation, vacuum distillation, gas absorption, microfilter, ultrafiltration, nanofiltration and various configurations. In these traditional purification processes, the impurities in the raw material (liquid/gas) are fractionated and purified and removed by utilizing the difference in volatility (boiling point), solubility or molecular size between each fraction of the raw material and HF at different temperatures, so that anhydrous HF (AHF) products with the equivalent purity can be obtained. The main impurity fractions in the raw material are fluorosilicic acid (H 2 SiF 6 ), water (H 2 O), chlorides (mainly hydrogen chloride HCl), phosphides (P), metal oxides (MeO), metal ions and solid granules (SS), etc. Electronic level HF products are classified into EL (general electronic level), UP (ultra pure), UPS (ultra high purity), and UPSS (ultra high purity), and the Semiconductor Industry International (SEMI) has also established a standard corresponding to the SEMI-C/S level, which corresponds to the UPS/UPSS level. For example, the UP electronic level HF (liquid) index commonly used in China is that the H 2 SiF 6 content is less than 100 ppm, chloride (Cl) is less than 5 ppm, P is less than 1 ppm, MeO/Me+ is less than 10 ppb, and SS (≧1 μm) is less than 25 units (pieces)/ml. MeO/Me+ is especially water-soluble arsenic (As), magnesium (Mg), calcium (Ca), sodium (Na) and potassium (K) and other MeO/Me+ impurities, which must be thoroughly removed. Otherwise, it will have a serious impact on the performance of semiconductor wafers. The electronic level HF liquid as semiconductor wafer cleaning agent or wet etching has various levels of HF content, for example 49%, and the rest is deionized water. Therefore, the fluorite method or fluorosilicic acid method is generally adopted in industry, and after rectification and membrane filtration in the production process of preparing non-aqueous HF (AHF), pure AHF gas with a purity of 99.9% can be obtained. After absorption with deionized water, the method of controlling shower density, gas-liquid ratio and membrane filtration can be adopted to further purify electronic level hydrofluoric acid to obtain electronic level HF liquid product. However, in the rectification process, due to the mutual solubility of water, HF, and other impurities generated from the fluorite or fluorosilicic acid process itself, such as sulfuric acid ( H2SO4 ), sulfur dioxide ( SO2 ), hydrogen chloride (HCl), silicon tetrafluoride ( SiF4 ), ammonia ( NH3 ) and carbon dioxide ( CO2 ), and the constraint of phase equilibrium imposed on the rectification separation, these impurities and HF cannot be completely separated, so that the obtained pure AHF gas still contains a relatively large amount of impurity fraction, and therefore it is also very difficult to remove trace or very trace amounts of impurity fraction by subsequent purification in the processes of deionized water absorption, shower density and gas-liquid ratio control, membrane filtration, etc. Therefore, it is very important to control the purity of the pure AHF product obtained in the production process of preparing AHF from the fluorite or fluorosilicic acid process. Therefore, if 95-99% industrial-level HF or AHF feed gas is directly subjected to rectification, distillation, sub-distillation or special rectification, the impurity concentration is too low, and the cost of rectification or distillation is very high. Although the difference in boiling point between the impurity fraction and HF is relatively large, water affects the distribution of mass transfer of each impurity fraction in water, so that the rectification or distillation has a severe limit on the phase equilibrium, and the purification depth is far from the requirement of electronic level.

吸着法を採用してHF精製を行えるが報告されており、吸着剤は主にアルカリ性金属のフッ素化物であり、金属フッ素化物とHFとが比較的低い温度下で発生する化学反応を利用して、選択的に化学吸着を行い、金属フッ素化物-HFの錯体を形成する。錯体の分解反応は、吸着剤からHFの着脱するために比較的高い温度下で行うことで、吸着剤からの脱着を実現することができ、その他不純物は吸着剤における選択性はなくとも、HFの分離と浄化を実現することができる。この化学吸着法が適用される工程状況のほとんどは、フッ素化反応によりフルオロクロロアルカン(CFC)、ハイドロクロロフルオロカーボン(HCFC)、ハイドロフルオロカーボン(HFC)、フッ化スルフリル(SO)等の商品を調製する場合であり、反応によって生成される反応混合ガスは、HFを選択的に吸着し、分離し、回収することができるため、その効果はよりよいが、吸着剤の損失率は大きい。水、硫酸又はSiF等を含む蛍石法又はフッ素ケイ酸法で得られた粗HF又は純HFに対して、吸着剤が水等の不純物の留分と化学反応することで吸着剤が粉化してしまい、吸着剤の効果が著しく失われてしまうことで、有効に深度脱水不純物除去を行うことができない。特に重要なのは、吸着剤上におけるアルカリ性金属又は金属イオンは、HFと化学反応が発生し、HFガス自体に取り込まれることで、その後のHF純化が困難になってしまう。したがって、化学吸着法は、蛍石法又はフッ素ケイ酸法で調製するAHF工程に対してほとんど有効に応用することができない。 It has been reported that the adsorption method can be used to purify HF, and the adsorbent is mainly an alkaline metal fluoride, and the chemical reaction between the metal fluoride and HF occurs at a relatively low temperature to selectively perform chemical adsorption to form a metal fluoride-HF complex. The decomposition reaction of the complex is carried out at a relatively high temperature to adsorb and desorb HF from the adsorbent, and other impurities can be separated and purified without the selectivity of the adsorbent. Most of the process situations in which this chemical adsorption method is applied are when preparing products such as fluorochloroalkanes (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), and sulfuryl fluoride (SO 2 F 2 ) through fluorination reactions, and the reaction mixture gas generated by the reaction can selectively adsorb, separate, and recover HF, so the effect is better, but the loss rate of the adsorbent is large. For crude HF or pure HF obtained by the fluorite method or fluorosilicic acid method, which contains water, sulfuric acid, or SiF4 , the adsorbent reacts chemically with the fraction of impurities such as water, causing the adsorbent to powder, and the effect of the adsorbent is significantly lost, making it impossible to effectively remove impurities by deep dehydration. What is particularly important is that the alkaline metal or metal ion on the adsorbent chemically reacts with HF and is taken into the HF gas itself, making the subsequent HF purification difficult. Therefore, the chemical adsorption method cannot be effectively applied to the AHF process prepared by the fluorite method or fluorosilicic acid method.

これも、現在、我が国中国が低水準の電子レベルAHF商品しか生産することができない主な原因の一つであり、日韓両国で発生した電子レベル半導体化学品に関する貿易紛争において、日本がその技術的な優位性を以て韓国向けの電子レベルAHFの輸出を制限した重要な原因の一つである。日本は国際的に純度が99.9999%~99.99999999%(6N~12N)のAHFを調製する技術を有する極小数の国家である。 This is also one of the main reasons why China can only produce low-quality electronic-level AHF products at present, and is one of the important reasons why Japan used its technological superiority to restrict the export of electronic-level AHF to Korea in the trade dispute over electronic-level semiconductor chemicals that arose between Japan and Korea. Japan is one of the very few countries internationally that has the technology to prepare AHF with a purity of 99.9999% to 99.99999999% (6N to 12N).

本発明の目的は、上述の既存課題に対して、本発明は工業レベルの高濃度HFを電子レベルのFTrPSA(全温程変圧吸着)に精製する分離及び純化方法を提供することにある。全温程変圧吸着(英文名称:Full Temperature Range-Pressure Swing Adsorption、略称:FTrPSA)は、変圧吸着(PSA)を基礎とし、各種分離技術と相結合することができる方法であり、工業レベルAHF(ガス)における各留分(HFは有効留分であるHO、HSO、SO、SiF、NH、CO、HSiF及び微量のHCl、水溶性Me+イオン及びSS粒子を主な不純物留分とする)自体は、異なる圧力と温度下での吸着/精留/膜分離係数及び物理化学性質の差異性を利用して、主に二段階の中温変圧吸着工程を採用し、HFと精留/膜分離結合することで、中温変圧吸着工程における吸着と脱離が整合性と平衡との繰り返し操作により分離と純化を容易にできるようにすることで、電子レベルのHF商品の製造を実現する。 The object of the present invention is to provide a separation and purification method for purifying industrial-level high-concentration HF into electronic-level FTrPSA (full temperature range-pressure swing adsorption). Full temperature range-pressure swing adsorption (FTrPSA) is a method based on pressure swing adsorption (PSA) that can be combined with various separation technologies. Each fraction (HF is the useful fraction H2O , H2SO4 , SO2 , SiF4 , NH3 , CO2 , H2SiF ) in industrial-level AHF (gas) can be separated and purified . The main impurity fraction of the HF -1000 (H2SO4 and trace amounts of HCl, water-soluble Me+ ions and SS particles) is a two-stage medium-temperature pressure swing adsorption process that utilizes the differences in adsorption/rectification/membrane separation coefficients and physicochemical properties under different pressures and temperatures, and combines HF with rectification/membrane separation. The adsorption and desorption in the medium-temperature pressure swing adsorption process can be easily separated and purified through repeated operations of consistency and equilibrium, thereby realizing the production of electronic-level HF products.

