JP7509747B2 - リーフ毎のフィールド幅を有するバイナリマルチリーフコリメータ送出 - Google Patents

リーフ毎のフィールド幅を有するバイナリマルチリーフコリメータ送出 Download PDF

Info

Publication number
JP7509747B2
JP7509747B2 JP2021506572A JP2021506572A JP7509747B2 JP 7509747 B2 JP7509747 B2 JP 7509747B2 JP 2021506572 A JP2021506572 A JP 2021506572A JP 2021506572 A JP2021506572 A JP 2021506572A JP 7509747 B2 JP7509747 B2 JP 7509747B2
Authority
JP
Japan
Prior art keywords
leaf
mlc
radiation beam
radiation
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021506572A
Other languages
English (en)
Other versions
JP2021532940A (ja
Inventor
エリック シュナー
ハリ ゴパラクリシュナン
ジャリ トイヴァネン
マシュー オートン
Original Assignee
アキュレイ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/056,114 external-priority patent/US10770196B2/en
Application filed by アキュレイ インコーポレイテッド filed Critical アキュレイ インコーポレイテッド
Publication of JP2021532940A publication Critical patent/JP2021532940A/ja
Application granted granted Critical
Publication of JP7509747B2 publication Critical patent/JP7509747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

(関連出願)
本出願は、2018年8月6日に出願された米国特許出願第16/056,114号の米国特許法119条(e)に基づく利益を主張し、その全内容は、引用により本明細書に組み込まれる。
(技術分野)
本開示は、放射線治療システムにおけるリーフ毎のフィールド幅を有するバイナリマルチリーフコリメータ(MLC)送出に関する。
放射線治療では、腫瘍細胞を破壊するために、患者の体外の線源から放射線治療ビームを介して送出される放射線量が体内の標的部位に送出される。目的とする治療部位に送出される放射線の量を最大にしながら、非治療部位に送出される放射線量を最小にするように注意する必要がある。放射線治療では、放射線治療ビームのアパーチャが、目的の標的部位に可能な限り適合するように放射線治療ビームを成形する。放射線治療ビームのアパーチャは、一般的にMLCによって定められる。
本開示は、以下に与える詳細な説明から及び本発明の開示の様々な実施構成についての添付図面からより完全に理解されるであろう。
本明細書に記載の実施形態による、ヘリカル放射線送出システムを示す図である。 本明細書に記載の実施形態に従って使用することができるロボット放射線治療システムを示す図である。 本明細書に記載の実施形態による、Cアームガントリーベースの放射線治療システムを示す図である。 本明細書に記載の実施形態による、標的部位に放射線治療線量を提供するためのマルチリーフMLCを示す図である。 本明細書に記載の実施形態による、マルチリーフMLCの底面図を示す。 本明細書に記載の実施形態による、マルチリーフ高速MLCの斜視図を示す。 本明細書に記載の実施形態による、マルチリーフ高速MLCのリーフの上面図を示す。 本明細書に記載の実施形態による、マルチリーフ高速MLCのための例示的なリーフ配置を示す図である。 本明細書に記載の実施形態による、例示的なリーフの開放時間プロファイルを示す図である。 本明細書に記載の実施形態による、例示的なリーフの開放時間プロファイルを示す図である。 本明細書に記載の実施形態による、例示的なリーフの開放時間プロファイルを示す図である。 本明細書に記載の実施形態による、例示的な最適化されたリーフ開放時間プロファイルを示す図である。 本明細書に記載の実施形態による、例示的な最適化されたリーフ開放時間プロファイルを示す図である。 