本発明が採用する技術的思想は以下の通り。 The technical ideas adopted by this invention are as follows:

工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法において、原料ガスは蛍石法又はフッ素ケイ酸法が調製する非水フッ化水素(AHF)生産過程において生成される工業レベル高濃度フッ化水素(HF)のガス、含有濃度が95~99%(v/v)であるHF、及び硫酸(HSO)、水(HO)、二酸化硫黄(SO)、四フッ化ケイ素(SiF)、アンモニア(NH3)、フッ素ケイ酸(HSiF)、二酸化炭素(CO)、クロライド(HClで計算する)、金属イオン(Me+)及び微細粒子(SS)その他の不純物留分によるものであり、Me+は、主に水溶性のナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ヒ素(As)イオンとし、SS粒子の直径は1マイクロメートル(μm)より大きく、温度は20~60℃であり、圧力は常圧又は微圧であり、以下の工程を含む。
(1)原料ガスは、50~80℃の間で冷熱交換され、0.2~0.3MPaまで増圧された後、二段変圧吸着(PSA)から構成される中温変圧吸着工程に入り、各段変圧吸着は少なくとも2以上の吸着塔により構成され、少なくとも1の吸着塔は吸着工程にあり、残りの吸着塔は、逆方向減圧又は真空排気、昇圧又は最終充填その他の異なる段階の脱離工程にあり、原料ガスは第一段PSA(1PSA)吸着塔の塔底から入り、1PSAの操作圧力は0.2~0.3MPaであり、操作温度50~80℃であり、吸着工程にある吸着塔の塔頂から流出する非吸着相ガスは純HFガスであり、凝結した後の不凝ガスは精密濾過され、脱イオン水を吸収した後、得られる濃度が40~49%であるHF水溶液が一般的な電子ELレベルフッ化水素酸商品として輸出され、凝結した後に形成された純HFは次の工程である膜分離に入り、脱離工程にある1PSA吸着塔の塔底から流出する脱離ガスは、増圧して冷熱交換した後、第二段PSA(2PSA)の吸着塔の塔底から入り、2PSA吸着塔の操作圧力は0.2~0.3MPaであり、操作温度は50~80℃であり、吸着工程にある2PSA吸着塔の塔頂から流出する非吸着相の中間ガスは、原料ガスと混合し、1PSA吸着塔に戻り、2PSA吸着塔の塔底から流出する脱離ガスは濃縮ガスであり、その後のアンモニア水脱炭工程に入り、更に有効留分を回収する、中温変圧吸着。
(2)中温変圧吸着工程から凝結されて形成された純HF液体は、1.0~1.6MPaまで増圧され、温度は50~80℃であり、1級又は2級から構成される無機セラミック膜又はステンレス鋼膜分離システムに入り、膜孔径は1マイクロメートル未満であり、膜を透過した側から浄化純HF液体を流出させ、直径が1μmより大きいSS粒子の含量は25(個)単位/ミリリットル(Ea/ml)未満であり、次の工程であるHF精留に入り、膜を透過していない側にSS粒子濃縮液を濃縮させ、冷却、沈殿させた後、SS粒子を除去し、液体を加熱加圧した後、膜分離システムに戻し、更に有効留分を回収する、膜分離。
(3)膜分離工程からの浄化純HF液体がHF精留工程の精留塔に入り、本工程の精留塔は、上下二段階の精留の構成を採用し、浄化純HF液体は、下段精留の頂部又は上段精留の底部から入り、上段精留塔の塔頂から取り除いた軽留分不純物ガスはその後の排気ガス吸収工程に戻り、上段精留の底部又は下段精留の頂部の蒸留物が凝結した後に形成する不凝ガスはAHFガスであり、純度は99.99%より大きく、直接に電子UP又はUSPレベルAHFの商品ガスとし、凝縮した後形成される液体は、上段又は下段精留の回流とし、下段精留の底部から蒸留された少量の重留分を含む不純物留分の塔底物の流体が凝結した後に形成する不凝ガスは温変圧吸着工程に戻り、更に有効留分を回収し、凝結した後に形成する液体を吸収剤として、次の工程であるアンモニア水脱炭に入る、HF精留。
(4)中温変圧吸着工程からの濃縮ガスは、常圧又は僅かな過圧まで増圧した後、アンモニア水、硫酸及びHF精留工程下段から精留した蒸留物が凝結した後に形成した液体に入り、比率に基づき、吸収剤としてのアンモニア水脱炭吸収塔を混合し、吸収塔底から形成された炭酸水素アンモニウムとフッ化水素アンモニウムとの混合溶液から吐出し、直接フッ素ケイ酸法としてAHF生産過程における返料又は予備混合した反応物質を調製する、アンモニア水脱炭。
In the separation and purification method for purifying industrial-level high-concentration HF to electronic-level FTrPSA, the raw material gas is industrial-level high-concentration hydrogen fluoride (HF) gas produced in the process of producing anaqueous hydrogen fluoride (AHF) prepared by the fluorite method or the fluorosilicic acid method, HF having a content of 95-99% (v/v), sulfuric acid (H 2 SO 4 ), water (H 2 O), sulfur dioxide (SO 2 ), silicon tetrafluoride (SiF 4 ), ammonia (NH 3 ), fluorosilicic acid (H 2 SiF 6 ), carbon dioxide (CO 2 ), chloride (calculated as HCl), metal ions (Me+), fine particles (SS) and other impurity fractions, where Me+ is mainly water-soluble sodium (Na), magnesium (Mg), calcium (Ca) and arsenic (As) ions, the diameter of the SS particles is greater than 1 micrometer (μm), the temperature is 20-60°C, and the pressure is normal pressure or low pressure, and the process includes the following steps:
(1) The raw gas is subjected to cold and heat exchange between 50-80°C, and then pressurized to 0.2-0.3MPa, and then enters into the medium temperature pressure swing adsorption process consisting of two-stage pressure swing adsorption (PSA). Each stage pressure swing adsorption is composed of at least two or more adsorption towers, at least one adsorption tower is in the adsorption process, and the remaining adsorption towers are in the desorption process of reverse depressurization or vacuum evacuation, pressurization or final filling and other different stages. The raw gas enters from the bottom of the first stage PSA (1 # PSA) adsorption tower, the operating pressure of 1 # PSA is 0.2-0.3MPa, and the operating temperature is 50-80°C. The non-adsorbed phase gas flowing out from the top of the adsorption tower in the adsorption process is pure HF gas. The non-condensed gas after condensation is microfiltered, and after absorbing deionized water, the obtained HF aqueous solution with a concentration of 40-49% is exported as a general electronic EL level hydrofluoric acid product. The pure HF formed after condensation enters the next process, which is membrane separation, and is in the desorption process. 1 # The desorbed gas flowing out from the bottom of the PSA adsorption tower is pressurized and subjected to cold and heat exchange, and then enters from the bottom of the second stage PSA (2 # PSA) adsorption tower. The operating pressure of the 2 # PSA adsorption tower is 0.2-0.3 MPa, and the operating temperature is 50-80°C. The non-adsorbed intermediate gas flowing out from the top of the 2 # PSA adsorption tower in the adsorption process is mixed with the raw material gas and returns to the 1 # PSA adsorption tower. The desorbed gas flowing out from the bottom of the 2 # PSA adsorption tower is a concentrated gas, which enters the subsequent ammonia water decarbonization process and further recovers the useful fraction, this is medium temperature pressure swing adsorption.
(2) The pure HF liquid formed by condensation from the medium temperature pressure swing adsorption process is pressurized to 1.0-1.6 MPa and the temperature is 50-80°C, and enters into a first or second class inorganic ceramic membrane or stainless steel membrane separation system, the membrane pore size is less than 1 micrometer, the purified pure HF liquid flows out from the side that has permeated the membrane, and the content of SS particles with a diameter of more than 1 μm is less than 25 (pieces) units/milliliter (Ea/ml) and enters into the next process, HF rectification, where the SS particle concentrate is concentrated on the side that has not permeated the membrane, cooled and precipitated, after which the SS particles are removed, the liquid is heated and pressurized, and then returned to the membrane separation system, and the useful fraction is further recovered. Membrane separation.
(3) The purified pure HF liquid from the membrane separation process enters the rectification tower of the HF rectification process. The rectification tower in this process adopts a two-stage rectification configuration, with the purified pure HF liquid entering from the top of the lower rectification or the bottom of the upper rectification. The light fraction impurity gas removed from the top of the upper rectification tower returns to the subsequent exhaust gas absorption process. The non-condensable gas formed after the distillate at the bottom of the upper rectification or the top of the lower rectification is AHF gas, with a purity of more than 99.99%, which can be directly used as electronic UP or USP level AHF product gas. The liquid formed after condensation is used as a recycle for the upper or lower rectification. The non-condensable gas formed after the bottom fluid of the impurity fraction containing a small amount of heavy fraction distilled from the bottom of the lower rectification is returned to the temperature change pressure adsorption process, and further useful fraction is recovered. The liquid formed after condensation is used as an absorbent for the next process of ammonia water decarbonization, HF rectification.
(4) The concentrated gas from the medium temperature pressure swing adsorption process is pressurized to normal pressure or slightly overpressure, and then enters into the liquid formed after the condensation of the distillate from the lower stage of the ammonia water, sulfuric acid and HF rectification process, and is mixed with the ammonia water decarbonization absorption tower as the absorbent according to the ratio, and the mixed solution of ammonium bicarbonate and ammonium bifluoride formed from the bottom of the absorption tower is discharged, and used as the direct fluorosilicic acid method to prepare the return material or pre-mixed reactant in the AHF production process, ammonia water decarbonization.