本明細書に記載の実施形態による、例示的な最適化されたリーフ開放時間プロファイルを示す図である。 本明細書に記載の実施形態による、最大速度を組み込んだ例示的なリーフの開放時間プロファイルを示す図である。 本明細書に記載の実施形態による、標的部位に適合する様々な例示的なリーフの配置を示す図である。 本明細書に記載の実施形態による、標的部位に適合する様々な例示的なリーフの配置を示す図である。 本明細書に記載の実施形態による、標的部位に適合する様々な例示的なリーフの配置を示す図である。 本明細書に記載の実施形態による、高速MLCを備えた高速スライディングウィンドウの方法を示すフローチャートである。 実施形態による、リーフ毎のフィールド幅を有するバイナリMLC送出のための方法を示すフローチャートである。 本明細書に記載の実施形態による、放射線治療の実施の生成に使用することができる異なるシステムの実施例を示す図である。
本明細書には、リーフ毎のフィールド幅を有するバイナリMLC放射線治療送出のための方法及び装置の実施形態が記載されている。放射線治療システムでは、MLCのリーフの対向するバンクを使用して、標的部位に適合するように放射線治療ビームを成形する1又は2以上のパターンを作成することができる。
不均一な形状の標的部位の場合、IMRTを利用してより複雑な放射線治療線量を送出することができる。強度変調放射線治療(IMRT)には、基本的に、標的部位に向けられる放射線治療ビーム強度を変化させる様々な放射線治療技術が含まれる。IMRTでは、MLCが特定の輪郭に適合するように放射線治療ビームを成形するのではなく、代わりにMLCを使用して、(おそらくは)異なる強度の重複する放射線フィールドを介して、所望の強度変調及び所望の3D線量分布を生成するビーム形状のアレイを生成する。
幾つかの実施形態では、バイナリMLCは、2つの対向するバンクに配置された複数のリーフペアを含む。リーフの各バンクは、ビームに対してリーフを閉位置又は開位置に位置付けることによって、治療スライスを形成するのに使用される。幾つかの実施形態では、上-下(sup-inf)フィールド幅(例えば、MLCのリーフペアの開口部によって形成される幅)は、MLCの全てのリーフにわたって一定である。不利なことに、これは、このようなシステムが、標的の長さに沿った標的プロファイルに放射線治療ビームのフィールドを適合させることができないことを意味する。この制限に起因して、バイナリMLCのフィールドサイズは、一般に5cm未満に制限される。より大きなフィールドサイズは、一般に、非標的部位への放射線被曝量に起因して、標的部位の大部分を治療するのに望ましくない。
上記の問題に対する1つの解決策は、ダイナミックジョー(dynamic jaw)を使用して、フィールドを上端及び下端上の標的部位により良好に適合させることである。しかしながら、フィールドサイズはジョー(jaw)によって定義され、MLC全体で一定であるので、このような手法では、長さに沿った標的のエッジにフィールドが適合しない。もう1つの解決策は、非バイナリの形状適合MLCを使用することである。このようなMLCは遅い可能性があるが、治療時間に悪影響を与える可能性がある。本明細書では、別の解決策が提供される。
有利には、本明細書に記載の実施形態は、非治療部位への放射線被曝を最小限に抑えながら、MLCが治療ビームフィールドを標的部位に適合させることを可能にする。更に、本明細書に記載の実施形態は、より大きなフィールドサイズ(例えば、5cmよりも大きい)を可能にし、これは、治療速度を増加させることができる。更に、本明細書に記載の実施形態は、本明細書に記載されるように、MLCが、IEC-Xb方向だけでなく、IEC-Yb方向でもフルエンスフィールドを変調することを可能にする。更に、本明細書に記載の実施形態は、縦方向の変調のより多くの機会を可能にする。これにより、治療計画のピッチをより緩く(例えば、1に近く)することができ、sup-inf変調は、MLCリーフの縦方向変調によって処理される。或いは、同じsup-inf部位にわたって治療ビームを変調する追加の機会を使用して、より狭いピッチを維持することもできる。
本明細書に記載のシステム及び方法は、高速MLCの使用を介して上記の利点を達成する。このような高速MLCの一例は、本明細書に記載される電磁MLC(eMLC)である。しかしながら、高速MLCの代替の変形形態を使用して、本明細書で記載される動作を実行できる点に留意されたい。本開示において、高速MLCは、極めて高速のリーフの動きが可能な(例えば、おおよそ、100ミリ秒未満で5cmフィールドを横切ることができる)何れかのMLCとすることができる。本開示全体を通して「eMLC」が使用されているが、本明細書に記載のシステム及び方法は、他の何れかの形態の高速MLCと同様に互換性があることに留意されたい。
更に、本明細書において、「フルエンス」、「強度」、及び「線量」という用語は、以下のように使用される。フルエンス(fluence)は、放射線ビームに垂直な単位面積を横切る光子又はX線の数である。フルエンス率は、単位時間当たりのフルエンスである。強度は、単位時間当たりに単位面積を横切るエネルギーである。フルエンス及び強度は、患者に起こることとは無関係であり、より具体的には線量ではない。線量は、組織に影響を与える放射線によって組織が吸収するエネルギー量である。放射線量は、グレイ(Gy)の単位で測定され、ここで、各Gyは、組織の単位質量にて吸収される一定量のエネルギーに対応する(例えば、1ジュール/kg)。線量はフルエンスと同じではないが、フルエンスが増減するにつれて線量も増減する。
用語「標的」及び「標的領域」は、治療領域(例えば、腫瘍)の近く(ある定義された近接度内)の1又は2以上のフィデューシャル(fiducial)を指すことができる。別の実施形態では、標的は骨構造とすることができる。更に別の実施形態では、標的は、患者の軟組織を指すことができる。標的は、本明細書で記載されるように、識別及び追跡可能な何れかの定義された構造又は領域とすることができる。
図1Aは、本開示の実施形態によるヘリカル放射線送出システム800を示している。ヘリカル放射線送出システム800は、リングガントリー820に取り付けられた線形加速器(LINAC)850を含むことができる。LINAC850を用いて、電子ビームをX線放出標的に向けることによって放射線ビーム(すなわち、治療ビーム)を生成することができる。治療ビームは、標的部位(すなわち、腫瘍)に放射線を送出することができる。治療システムは更に、LINAC850の遠位端と結合されたマルチリーフコリメータ(MLC)860を含む。本明細書に記載されるように、MLC860は、eMLCとすることができる。MLCは、MLCのアパーチャを調整して治療ビームの成形を可能にするように移動可能な複数のリーフを収容するハウジングを含む。リングガントリー820は、トロイダル形状を有し、ここで患者830がリング/トロイドのボアを通って延在し、LINAC850が、リングの周囲に取り付けられて、中心を通る軸を中心に回転して標的部位を照射し、ビームが患者の周りの1又は2以上の角度から照射される。治療中、患者830は、治療寝台840上でガントリーのボアを通って同時に移動することができる。
ヘリカル放射線送出システム800は、撮像源としてのLINAC850及びX線検出器870を備えた撮像システムを含む。LINAC850を用いて、LINAC850の反対側にあるX線検出器870に入射する一連のX線ビームを関心部位(ROI)に向けて、セットアップのために患者830を撮像し、治療前の画像を生成することによって、患者830のROIのメガボルテージX線像(MVCT)を生成することができる。1つの実施形態では、ヘリカル放射線送出システム800はまた、リングガントリー820上でLINAC850に対して直角に(例えば、90度離れて)取り付けられたkV撮像源810からなる2次撮像システムを含むことができ、標的部位にて撮像X線ビームを投射し、患者130を通過した後に検出器の結像面を照らすように整列することができる。
図1Bは、本明細書に記載の代替の実施形態に従って使用することができる放射線治療システム1200を示している。図示のように、図1Bは、放射線治療システム1200の構成を示している。図示の実施形態では、放射線治療システム1200は、放射線治療源として機能する線形加速器(LINAC)1201と、治療ビームを成形するためにLINAC1201の遠位端と結合されたMLC1205(例えば、eMLC)とを含む。1つの実施形態では、LINAC1201は、患者の周りの動作ボリュームにおいて多くの角度から、多くの平面で送出されるビームで、病理解剖学的構造(例えば、標的)を照射するようにLINAC1201を位置付けるために、複数(例えば、5以上)の自由度を有するロボットアーム1202の端部に取り付けられる。治療は、単一のアイソセンター、複数のアイソセンター、又は非アイソセントリックアプローチによるビーム経路を含むことができる。
LINAC1201は、ロボットアーム1202を動かすことによって治療中に複数の異なるノード(LINAC1201が停止されて放射線を送出できる予め定義された位置)に位置付けることができる。ノードにおいて、LINAC1201は、1又は2以上の放射線治療ビームを標的に送出することでき、この場合、放射線ビーム形状は、MLC1205におけるリーフ位置によって決定される。ノードは、患者の周りにほぼ球形分布で配置することができる。特定のノード数及び各ノードにて適用される治療ビームの数は、治療する病理解剖学的構造の場所及びタイプに応じて変わることができる。