更に、工程(2)の中膜分離システムはマイクロフィルタ膜又は限外濾過膜を膜モジュールとすることができる。 Furthermore, the membrane separation system in step (2) can use a microfilter membrane or an ultrafiltration membrane as the membrane module.

更に、HF精留工程の上段精留塔の塔頂から蒸留する軽留分不純物ガスは、アンモニア水脱炭吸収塔の塔頂からの不凝ガスと混合して、硫酸を吸収剤とする排気ガス吸収塔に入り、吸収塔の底からフッ素ケイ酸溶液を形成し、原料として吐出し、フッ素ケイ酸法が調製する非水フッ化水素AHF生産過程の原料循環使用に直接戻ることができ、吸収塔の塔頂から流出する不凝ガスを排ガスとして直接排出する、排気ガス吸収工程も含む。 In addition, the light impurity gas distilled from the top of the upper rectification tower in the HF rectification process is mixed with the non-condensable gas from the top of the ammonia water decarbonization absorption tower and enters the exhaust gas absorption tower using sulfuric acid as an absorbent, forming a fluorosilicic acid solution from the bottom of the absorption tower, which is discharged as a raw material and can be directly returned to the raw material circulation use in the non-aqueous hydrogen fluoride AHF production process prepared by the fluorosilicic acid method, and also includes an exhaust gas absorption process in which the non-condensable gas flowing out from the top of the absorption tower is directly discharged as exhaust gas.

更に、前記の中温変圧吸着工程における吸着塔には、活性酸化アルミニウム、シリカゲルと分子篩とが装填されており、1PSA吸着塔に装填される吸着剤組成物における酸化アルミニウム:シリカゲル:分子篩の重量比率は(4-6):(2-4):(1-3)であり、2PSA吸着塔で装填する吸着剤組成物における酸化アルミニウム:シリカゲル:分子篩の重量比は(3-5):(1-3):(3-5)である。 Furthermore, the adsorption towers in the medium temperature pressure swing adsorption process are loaded with activated aluminum oxide, silica gel and molecular sieves, and the weight ratio of aluminum oxide:silica gel:molecular sieve in the adsorbent composition loaded in the 1 # PSA adsorption tower is (4-6):(2-4):(1-3), and the weight ratio of aluminum oxide:silica gel:molecular sieve in the adsorbent composition loaded in the 2 # PSA adsorption tower is (3-5):(1-3):(3-5).

三種類の吸着剤の装填数量及び分布は、原料ガスHF濃度の大きさと不純物留分含量の大きさによって決まり、二段PSA吸着塔における吸着剤が装填する数量分布も異なる。 The loading quantity and distribution of the three types of adsorbents are determined by the HF concentration of the feed gas and the impurity fraction content, and the loading quantity distribution of the adsorbents in the two-stage PSA adsorption tower also differs.

更に、排気ガス吸収は、HF精留工程の上段精留塔の塔頂から蒸留する軽留分不純物ガスは、アンモニア水脱炭吸収塔の塔頂からの不凝ガスと混合し、硫酸を吸収剤とする排気ガス吸収塔に入り、吸収塔底からフッ素ケイ酸溶液を形成し、原料として吐出し、フッ素ケイ酸法が調製するAHF生産過程の原料循環使用に直接戻ることができ、吸収塔の塔頂から流出する不凝ガスを排ガスとして直接排出する。 In addition, in exhaust gas absorption, the light impurity gas distilled from the top of the upper rectification tower in the HF rectification process is mixed with the non-condensable gas from the top of the ammonia water decarbonization absorption tower, enters the exhaust gas absorption tower using sulfuric acid as an absorbent, forms a fluorosilicic acid solution from the bottom of the absorption tower, and is discharged as a raw material, which can be directly returned to the raw material circulation use in the AHF production process prepared by the fluorosilicic acid method, and the non-condensable gas flowing out from the top of the absorption tower is directly discharged as exhaust gas.

更に、上述のHF精留工程の純HF液体入口側端は、上段底部又は下段頂部に設置されており、原料ガスに含まれるHO、HSO、SO、SiF、NH、CO、HSiFの主な不純物留分含量の大きさによって決まる。 Furthermore, the pure HF liquid inlet end of the above-mentioned HF rectification process is installed at the bottom of the upper stage or the top of the lower stage, depending on the content of the main impurity fractions, namely H2O , H2SO4 , SO2 , SiF4 , NH3 , CO2 , and H2SiF6 , contained in the raw gas .

更に、上述のHF精留工程の上段精留の底部又は下段精留の頂部からの蒸留物が凝結した後に形成する不凝ガスは、AHFガスであり、純度は99.99%より大きく、更に凝結してAHF液体を形成した後、フッ素交換樹脂に入り、更にMe+を除去し、UPSS電子レベルのAHF液体を形成し、脱イオン水と任意に調合して、HF溶液を形成することができ、半導体業界の各種濃度の需要を満たすことができる。 In addition, the non-condensable gas formed after the distillate from the bottom of the upper rectification or the top of the lower rectification in the above-mentioned HF rectification process is AHF gas, with a purity of more than 99.99%, which is further condensed to form AHF liquid, which then enters into the fluorine exchange resin to further remove Me+ and form AHF liquid of UPSS electronic level, which can be arbitrarily mixed with deionized water to form HF solution, which can meet the needs of various concentrations in the semiconductor industry.

先行技術と比較した本発明の有益な効果は以下の通り。 The beneficial effects of the present invention compared to the prior art are as follows:

1)本発明は、伝統的な蛍石法又はフッ素ケイ酸法により調製したAHF生産過程において生成した高濃度HFガスを原料とし、その原料を半導体業界が必要とするEL/UP/UPSからUPSS電子レベルAHFガス又は液体までのガスを調製することで、AHF精製が受ける伝統精留、蒸留、吸収又は化学吸着等の分離工程の相平衡の制限を受ける又は吸着剤使用寿命が短いという課題を解決した。それにより、当該技術分野における空白を埋めた。 1) The present invention uses high-concentration HF gas produced during the AHF production process prepared by the traditional fluorite method or fluorosilicic acid method as a raw material, and prepares gas from the raw material to EL/UP/UPS to UPSS electronic level AHF gas or liquid required by the semiconductor industry, thereby resolving the problems that AHF purification faces, such as phase equilibrium limitations in traditional separation processes such as rectification, distillation, absorption, or chemical adsorption, and the short service life of adsorbents. This fills a gap in the technical field.