別の実施形態では、ロボットアーム1202及びその端部にあるLINAC1201は、放射線が送出されている間、ノード間で連続的に運動することができる。放射線ビームの形状及び2次元強度マップは、LINAC1201の連続動作中のMLC1205におけるリーフの急激な動作によって決定される。
放射線治療システム1200は、X線源1203A及び1203B(すなわち、撮像源)及び固定X線検出器1204A及び1204Bと接続された処理デバイス1230を有する撮像システム1210を含む。或いは、X線源1203A、1203B及び/又はX線検出器1204A、1204Bは、可動式とすることができ、この場合、これらは、標的との位置合わせを維持するために、或いは、様々な方位から標的を撮像するため、又は多くのX線像を取得し、3次元(3D)コーンビームCTを再構成するために再配置することができる。1つの実施形態では、X線源は、当業者には理解されるように、点源ではなく、X線源アレイである。1つの実施形態では、LINAC1201は、撮像源として機能し、ここで、LINACの電力レベルは、撮像のために許容可能なレベルにまで低減される。
撮像システム1210は、コーンビームCT又はヘリカルメガボルトコンピュータ断層撮影(MVCT)などのコンピュータ断層撮影(CT)を実行することができ、撮像システム1210によって生成される画像は、2次元(2D)又は3次元(3D)とすることができる。2つのX線源1203A及び1203Bは、手術室の天井の固定位置に取り付けることができ、2つの異なる角度位置(例えば、90度離れた)からX線撮像ビームを投射して、機械アイソセンター(本明細書では、治療中に患者を治療寝台1206上に位置付けるための基準点を提供する治療センターと呼ばれる)にて交差するよう、及び患者を通過した後にそれぞれの検出器1204A及び1204Bの結像面を照らすように整列することができる。1つの実施形態では、撮像システム1210は、標的及び周囲の関心ボリューム(VOI)の立体撮像を提供する。他の実施形態では、撮像システム1210は、2つより多い又は少ないX線源及び2つより多い又は少ない検出器を含むことができ、検出器の何れかは、固定ではなく可動とすることができる。更に他の実施形態では、X線源と検出器の位置は、入れ換えることができる。検出器1204A及び1204Bは、X線を可視光に変換するシンチレーション材料(例えば、アモルファスシリコン)と、当業者に周知であるように、デジタル画像の座標系を参照画像の座標系に変換する画像レジストレーションプロセス中に参照画像と比較できるデジタル画像に光を変換するCMOS(相補型金属酸化物シリコン)又はCCD(電荷結合素子)撮像セルのアレイと、から作製することができる。参照画像は、例えば、デジタル再構成X線像(DRR)とすることができ、これは、CT像を通して光線を放つことによってX線像形成プロセスをシミュレートすることに基づいて3D CT画像から生成される仮想X線像である。
1つの実施形態では、IGRT送出システム1200はまた、2次撮像システム1239を含む。撮像システム1239は、コーンビームコンピュータ断層撮影(CBCT)撮像システム、例えば、medPhotonImagingRingシステムである。或いは、他のタイプのボリューム撮像システムを使用することもできる。2次撮像システム1239は、アーム及びレールシステム(図示せず)に取り付けられた回転可能ガントリー1240(例えば、リング)を含み、アーム及びレールシステムは、回転可能ガントリー1240を1又は2以上の軸に沿って(例えば、治療台1206の頭部から足部に延びる軸に沿って)移動させる。回転可能ガントリー1240には、撮像源1245及び検出器1250が取り付けられる。回転可能ガントリー1240は、治療寝台の頭部から足部まで延びる軸を中心に360度回転することができる。従って、撮像源1245及び検出器1250は、多くの異なる角度に位置付けることができる。1つの実施形態では、撮像源1245はX線源であり、検出器1250はX線検出器である。1つの実施形態では、2次撮像システム1239は、別々に回転可能な2つのリングを含む。撮像源1245は、第1のリングに取り付けることができ、検出器1250は、第2のリングに取り付けることができる。1つの実施形態では、回転可能ガントリー1240は、ロボットアーム1202との衝突を回避するために、放射線治療送出中に治療寝台の足部に置かれる。
図1Bに示されるように、画像誘導放射線治療システム1200は更に、治療送出ワークステーション150と関連付けることができる。治療送出ワークステーションは、放射線治療システム1200及び患者が配置されている治療室とは異なる部屋において、放射線治療システム1200から離れて配置することができる。治療送出ワークステーション150は、本明細書に記載されている1又は2以上の画像レジストレーションに基づいた標的運動の検出に基づいて、患者1225への治療送出を修正する処理デバイス(処理デバイス1230又は別の処理デバイスであり得る)及びメモリを含むことができる。
図1Cは、Cアーム放射線送出システム1400を示す。1つの実施形態では、Cアームシステム1400において、LINACのビームエネルギーは、治療中に調整することができ、LINACをX線撮像及び放射線治療の両方に使用可能にすることができる。別の実施形態では、システム1400は、X線像を生成するためのオンボードkV撮像システムと、より高エネルギーの治療用放射線ビームを生成するための別個のLINACとを含むことができる。システム1400は、ガントリー1410、LINAC1420、ビームを成形するためにLINAC1420の遠位端と結合されるMLC1470(例えば、eMLC)、及びポータル画像検出器1450を含む。ガントリー1410は、選択された投影に対応する角度に回転され、治療寝台1440上の患者1430のVOIのX線像を取得するのに使用することができる。ポータル撮像システムを含む実施形態では、LINAC1420は、患者1430の標的を通過して、ポータル撮像検出器1450に入射するX線ビームを生成して、標的のX線像を作成することができる。標的のX線像が生成された後、LINAC1420のビームエネルギーを増大されることができるので、その結果、LINAC1420は、患者1430の標的部位を治療するための放射線ビームを生成することができる。別の実施形態では、kV撮像システムは、患者1430の標的を通過するX線ビームを生成し、標的のX線像を生成することができる。幾つかの実施形態では、ポータル撮像システムは、治療の実施中にポータル画像を取得することができる。ポータル撮像検出器1450は、ビームが患者1430を通過した後の出口放射線フルエンスを測定することができる。これにより、内部又は外部フィデューシャル又は解剖学的構造の一部(例えば、腫瘍又は骨)をポータル画像内にローカライズすることができる。
或いは、本明細書に記載されるkV撮像源又はポータルイメージャ及び操作方法は、他のタイプのガントリーベースのシステムでも使用することができる。一部のガントリーベースのシステムでは、ガントリーは、アイソセンターを通過する軸を中心にkV撮像源及びLINACを回転させる。ガントリーベースのシステムは、略トロイダル形状のリングガントリーを含み、ここでは患者の体がリング/トロイドのボアを通って延び、kV撮像源及びLINACがリングの周囲に取り付けられて、アイソセンターを通る軸を中心に回転する。ガントリーベースのシステムは更に、Cアームガントリーを含むことができ、ここではkV撮像源及びLINACがカンチレバー状に取り付けられ、アイソセンターを通過する軸を中心に回転する。別の実施形態では、kV撮像源及びLINACは、上記のようにkV撮像源及びLINACが取り付けられたロボットアームを含む、ロボットアームベースのシステムで使用することができる。本開示の態様は更に、ガントリーベースのLINACシステム、放射線療法及び放射線手術に関連する静的撮像システム、統合画像ガイダンスを使用する陽子線治療システム、インターベンショナルラジオロジー(interventional radiology)及び術中X線撮像システムなどの他のこのようなシステムで用いることができる。
図2Aは、本明細書に記載の実施形態による、標的部位に放射線治療線量を提供するためのマルチリーフコリメータ(MLC)31を示している。MLC31は、対向するリーフ33の2つのバンクを含み、各リーフ37は、放射線フィールドを横切って連続的に位置付けることができるリーフ33の2つのバンクは、ビーム30を所望の形状にコリメートするように位置付けられる。1つの実施形態では、各リーフ37は、所望のコリメーションを達成するときに柔軟性を提供するために、コリメータの中点を超えて移動することができる。この構成は、完全に開いた(41)、部分的に開いた(43)、及び閉じた(45)リーフ状態を示している。