2)本発明は、原料ガスにおける各留分(HFは有効留分であり、残りは不純物留分である)自体が異なる圧力と温度下での吸着/凝結/精留/膜分離係数及び物理化学性質の差異性を利用して、二段階の中温変圧吸着工程を主に、凝結、膜分離及びHF精留結合を採用することで、中温変圧吸着工程における吸着と脱離の整合性と平衡の循環操作を容易にすることで、分離と浄化を行い、HFの深度脱水と除去を実現する。 2) The present invention utilizes the differences in the adsorption/coagulation/rectification/membrane separation coefficients and physicochemical properties of each fraction in the raw gas (HF is a useful fraction, the rest are impurity fractions) under different pressures and temperatures, and employs a two-stage medium-temperature pressure swing adsorption process that mainly combines coagulation, membrane separation and HF rectification, thereby facilitating the consistency of adsorption and desorption in the medium-temperature pressure swing adsorption process and the circulation operation of equilibrium, thereby achieving separation and purification, and deep dehydration and removal of HF.

3)本発明は、先行技術である化学吸着法は、HFと吸着剤とが低温下で発生する化学(キレート)反応により吸着を行うのに対して、高温下で発生する分解反応は脱離を行うことで至る吸着と脱離との頻繁な循環操作過程において吸着剤損失率が大きいという課題を克服する。それと同時に、水又は硫酸又はSiFを含む蛍石法又はフッ素ケイ酸法で得られる粗HF又は純HFに対して、先行技術の化学吸着における吸着剤は、水等の不純物留分とも化学反応が発生してしまい、吸着剤の粉化と著しく効果を失ってしまうことになり、効率的に深度脱水除去を行うことができないが、本発明が採用するのは中温変圧の物理吸着であり、このような現象を回避し、吸着剤の使用寿命を長くすることができる。 3) The present invention overcomes the problem that the adsorbent loss rate is large in the frequent cycle operation process of adsorption and desorption, which is achieved by the chemical adsorption method of the prior art, in which HF and an adsorbent undergo a chemical (chelating) reaction at low temperatures to adsorb, while a decomposition reaction occurs at high temperatures to desorb. At the same time, for crude HF or pure HF obtained by the fluorite method or fluorosilicic acid method containing water, sulfuric acid, or SiF4 , the adsorbent in the prior art chemical adsorption also undergoes chemical reactions with impurity fractions such as water, which causes the adsorbent to become powdered and lose its effectiveness significantly, making it impossible to efficiently perform deep dehydration and removal, whereas the present invention adopts medium temperature variable pressure physical adsorption, which can avoid such phenomena and extend the service life of the adsorbent.

4)本発明は、AHF精製工程における単純精留工程が有する精留塔中部の温度に大きな波動が生じること、塔底の温度が要求を満たさない、HF濃度波動が比較的大きいことから精留效果が好ましくないという課題が発生することを回避することができる。本発明は、まず二段PSAを採用しており、主な重留分不純物の大部分を先に除去し、HF精留工程に入るHF濃度の波動を小さくし、上下二段精留方式を採用し、そこから、AHF商品が調製する深度脱水と除去を実現し、電子レベルAHF商品を獲得すると同時に、40~49%濃度のHF水溶液を獲得することができる。 4) The present invention can avoid the problems that arise in the simple rectification process in the AHF purification process, such as large fluctuations in temperature in the middle of the rectification tower, the temperature at the bottom of the tower not meeting the requirements, and the relatively large HF concentration fluctuations resulting in unfavorable rectification effects. The present invention first adopts a two-stage PSA to first remove most of the main heavy fraction impurities, reducing the fluctuations in HF concentration entering the HF rectification process, and adopts an upper and lower two-stage rectification method, thereby realizing deep dehydration and removal for the preparation of AHF products, obtaining electronic-level AHF products and at the same time obtaining an HF aqueous solution with a concentration of 40-49%.

5)本発明は、電子レベルAHFの製造を得ると同時に、中温変圧吸着とHF精留工程との材料が前端の凝結又はアンモニア水脱炭等工程に戻り、更にHFを回収して、AHF商品の收率を90%を超えるようにし、排気ガス吸収工程を通じて排気ガス排出の目標達成を実現する。 5) The present invention produces electronic level AHF, and at the same time, the materials from the mid-temperature variable pressure adsorption and HF rectification processes are returned to the front-end condensation or ammonia water decarbonization processes, etc., and HF is further recovered, so that the yield of AHF products exceeds 90%, and the target of exhaust gas emission is achieved through the exhaust gas absorption process.

本発明実施例1の工程図である。FIG. 2 is a process diagram of the first embodiment of the present invention. 本発明実施例2の工程図である。FIG. 4 is a process diagram of Example 2 of the present invention.