放射線療法の実施例では、各ガントリー角度は、当該特定のガントリー角度に関連付けられた1つのビームを有し、ビーム30は、次に、MLCによって複数の形状にコリメートされる。治療ビーム30は、リーフ37によって形成された成形アパーチャ47を通過する。結果として生じるコリメートされたビームは、患者38内の標的14に進み続ける。図2Aはまた、治療ビームが多くの異なるビームレット49としてどのように視覚化又は概念化できるかを示している。MLC31のリーフ37が様々な位置に移動して、指定された時間期間に対する所望の形状又はアパーチャを実現し、当該特定のビームのフルエンスマップ51を実現する。概念化されたビームレットの変調は、リーフを所望の位置に順次的に単調に移動させて、概念化されたビームレットが露出される時間が当該ビームレットの強度を制御するように所望の形状又はアパーチャを実現することによって行われる。1つの実施形態では、本明細書における「単調」は、順序が1つのアパーチャから次のアパーチャへの連続体によって決定される、又は個々のリーフが所与の一連のアパーチャの間に一方向に増分する、アパーチャの順序付けられたシーケンスを意味する。言い換えれば、アパーチャのシーケンスは、より最適な治療送出を達成できるものではなくMLCの機械的制限によって決定されることになる。1つの実施形態では、シーケンスは、アパーチャ1、次に2、次に3、以下同様に進み、1から3、次に5、次いで2に戻ることはない。MLCは、単一の共形の形状を使用するのではなく、一連の形状を送出することができる。任意の所与のガントリー位置で受ける放射線の正味量は、様々な形状が放射線の通過又は遮断を可能にする範囲に基づいている。図2Aで分かるように、図示のMLC31の形状は、フルエンスマップ51のビームレット強度に直接対応していない。理解されるように、描かれたフルエンスマップは、MLCが当該特定のガントリー角度に対して取った複数の形状の強度の累積を示している。
従来の成形MLCの一般的な制限は、形状を定義するリーフが比較的緩慢に移動することである。多数の形状、又は大きなリーフの動きを必要とする形状を使用すると、患者の治療が長くなる可能性がある。同様に、リーフの速度は、従来の成形MLCが、送出構成要素(例えば、ガントリー、寝台、X線エネルギー、その他)の同期の動きを利用するなど、時間に依存する治療を送出する能力を制限する可能性がある。これらの理由の一つには、従来の2D強度マップ送出技術は、静的位置から送出されるビームに制限されていた。或いは、放射線源の連続的な動きを可能にする従来のシステムは、一般に、単一のアパーチャ形状、又は放射線源が移動するときにあるアパーチャ形状から別のアパーチャ形状へのモーフィング(morphing)のみを可能にし、各放射線源位置から2D強度マップを送出することが可能でない。
図2Bは、本明細書に記載の実施形態による、マルチリーフMLC61の底面図を示す。バイナリMLC61は、2つのバンク65、67に配置された複数のリーフ63を有する。リーフの各バンクは、リーフをビームに対して閉位置又は開位置に位置付けることにより、治療スライスを形成するのに使用される。図2Bに示すように、リーフは、両方が開いている(A)、両方が閉じている(B)、又は1つのリーフのみが開いている/閉じている(C)ように協働して機能することができる。従来のバイナリMLCでは、リーフ63は、単一の位置セクション全体にわたり同じ均一な幅に開いている(A)。従来の成形MLCでは、リーフ63は、単一の位置セクション全体で異なる様々な幅に開くことができる(A)。従来のバイナリMLCの一般的な制限は、リーフ63が、各位置セクションの間の何れかの時間の部分で様々な異なる幅に開かない場合があることである。従って、非標的部位への放射線被曝を同時に最小限に抑えながら、標的部位への放射線ビームを成形することが困難な場合がある。有利には、本明細書に記載の方法及びシステムは、バイナリMLCの速度を維持しながら、成形MLCの利点を可能にする(例えば、リーフ63は、各位置セクションの間の任意の時間の部分で様々な異なる幅に開くことができる)。
図2Cは、本明細書に記載の実施形態による、マルチリーフ高速MLC62の斜視図を示す。1つの実施形態では、放射線変調デバイス34は、強度変調を提供するために、位置から位置へ移動するように動作可能な複数のリーフ66を含む、電磁作動MLC(eMLC)62を含む。リーフ66は、最小オープン位置と最大オープン位置の間の任意の位置に十分な速度で移動することができ、リーフの順序付け又は位置決めは、何れかの個々のリーフの以前の又は将来の位置に大きな影響を受けない。別の言い方をすれば、MLCのメカニズムが、放射線療法治療又は一部分の送出の何れかの所与の時間にてリーフ位置の決定に過度に影響を与えないように、リーフの速度は十分である。各リーフ66は、モーター又は磁気ドライブなどのアクチュエータ(図示せず、以下でより完全に説明される)によって独立して制御され、以下で詳細に説明するように、リーフ66を全開、全閉、又は開放と閉鎖の間の任意の位置に制御可能に移動させる。アクチュエータは、コンピュータ74及び/又はコントローラによって適切に制御することができる。