本発明の目的、技術方案及び利点をより明確に理解できるように、本発明について更に詳細に説明する。なお、本出願で説明する具体的な実施例は、本発明を釈明するためだけに用い、本発明を限定するものではない。即ち、説明する実施例は本発明の一部の実施例であり、全ての実施例ではない。
実施例1
図1が示す様に、工業レベルの高濃度HFを電子レベルのFTrPSAに精製する分離及び純化方法において、原料ガスは、蛍石法及びフッ素ケイ酸法が調製した非水フッ化水素(AHF)の生産過程において生成される工業レベル高濃度フッ化水素(HF)ガスからであり、含有濃度が98%(v/v)であるHFの含水(HO)量は1%であり、その他の不純物は、二酸化硫黄(SO)、四フッ化ケイ素(SiF)、アンモニア(NH)、フッ素ケイ酸(HSiF)、二酸化炭素(CO)、クロライド(HClで計算する)から構成され、その総計は0.9~1.0%であり、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ヒ素(As)イオンを主とする金属イオン(Me+)濃度は極微量のppmレベルであり、微細粒子(dss≧1μm)は100より大きく、温度は20~30℃であり、圧力は常圧であり、具体的な実施工程は以下を構成する。
(1)原料ガスを、60~70℃の間で冷熱交換し、吸込送風機により0.2~0.3MPaまで増圧した後、二段階変圧吸着(PSA)組成における中温変圧吸着工程に入り、第一段PSA(1PSA)吸着塔は3つあり、1つは吸着塔に吸着し、その他2つの吸着塔はそれぞれ降圧と真空排気を行い、原料ガスの充填と最終充填の脱離の工程において、原料ガスが1PSA吸着塔の塔底から入り、1PSAの操作圧力は0.2~0.3Mpaであり、操作温度は60~70℃であり、吸着工程にある吸着塔の塔頂から流出する非吸着相ガスは純HFガスであり、凝結した後の不凝ガスは、精密濾過して脱イオン水を吸収した後、得られる49%であるHF水溶液を一般的な電子ELレベルフッ化水素酸商品として輸出し、凝結した後に形成する純HF液体が次の工程である膜分離に入り、脱離工程にある1PSA吸着塔の塔底から龍するする脱離ガスは、増圧と冷熱交換後に、第二段PSA(2PSA)の吸着塔底から入り、2PSAは3つの吸着塔から組成され、1つの吸着塔は終始吸着状態にあり、その他2つの吸着塔はそれぞれ降圧と真空排気、純HFガス充圧と終充の脱離状態、吸着と脱離の循環操作にあり、2PSA吸着塔の操作圧力は0.2~0.3MPaであり、操作温度は60~70℃であり、吸着状態にある2PSA吸着塔の塔頂から流出する非吸着相の中間ガスは、原料ガスと混合し1PSAに戻り、2PSA吸着塔から流出するガスは濃縮ガスであり、その後のアンモニア水脱炭工程に入り、更に有効留分を回収する、中温変圧吸着。
(2)中温変圧吸着工程から、凝結した後に形成する純HF液体は、1.6MPaまで増圧し、温度は60~70℃であり、一級レベル無機セラミック膜分離システムに入り、膜孔径は0.2~0.4マイクロメートルであり、フィルム材料はジルコニア、化チタン及び酸化アルミニウム複合膜であり、ジルコニアと酸化チタンの含有量が酸化アルミニウムを超え、耐食の四フッ素エチレンを防腐密封材料とし、マルチレーン内圧式を形成する膜モジュールは膜を透過する側から浄化純HF液体を流出し、直径が1μmより大きいSS粒子含量は25(個)単位/ミリリットル(Ea/ml)未満であり、次の工程であるHF精留に入り、膜を透過しない側にSS濃縮液を濃縮し、冷却、沈降した後、SS粒子を除去し、液体が加熱加圧された後、膜分離システムに戻り、更に有効留分を回収する、膜分離。
(3)HF精留は、膜分離工程からの浄化純HF液体であり、HF精留工程の精留塔に入り、本工程の精留塔は上下二段階精留組成を採用しており、浄化純HF液体は下段精留の頂部から入り、上段精留塔の操作温度は18~30℃であり、上段精留塔の塔頂から蒸留する軽留分不純物ガスは主に、SO、SiF等の低沸点の不純物留分で構成されており、その後の排気ガス吸収工程に戻り、上段精留の底部蒸留物から凝結した後に形成する不凝ガスはAHFガスであり、純度は99.99%より大きく、直接電子UP又はUPSレベルAHFの商品ガスとして、凝結した後に形成する液体は、上段精留の還流として、下段精留の操作温度は20~100℃であり、下段精留の底部から蒸留する少量の重留分を含む不純物留分の塔底物流体は凝結した後に不凝ガスに形成し、中温変圧吸着工程に戻り、更に有効留分を回収し、凝結した後に形成する液体は吸収剤としてその後のアンモニア水脱炭工程に入り、HF精留の操作圧力は0.03~0.2Mpaである。
(4)中温変圧吸着工程からの濃縮ガスであり、吸込送風機によって0.03~0.2MPaまで増圧した後、アンモニア水、硫酸及びHF精留工程下段からの精留蒸留物が凝結した後に形成する液体に入り、5:3:2の比率に基づき、吸収剤としてのアンモニア水脱炭吸収塔を混合し、吸収塔底から形成する炭酸水素アンモニウム及びフッ化水素アンモニウム混合溶液を吐出し、直接フッ素ケイ酸法として調製するAHF生産過程における返料又は予備混合した反応物として、アンモニア水脱炭吸収塔の塔頂から流出する不凝ガスがその後の排気ガス吸収工程に入る、アンモニア水脱炭。
(5)HF精留工程の上段精留塔の塔頂から蒸留する軽留分不純物ガスは、アンモニア水脱炭吸収塔の塔頂からの不凝ガスと混合し、硫酸を吸収剤として排気ガス吸収塔に入り、吸収塔底からフッ素ケイ酸溶液を形成し、原料として吐出し、フッ素ケイ酸法が調製するAHF生産過程の原料の循環使用に戻り、吸収塔の塔頂から流出する不凝ガスは、排ガスとして直接排出する、排気ガス吸収。
実施例2
図2が示す通り、実施例1を基礎として、原料ガスは蛍石法により調製するAHF生産過程の高濃度HFガスであり、NH又はCOの不純物留分がなく、アンモニア水脱炭工程を省くことができる。即ち、中温変圧吸着工程からの濃縮ガス蛍石法が調製するAHF生産過程における凝結工程に戻り、更に有効留分を回収する。
実施例3
実施例1と2を基礎として、上述の中温変圧吸着工程において1PSA吸着塔で装填する吸着剤構成比率は、アルミニウム:シリカゲル:分子篩=5:3:2であり、2PSA吸着塔で装填する吸着剤構成比率は4:2:4である。
In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be described in more detail. It should be noted that the specific examples described in this application are only used to explain the present invention and are not intended to limit the present invention. That is, the examples described are only some of the examples of the present invention and are not all of the examples.
Example 1
As shown in FIG. 1, in the separation and purification method for refining industrial-level high-concentration HF to electronic-level FTrPSA, the raw material gas is industrial-level high-concentration hydrogen fluoride (HF) gas generated in the production process of anaqueous hydrogen fluoride (AHF) prepared by the fluorite method and the fluorosilicic acid method. The water content (H 2 O) of the HF with a content concentration of 98% (v/v) is 1%, and the other impurities are sulfur dioxide (SO 2 ), silicon tetrafluoride (SiF 4 ), ammonia (NH 3 ), fluorosilicic acid (H 2 SiF 6 ), carbon dioxide (CO 2 ), chloride (calculated as HCl), the total amount being 0.9-1.0%, the concentration of metal ions (Me+) mainly consisting of sodium (Na), magnesium (Mg), calcium (Ca), and arsenic (As) ions is at an extremely low ppm level, the fine particles (dss≧1 μm) are greater than 100, the temperature is 20-30° C., and the pressure is normal pressure. The specific implementation steps are as follows:
(1) The raw gas is subjected to heat and cold exchange between 60 and 70°C, and then the pressure is increased to 0.2 to 0.3 MPa by the suction blower. Then, it enters the medium temperature pressure swing adsorption process in the two-stage pressure swing adsorption (PSA) composition. There are three first-stage PSA (1 # PSA) adsorption towers, one of which is adsorbed in the adsorption tower, and the other two adsorption towers are depressurized and evacuated. In the process of filling the raw gas and desorption at the final filling, the raw gas enters from the bottom of the 1 # PSA adsorption tower, and the 1 # The operating pressure of PSA is 0.2-0.3MPa, and the operating temperature is 60-70℃. The non-adsorbed gas flowing out from the top of the adsorption tower in the adsorption process is pure HF gas. The non-adsorbed gas after condensation is filtered through precision filtration to absorb deionized water, and the resulting 49% HF aqueous solution is exported as a general electronic level hydrofluoric acid product. The pure HF liquid formed after condensation enters the next process, membrane separation. The desorbed gas flowing out from the bottom of the 1 # PSA adsorption tower in the desorption process enters the bottom of the second stage PSA (2 # PSA) adsorption tower after pressure increase and cold heat exchange. The 2 # PSA is composed of three adsorption towers, one of which is in the adsorption state from start to finish, and the other two adsorption towers are respectively in the depressurization and evacuation, the pure HF gas pressure-filling and final charging desorption state, and the adsorption and desorption circulation operation. 2 # The operating pressure of the PSA adsorption tower is 0.2-0.3 MPa, the operating temperature is 60-70°C, and the non-adsorbed intermediate gas flowing out from the top of the 2 # PSA adsorption tower in the adsorption state is mixed with the raw material gas and returned to the 1 # PSA, and the gas flowing out from the 2 # PSA adsorption tower is a concentrated gas, which then enters the subsequent ammonia water decarbonization process and further recovers the useful fraction, medium temperature variable pressure adsorption.
(2) From the medium temperature pressure change adsorption process, the pure HF liquid formed after condensation is pressurized to 1.6 MPa, and the temperature is 60-70°C, and enters into a first-level inorganic ceramic membrane separation system, the membrane pore size is 0.2-0.4 micrometers, the film material is a zirconia, titanium dioxide and aluminum oxide composite membrane, the content of zirconia and titanium oxide exceeds that of aluminum oxide, and corrosion-resistant tetrafluoroethylene is used as the antiseptic sealing material, and the membrane module that forms a multi-lane internal pressure type flows out the purified pure HF liquid from the membrane permeation side, and the content of SS particles with a diameter of more than 1 μm is less than 25 (pieces) units/milliliter (Ea/ml), and enters into the next process, which is HF rectification, and the SS concentrated liquid is concentrated into the non-membrane permeation side, and after cooling and settling, the SS particles are removed, and the liquid is heated and pressurized, and then returned to the membrane separation system, and the useful fraction is further recovered. Membrane separation.
(3) HF rectification is the purified pure HF liquid from the membrane separation process, which enters the rectification tower of the HF rectification process. The rectification tower in this process adopts an upper and lower two-stage rectification composition. The purified pure HF liquid enters from the top of the lower rectification. The operating temperature of the upper rectification tower is 18-30°C. The light fraction impurity gas distilled from the top of the upper rectification tower is mainly SO 2 , SiF The bottom distillate of the upper rectification is composed of low boiling point impurity fractions such as 4 , and returns to the subsequent exhaust gas absorption process. The non-condensable gas formed after condensation from the bottom distillate of the upper rectification is AHF gas, with a purity of more than 99.99%, and can be used as a direct electronic UP or UPS level AHF product gas. The liquid formed after condensation is used as reflux for the upper rectification. The operating temperature of the lower rectification is 20-100°C. The bottom fluid of the impurity fraction distilled from the bottom of the lower rectification, including a small amount of heavy fraction, is formed into a non-condensable gas after condensation and returns to the medium temperature pressure swing adsorption process, and further useful fraction is recovered. The liquid formed after condensation is used as absorbent for the subsequent ammonia water decarbonization process. The operating pressure of the HF rectification is 0.03-0.2Mpa.
(4) The concentrated gas from the medium temperature pressure change adsorption process is pressurized to 0.03-0.2 MPa by the suction blower, and then enters the liquid formed after the condensation of the rectified distillate from the lower stage of the ammonia water, sulfuric acid and HF rectification process, and is mixed with the ammonia water decarbonization absorption tower as the absorbent based on the ratio of 5:3:2, and the ammonium bicarbonate and ammonium bifluoride mixed solution formed is discharged from the bottom of the absorption tower, and the non-condensed gas flowing out from the top of the ammonia water decarbonization absorption tower enters the subsequent exhaust gas absorption process as the return material or pre-mixed reactant in the AHF production process prepared as a direct fluorosilicic acid method.
(5) The light fraction impurity gas distilled from the top of the upper rectification tower in the HF rectification process is mixed with the non-condensable gas from the top of the ammonia water decarbonization absorption tower, enters the exhaust gas absorption tower using sulfuric acid as an absorbent, forms a fluorosilicic acid solution from the bottom of the absorption tower, and is discharged as raw material, and is returned to the circulating use of raw materials in the AHF production process prepared by the fluorosilicic acid method. The non-condensable gas flowing out from the top of the absorption tower is directly discharged as exhaust gas, exhaust gas absorption.
Example 2
2, based on Example 1, the raw gas is high-concentration HF gas from the AHF production process prepared by the fluorite method, and does not contain any impurity fraction of NH3 or CO2 , so the ammonia water decarbonization process can be omitted. That is, the concentrated gas from the medium temperature pressure swing adsorption process is returned to the condensation process in the AHF production process prepared by the fluorite method, and the useful fraction is further recovered.
Example 3
Based on Examples 1 and 2, in the above-mentioned medium temperature pressure swing adsorption process, the adsorbent composition ratio loaded in the 1 # PSA adsorption tower is aluminum:silica gel:molecular sieve=5:3:2, and the adsorbent composition ratio loaded in the 2 # PSA adsorption tower is 4:2:4.