1つの実施形態では、MLC62は、放射線治療送出システムのLINACの遠位端と結合される。コンピュータ74の処理デバイスは、離散時間間隔にわたるある範囲の放射線ビーム位置に対応する複数の放射線ビーム送出位置セクションの各々について、放射線治療システムの放射線ビームがアクティブである間、複数の対向するリーフペア66の各リーフペアが、離散時間間隔においてある時間部分に対して固定開口部に開いており、離散時間間隔において残りの時間部分で閉じているように、MLC62の複数のリーフペア66を制御することができる。1つの実施形態では、固定開口部及び時間部分は、異なる強度の重なり合う放射線フィールドを形成し、これらが組み合わされて、治療標的に送出される強度変調されたフルエンスフィールドをもたらす。1つの実施形態では、固定開口部は、治療対象の輪郭に適合し、放射線ビームに沿ってMLCに逆投影され、MLC内の複数のリーフペアの最大移動範囲内にある。この概念は、図4A~C及び図5Bに関して更に説明される。
1つの実施形態では、コンピュータ74の処理デバイスは、MLC62を制御して、フルエンスフィールドを2Dグリッドに細分する複数のサブビームにわたる放射線ビームのサブビーム強度を変調することができ、ここで、ガントリーが連続的に移動している間、複数の独立した2Dサブビーム強度パターンが複数のガントリー角度から送出される。この概念は更に、図3A~F及び図5Aに関して説明される。
1つの実施形態では、MLC62を含むLINACは、回転ガントリーに取り付けられ、ある範囲の放射線ビーム位置から送出される放射線ビームは、治療標的の周りを回転する。治療標的は、回転するガントリーのボアを通って軸方向に移動することができ、ある範囲の放射線ビーム位置から送出される放射線ビームは、治療標的の周りにヘリカル経路を辿ることができる。別の実施形態では、LINAC及びMLC62は、ロボットアームに取り付けられ、範囲の放射線ビーム位置から送出される放射線ビームは同一平面上にない。
図2Dは、本明細書に記載の実施形態による、マルチリーフ高速MLC240のリーフの上面図を示す。MLC240の中央部分302は、リーフガイド内部サポート301の間の様々な位置にて、内部リーフガイド302、アパーチャ1050、及び14のリーフペア(1010~1039)を含む。14のリーフペアが示されているが、特定のシステムの設計要件に応じて、より多い又はより少ないリーフペアを提供することができる。1つの実施形態では、64のリーフペアが存在する。別の実施形態では、96のリーフペアが存在する。更に別の実施形態では、32のリーフペアが存在する。理解されるように、放射線は、コリメータのこのセクション302を通してコリメートされる。
図2Dでは、各リーフは、特定のアパーチャ又は形状1050を定めるために特定の位置に位置付けられ、ここを放射線が通過することができ、本明細書では状態とも呼ばれる。リーフペア1010及び1011~1038並びに1039は、ボリューム及び強度の同時変調を可能にするために、本明細書で記載される制御方式及びドライバを使用して制御される。代替の態様では、1又は2以上の制御可能なジョーを使用して、内側エッジ310i及びフレーム97A、97Bによって定義されるビームの一次コリメーションを提供する(すなわち、ジョーは、支持フレームBとリーフペア1010/1011との間並びにサポートフレームAとリーフペア1038/1039の間のオープンスペースを遮断する)。追加的又は代替的に、ジョーの1又は2以上のペアを調整して、一次コリメートビームのサイズをフレームサイズよりも小さくすることができる。
図2Eは、本明細書に記載の実施形態による、マルチリーフ高速MLCのための例示的なリーフ配置を示す。中心線1030を有するコリメートフィールド1040は、ジョーのペア又は他のコリメータデバイスによって提供される。例示的な実施形態では、2つのリーフは、コリメートフィールド1040の成形及び変調のための相補的なリーフペアを形成する。例えば、リーフ1010及び1011は、1つのリーフペアである。リーフ1018、1019は別のリーフペアであり、リーフ1024、1025は更に別のリーフペアである。各ペアの各リーフは、フィールド1040内のどこにでも位置付けることができる。リーフペア内の各リーフの内側エッジは、互いに対面し、開口を生成することができ、各リーフペアによって形成される開口集合がアパーチャ1050を形成する。アパーチャ1050は、上述の図2Dのアパーチャに対応し、治療計画に従って設定される。1つの実施形態では、アパーチャ1050は、治療計画プロセスにおいて患者に放射線治療を実施する前に決定され、治療計画の送出中の特定の時点で発生する。アパーチャ1050は、例えば、本明細書に記載されるように、治療部位の三次元形状、強度変調、フルエンス、及び治療ボリューム内のビームレットなど、幾つかの要因に従って変わる可能性がある。本明細書で記載される高速MLCの実施形態は、ボリューム及び強度変調を単独で、又はスナップ状態制御を提供することによって同時に組み合わせて実現する。