以上、上述の実施例は本出願の具体的な実施方法を表し、その説明はより具体的で詳細にしているが、本出願の特許請求の範囲が求める保護の範囲を制限するものとして理解してはならない。なお。本出願の技術の分野における通常の知識を有する者は、本出願の発明の技術的思想の前提下において、若干の変形と改善をすることができ、それらはいずれも本出願の保護の範囲に属する。 The above-mentioned examples represent specific implementation methods of the present application, and the explanations are more specific and detailed, but they should not be understood as limiting the scope of protection sought by the claims of the present application. Furthermore, a person with ordinary knowledge in the technical field of the present application may make some modifications and improvements based on the premise of the technical ideas of the invention of the present application, all of which fall within the scope of protection of the present application.

Claims (6)

(1)0~80℃の間で冷熱交換され、0.2~0.3MPaまで増圧された原料ガスに対して行われる中温変圧吸着工程であって
当該中温変圧吸着工程は第一段PSA及び第二段PSAを含む二段変圧吸着から構成され、
当該第一段PSA及び当該第二段PSAの各々は少なくとも2以上の吸着塔を用い当該少なくとも2以上の吸着塔のうち少なくとも1の吸着塔は吸着工程にあり、残りの吸着塔は逆方向減圧真空排気、昇圧又は最終充填にあり、
当該原料ガスが当該第一段PSAにおける吸着塔の塔底れられ当該第一段PSAの操作圧力は0.2~0.3MPaであり、操作温度50~80℃であり、
当該吸着工程にある吸着塔の塔頂から非吸着相ガスとして純HFガスが得られ
当該純HFガスにおいて不純物が凝結により純HF液体及び不凝ガスが得られ、当該凝結された後の不凝ガスが、精密濾過され、脱イオン水吸収させた後、濃度が40~49%であるHF水溶液が得られ
当該第一段PSAの吸着塔の塔底から流出する脱離ガス、増圧されて冷熱交換された後、当該第二段PSAの吸着塔の塔底れられ当該第二段PSA吸着塔の操作圧力は0.2~0.3MPaであり、操作温度は50~80℃であり、
当該第二段PSAの吸着塔の塔頂から流出する非吸着相の中間ガス、原料ガスと混合され当該第一段PSA吸着塔に戻され
当該第二段PSAの吸着塔の塔底から流出する脱離ガス濃縮ガスである
中温変圧吸着工程と、
(2)前記中温変圧吸着工程において得られた前記純HF液体を膜分離する膜分離工程であって
1.0~1.6MPaまで増圧され、温度50~80℃である当該純HF液体が、無機セラミック膜又はステンレス鋼膜分離システムであって、膜孔径1マイクロメートル未満である膜分離システムを透過し、化純HF液体が得られ、当該浄化純HF液体において直径が1μmより大きい不純物のSS粒子の含量25(個)単位/ミリリットル(Ea/ml)未満であり、
当該分離システムを透過していないSS粒子濃縮液が、濃縮さ、冷却、沈殿さた後、SS粒子除去され、液体加熱加圧された後、当該膜分離システムに戻され、更に当該SS粒子が除去された液体の有効留分回収される、
膜分離工程と、
(3)前記膜分離工程から得られた前記浄化純HF液体を精留するHF精留工程であって、
当該浄化純HF液体が、上下二段階の精留の構成を有する精留塔に入れられ、
当該浄化純HF液体、下段精留の頂部又は上段精留の底部から入れられ当該上段精留塔の塔頂から取り除かれた軽留分不純物ガスその後の排気ガス吸収工程に送られ
当該上段精留の底部又は当該下段精留の頂部の蒸留物が凝結した後に得られる不凝ガスは純99.99%より高いAHFガスであり
凝縮した後に得られる液体は、当該上段精留塔又は当該下段精留塔に回流され
当該下段精留の底部から蒸留された重留分を含む不純物留分の塔底物の流体凝結した後に得られる不凝ガスが前記中温変圧吸着工程に戻される
HF精留工程と、
(4)前記中温変圧吸着工程から得られる前記濃縮ガスを処理するアンモニア水脱炭工程であって
当該濃縮ガスは常圧又は僅かな過圧まで増圧された後、アンモニア水、硫酸及び前記HF精留工程の下段精留塔から精留された蒸留物が比率に基づき混合及び凝結され、当該混合及び凝結により得られた液体が吸収剤としてアンモニア水脱炭吸収塔に入れられ
酸水素アンモニウム及びフッ化水素アンモニウムの混合溶液が当該アンモニア水脱炭吸収塔の底から得られ当該混合溶液がフッ素ケイ酸法によるAHF生産過程における原料として用いられる
アンモニア水脱炭工程と
を含む工業レベルの高濃度HFを電子レベルのFTrPSAに精製する精製方法。
(1) A medium temperature pressure swing adsorption process carried out on a raw gas that has been subjected to cold and heat exchange at a temperature between 50 and 80°C and pressurized to 0.2 to 0.3 MPa,
The intermediate temperature pressure swing adsorption process is composed of two-stage pressure swing adsorption including a first stage PSA and a second stage PSA ;
each of the first stage PSA and the second stage PSA employs at least two or more adsorption columns, at least one of the at least two or more adsorption columns being in an adsorption step and the remaining adsorption columns being in reverse depressurization , evacuation, pressurization , or final filling ;
The feed gas is fed into the bottom of the adsorption tower in the first stage PSA, the operation pressure of the first stage PSA is 0.2-0.3 MPa, and the operation temperature is 50-80° C.;
Pure HF gas is obtained as a non-adsorbed phase gas from the top of the adsorption tower in the adsorption step,
In the pure HF gas, impurities are condensed to obtain pure HF liquid and non-condensable gas, and the non-condensable gas after the condensation is subjected to precision filtration and absorbed in deionized water to obtain an aqueous HF solution having a concentration of 40-49%;
The desorbed gas flowing out from the bottom of the first-stage PSA adsorption tower is pressurized and subjected to cold and heat exchange, and then introduced into the bottom of the second-stage PSA adsorption tower, the operation pressure of the second-stage PSA adsorption tower being 0.2-0.3 MPa and the operation temperature being 50-80° C.;
The non-adsorbed intermediate gas flowing out from the top of the second-stage PSA adsorption tower is mixed with the feed gas and returned to the first-stage PSA adsorption tower;
The desorbed gas flowing out from the bottom of the adsorption column of the second stage PSA is a concentrated gas.
a mid-temperature pressure swing adsorption process;
(2) A membrane separation process for membrane separating the pure HF liquid obtained in the intermediate temperature pressure swing adsorption process,
The pure HF liquid, which is pressurized to 1.0-1.6 MPa and has a temperature of 50-80° C., is passed through an inorganic ceramic membrane or a stainless steel membrane separation system, the membrane pore size of which is less than 1 micrometer, to obtain a purified pure HF liquid, in which the content of impurity SS particles having a diameter of more than 1 μm is less than 25 units/milliliter (Ea/ml);
The SS particle concentrate that has not passed through the membrane separation system is concentrated, cooled , and precipitated , the SS particles are removed, the liquid is heated and pressurized , and then returned to the membrane separation system, and a useful fraction of the liquid from which the SS particles have been removed is recovered .
A membrane separation process;
(3) a HF rectification step for rectifying the purified pure HF liquid obtained from the membrane separation step,
The purified pure HF liquid is introduced into a rectification column having a two-stage rectification column configuration,
The purified pure HF liquid is introduced into the top of the lower rectification column or into the bottom of the upper rectification column , and the light end impurity gas removed from the top of the upper rectification column is sent to a subsequent exhaust gas absorption step;
the non-condensable gas obtained after condensation of the distillate at the bottom of the upper rectification column or at the top of the lower rectification column is AHF gas having a purity of more than 99.99%;
The liquid obtained after condensation is recycled to the upper rectification column or the lower rectification column,
The non-condensable gas obtained after condensing the bottoms of the impurity fraction including the heavy fraction distilled from the bottom of the lower rectification column is returned to the medium temperature pressure swing adsorption step;
an HF rectification step;
(4) An ammonia water decarbonization process for treating the concentrated gas obtained from the intermediate temperature pressure swing adsorption process,
The concentrated gas is pressurized to normal pressure or a slight overpressure, and then ammonia water, sulfuric acid , and the distillate rectified from the lower rectification column of the HF rectification step are mixed and condensed based on the ratio, and the liquid obtained by the mixing and condensation is introduced into an ammonia water decarbonization absorption column as an absorbent;
A mixed solution of ammonium hydrogen carbonate and ammonium hydrogen fluoride is obtained from the bottom of the ammonia water decarbonization and absorption tower , and the mixed solution is used as raw material in the AHF production process by fluorosilicic acid method.
A method for purifying industrial-grade high-concentration HF into electronic-grade FTrPSA , comprising:
前記中温変圧吸着工程(1)に記載の原料ガスは、蛍石法又はフッ素ケイ酸法が調製する非水フッ化水素(AHF)生産過程において生成される工業レベル高濃度フッ化水素(HF)ガであり
当該工業レベル高濃度フッ化水素ガスは、95~99%(v/v)HF、硫酸(HSO)、水(HO)、二酸化硫黄(SO)、四フッ化ケイ素(SiF)、アンモニア(NH)、フッ素ケイ酸(HSiF)、二酸化炭素(CO)、クロライド(HClで計算する)、並びに金属イオン(Me+)及び微細粒子(SS)その他の不純物留分を含み
当該金属イオンは、主に水溶性のナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ヒ素(As)イオンであり
当該微細粒子の直径は1マイクロメートル(μm)より大きく、
温度が20~60℃であり、圧力は常圧又は微圧である
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する精製方法。
The raw material gas described in the intermediate temperature pressure swing adsorption step (1) is industrial-level high-concentration hydrogen fluoride (HF ) gas produced in a process for producing anhydrous hydrogen fluoride (AHF) prepared by a fluorite process or a fluorosilicic acid process;
The industrial-level high-concentration hydrogen fluoride gas contains 95-99 % (v/v) HF , sulfuric acid ( H2SO4 ), water ( H2O ), sulfur dioxide ( SO2 ), silicon tetrafluoride ( SiF4 ), ammonia ( NH3 ), fluorosilicic acid ( H2SiF6 ), carbon dioxide ( CO2 ), chloride (calculated as HCl), as well as metal ions (Me+), fine particles (SS), and other impurity fractions ;
The metal ions are mainly water-soluble sodium (Na), magnesium (Mg), calcium (Ca), and arsenic (As) ions.
The diameter of the microparticles is greater than 1 micrometer (μm);
The method for purifying industrial-level high-concentration HF into electronic-level FTrPSA according to claim 1, characterized in that the temperature is 20-60° C., and the pressure is normal pressure or slight pressure.
前記膜分離工程(2)における前記膜分離システムは、マイクロフィルタ膜又は限外濾過膜を膜モジュールとして有する
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する精製方法。
The membrane separation system in the membrane separation step (2) has a microfilter membrane or an ultrafiltration membrane as a membrane module.
2. The method for purifying industrial-level high-concentration HF into electronic-level FTrPSA according to claim 1.
前記HF精留工程の前記上段精留塔の塔頂から蒸留する軽留分不純物ガスは、前記アンモニア水脱炭吸収塔の塔頂からの不凝ガスと混合され、硫酸を吸収剤とする排気ガス吸収塔に入れられ当該排気ガス吸収塔の底からフッ素ケイ酸溶液が得られ
当該フッ素ケイ酸溶液が、フッ素ケイ酸法による非水フッ化水素AHF生産過程の原料として循環使用され
当該排気ガス吸収塔の塔頂から流出する不凝ガス排ガスとして直接排出される、排気ガス吸収工程含む
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する精製方法。
The light fraction impurity gas distilled from the top of the upper rectification tower in the HF rectification step is mixed with the non-condensable gas from the top of the ammonia water decarbonization absorption tower, and is introduced into an exhaust gas absorption tower using sulfuric acid as an absorbent, and a fluorosilicic acid solution is obtained from the bottom of the exhaust gas absorption tower;
The fluorosilicic acid solution is recycled and reused as a raw material in the process of producing nonaqueous hydrogen fluoride (AHF) by the fluorosilicic acid method,
The method for purifying industrial-level high-concentration HF into electronic-level FTrPSA according to claim 1, further comprising an exhaust gas absorption step in which the non-condensable gas flowing out from the top of the exhaust gas absorption tower is directly discharged as exhaust gas.
前記中温変圧吸着工程における吸着塔には、活性酸化アルミニウム、シリカゲル、及び分子篩とが装填されており、
前記第一段PSA吸着塔に装填される吸着剤組成物における酸化アルミニウム:シリカゲル:分子篩の重量比率は(4-6):(2-4):(1-3)であり、
前記第二段PSA吸着塔で装填する吸着剤組成物における酸化アルミニウム:シリカゲル:分子篩の重量比は(3-5):(1-3):(3-5)である
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する精製方法。
The adsorption tower in the mid-temperature pressure swing adsorption step is loaded with activated aluminum oxide, silica gel , and molecular sieves;
the weight ratio of aluminum oxide:silica gel:molecular sieve in the adsorbent composition loaded in the adsorption column of the first stage PSA is (4-6):(2-4):(1-3);
The method for purifying industrial-level high-concentration HF into electronic-level FTrPSA according to claim 1, characterized in that the weight ratio of aluminum oxide:silica gel: molecular sieve in the adsorbent composition loaded in the adsorption tower of the second stage PSA is (3-5):(1-3):(3-5).
前記HF精留工程から得られる前記AHFガスは、更に凝結されてAHF液体が得られ
当該AHF液体はフッ素交換樹脂に入れられ、更に金属イオンが除去され、UPSS電子レベルのAHF液体が得られ
当該UPSS電子レベルのAHF液体は、脱イオン水と任意に調合され、HF溶液が得られる
ことを特徴とする請求項1に記載の工業レベルの高濃度HFを電子レベルのFTrPSAに精製する精製方法。
The AHF gas obtained from the HF rectification step is further condensed to obtain AHF liquid;
The AHF liquid is put into a fluorine exchange resin to further remove metal ions , and an AHF liquid of UPSS electronic level is obtained ;
The UPSS electronic level AHF liquid is optionally mixed with deionized water to obtain an HF solution.
2. The method for purifying industrial-level high-concentration HF into electronic-level FTrPSA according to claim 1.
JP2022506378A 2020-12-16 2021-05-18 Separation and purification method for purifying industrial-grade high-concentration HF to electronic-grade FTrPSA Active JP7523820B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011490114.0 2020-12-16
CN202011490114.0A CN112607707B (en) 2020-12-16 2020-12-16 Separation and purification method for FTrPSA (fluorine-doped silica gel) refined from industrial high-concentration HF (hydrogen fluoride) into electronic grade
PCT/CN2021/094244 WO2022127018A1 (en) 2020-12-16 2021-05-18 Ftrpsa separation and purification method for refinement of electronic-grade hf from industrial-grade high-concentration hf

Publications (2)

Publication Number Publication Date
JP2023524919A JP2023524919A (en) 2023-06-14
JP7523820B2 true JP7523820B2 (en) 2024-07-29

Family

ID=75239835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022506378A Active JP7523820B2 (en) 2020-12-16 2021-05-18 Separation and purification method for purifying industrial-grade high-concentration HF to electronic-grade FTrPSA

Country Status (3)

Country Link
JP (1) JP7523820B2 (en)
CN (1) CN112607707B (en)
WO (1) WO2022127018A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112607707B (en) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 Separation and purification method for FTrPSA (fluorine-doped silica gel) refined from industrial high-concentration HF (hydrogen fluoride) into electronic grade
CN113735063B (en) * 2021-09-26 2023-04-18 金宏气体股份有限公司 Purification device and purification process for 9N electronic grade HF
CN115385772A (en) * 2022-07-04 2022-11-25 中船(邯郸)派瑞特种气体股份有限公司 Purification method of electronic-grade monofluoromethane
CN115160105A (en) * 2022-07-08 2022-10-11 苏州金宏气体股份有限公司 Method and device for purifying hexafluoro-1,3-butadiene by using eddy current technology
CN115650173A (en) * 2022-11-02 2023-01-31 屈发全 Preparation method for producing electronic-grade hydrochloric acid by using byproduct HCL of R134A device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501579A (en) 2006-08-24 2010-01-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for separating fluoroolefins from hydrogen fluoride by azeotropic distillation
JP2017532341A (en) 2014-10-16 2017-11-02 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Method for separating HF from HF / halogenated hydrocarbon mixtures using ionic liquids
US20190366260A1 (en) 2018-05-29 2019-12-05 Zhejiang Tiancaiyunji Technology Co.,Ltd. Methods For Extracting And Recycling Ammonia From MOCVD Process Exhaust Gas By FTrPSA

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062930A (en) * 1973-05-31 1977-12-13 Bohdan Zawadzki Method of production of anhydrous hydrogen fluoride
JP2691036B2 (en) * 1989-11-24 1997-12-17 三菱重工業株式会社 Method for removing impurities from solution after gypsum separation
JP3264677B2 (en) * 1990-06-01 2002-03-11 旭硝子株式会社 Method for producing hydrogen fluoride
US5827492A (en) * 1993-01-28 1998-10-27 E. I. Du Pont De Nemours And Company Hydrogen chloride purification process
FR2918579B1 (en) * 2007-07-13 2010-01-01 Air Liquide PROCESS FOR PURIFYING CO2-CONTAINING GAS BY INTEGRATION OF ADSORPTION PURIFICATION UNIT
CN102092684A (en) * 2011-01-06 2011-06-15 苏州晶瑞化学有限公司 Method for preparing electronic grade ultrahigh purity hydrofluoric acid
CN102502498B (en) * 2011-10-19 2014-08-20 甘肃银光聚银化工有限公司 Method for separating and recovering chlorine and oxygen of hydrogen chloride oxidation gas mixture by use of PSA (Pressure Swing Adsorption) technology
CN103043613B (en) * 2013-01-17 2014-09-24 昆明道尔森科技有限公司 Preparation method of fluoride
JP6483465B2 (en) * 2015-02-17 2019-03-13 住友精化株式会社 Method for producing hydrogen chloride
CN105749699B (en) * 2016-03-31 2020-04-21 四川天采科技有限责任公司 Full-temperature-range pressure swing adsorption gas separation, purification and purification method
CN207468194U (en) * 2017-09-19 2018-06-08 新昌县七星街道春强机械厂 A kind of device for preparing super clean, high purified hydrofluoric acid
CN109929585A (en) * 2017-12-19 2019-06-25 何巨堂 Condense the hydrocarbon material process for selective hydrogenation of middle matter hydrocarbon in the gas phase of reuse reaction product
CN108658042B (en) * 2018-05-29 2019-11-08 四川天采科技有限责任公司 A kind of LED-MOCVD processing procedure tail gas Quan Wencheng pressure-variable adsorption full constituent recycling and reusing method
CN208440279U (en) * 2018-06-29 2019-01-29 江西天行化工有限责任公司 A kind of process units of super clean, high purified hydrofluoric acid
KR102156096B1 (en) * 2018-08-28 2020-09-15 연세대학교 산학협력단 Adsorbents with sulphur hexafluoride selectivity and method for gas separation using the same
CN109351144A (en) * 2018-11-30 2019-02-19 东华工程科技股份有限公司 The purification production system and technique of converter gas
CN109985487B (en) * 2019-04-03 2021-04-27 天津大学 Fluent-based optimization method for pressure swing adsorption carbon capture
CN111848337A (en) * 2020-07-28 2020-10-30 安徽东至广信农化有限公司 Method for recovering methyl chloride by membrane separation technology
CN111994874B (en) * 2020-09-03 2022-07-19 福建天甫电子材料有限公司 Preparation method of electronic-grade hydrofluoric acid
CN112661115B (en) * 2020-12-16 2022-09-09 浙江天采云集科技股份有限公司 Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF produced by fluorite method
CN112607707B (en) * 2020-12-16 2022-05-20 浙江天采云集科技股份有限公司 Separation and purification method for FTrPSA (fluorine-doped silica gel) refined from industrial high-concentration HF (hydrogen fluoride) into electronic grade
CN112744788B (en) * 2020-12-16 2022-09-23 四川天采科技有限责任公司 Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF (hydrogen fluoride) produced by fluosilicic acid method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501579A (en) 2006-08-24 2010-01-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for separating fluoroolefins from hydrogen fluoride by azeotropic distillation
JP2017532341A (en) 2014-10-16 2017-11-02 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Method for separating HF from HF / halogenated hydrocarbon mixtures using ionic liquids
US20190366260A1 (en) 2018-05-29 2019-12-05 Zhejiang Tiancaiyunji Technology Co.,Ltd. Methods For Extracting And Recycling Ammonia From MOCVD Process Exhaust Gas By FTrPSA

Also Published As

Publication number Publication date
CN112607707A (en) 2021-04-06
WO2022127018A1 (en) 2022-06-23
JP2023524919A (en) 2023-06-14
CN112607707B (en) 2022-05-20

Similar Documents

Publication Publication Date Title
JP7523820B2 (en) Separation and purification method for purifying industrial-grade high-concentration HF to electronic-grade FTrPSA
CN103991847B (en) Electronic-stage hydrofluoric acid preparation method
CN101570318B (en) Method for producing electronic-stage hydrofluoric acid
CN104973573B (en) A kind of preparation method of the preparation method and high-pure hydrofluoric acid of high-purity hydrogen fluoride
WO2023202270A1 (en) Method for graded utilization of fluorine and silicon resources in phosphate ore
JP2008537720A (en) Purification of nitrogen trifluoride
JP2023535850A (en) Separation of HF/HCl Containing Etching Exhaust Gas by FTrPSA and Recovery, Recycling and Reuse Method
CN107055477A (en) The method and its device of hydrogen fluoride are prepared by fluosilicic acid
CN110589770A (en) Preparation method of electronic-grade hydrofluoric acid
CN112661115B (en) Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF produced by fluorite method
CN111186820A (en) Production process and production system of high-purity sulfuric acid
CN112591711B (en) High-purity high-yield FTrPSA separation and purification extraction method for HF/HCl mixed gas
CN106345264B (en) A kind of method of purification of organic fluorine gas using impurity decomposing agent
WO2021208949A1 (en) Preparation and use method for hf electronic gas deeply purified material
CN211871381U (en) High-purity sulfuric acid production system
CN116212431B (en) Purification system and purification method of electronic grade octafluorocyclobutane
JP2013095629A (en) Method and apparatus for recovering hydrofluoric acid
CN112744787B (en) FTrPSA separation and purification method for deeply defluorinating and drying HCl gas containing high-concentration HF
CN112744788B (en) Separation and purification method for deep dehydration and impurity removal of FTrPSA refined by anhydrous HF (hydrogen fluoride) produced by fluosilicic acid method
EP1938888A1 (en) Isotope concentration method
CN115010091B (en) Impurity removal method for hydrogen fluoride, purification method for hydrogen fluoride and purification device for hydrogen fluoride
CN112624050B (en) FTrPSA separation and purification method for HCl gas containing low-concentration HF through deep defluorination and drying
CN103121664A (en) Production technique of high-purity hydrofluoric acid
US11891344B2 (en) Methods for graded utilization of fluorine and silicon resources in phosphate ores
JPWO2022127019A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240709

R150 Certificate of patent or registration of utility model

Ref document number: 7523820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150