図3A~Cは、本明細書に記載の実施形態による、例示的なリーフ開放時間プロファイルを示す。従来のMLCを使用する場合とは異なり、eMLC(又は他の適切な高速MLC)を使用することにより、リーフペアの進行方向(IEC-Yb方向など)に沿って各ポイントで送信されるフルエンスの量を正確に制御することができ、同時に、常に移動する放射線源(例えば、LINAC)は、1つの位置と見なされるのに十分に短い弧を通過する。このような高速MLCの計画を立てるために、リーフ開放時間プロファイルを決定することができる。1つの実施形態では、リーフ開放時間プロファイルは、離散時間間隔におけるリーフペアの開放時間を示す。
eMLC計画を生成するために、各位置セクションの各リーフペアのリーフ開放時間プロファイルは、個別のビームレット(beamlet)に分割することができる。オプティマイザは、以下に説明するように、各ビームレットの理想的なリーフ開放時間を決定することができる。リーフ開放時間プロファイルから、各リーフペアの前リーフ及び後リーフモーションプロファイルを生成でき、リーフは各位置セクションにおいて一方向にのみ移動できる。1つの実施形態では、リーフは、連続する位置セクションにおいて後ろから前へ及び前から後への移動を交互に行うので、リーフペアは、ある位置セクションにて移動を終了すると、次の位置セクションで移動を開始する位置にある。
図3Aは、例示的なリーフ開放時間プロファイルを示している。図示のように、IEC-Yb軸上にあるバーで表されるリーフペアの開放時間は、リーフペアごとに異なることができる。上記のリーフモーションプロファイルアルゴリズムでは、全てのリーフペアの開放時間を送出するのに必要な合計時間は以下の通りである点に留意されたい。
又は、同等に:
この合計時間が位置セクションの離散時間間隔よりも短い場合、図3Bに示すように、リーフのモーションプロファイルは、位置セクションの中央に配置することができる。図3Cは、位置セクションの中心にある、先行するリーフモーション302及び後続のリーフモーション304を示している。
図3D~Fは、本明細書に記載の実施形態による、例示的な最適化されたリーフ開放時間プロファイルを示す。1つの実施形態では、変調係数制約をリーフ開放時間プロファイルに適用して、リーフの開放時間が過度に大きくならないようにする(従って、治療時間を遅らせる)ことができる。変調係数を生成するために、全てのリーフ及び位置セクションにわたる全ての非ゼロビームレットについて平均ビームレット開放時間が計算される。次いで、離散時間間隔は、平均開放時間に所望の変調係数を乗算したものとして決定される。各位置セクション及びリーフについて、ビームレットの開放時間は、リーフの合計開放時間が位置セクションに対応する離散時間間隔を超えないように調整される。
この調整を行うのに複数の方法がある。1つの実施形態では、図3D-Fに示すように、離散時間間隔よりも大きい個々のビームレット開放時間は、投影時間に等しくなるように低減することができ、次に、最小ビームレット開放時間は、総リーフ開放時間が離散時間間隔以下になるまで増加させることができる。
図3Gは、本明細書に記載の実施形態による、最大速度を組み込んだ例示的なリーフ開放時間プロファイルを示す。高速MLCのリーフは迅速に移動するが、瞬時には移動しない点に留意されたい。実際に実行可能な計画を生成するために、リーフモーションプロファイルは、MLCの有限リーフ速度を考慮することができる。1つの実施形態では、これは、生成されたリーフプロファイルに最大リーフ速度(及び場合によってはリーフ加速度)を組み込むことによって実施することができる。1つの実施形態では、アルゴリズムは、各列の面積を一定に保つように努めることができる。例示的なプロファイル306では、瞬間的なリーフモーションが、有限速度のリーフモーションに変更されている。各セグメントのリーフモーションは、少し早く始まる可能性があるので、ビームレットの積分開放時間は影響を受けない点に留意されたい。1つの実施形態では、次の投影における移動の開始が現在の投影における移動の終了と重なる場合、リーフは、その移動の終わりに達する前に方向を変える可能性があり、その結果、標的部位に送出されるフルエンスがわずかに少なくなる。図3A~Gの動作は、図5Aに関して更に説明される。
図4A~Cは、本明細書に記載の実施形態による、標的部位401に適合する様々な例示的リーフ配置を示す。各リーフペアは、リーフペア開口部が特定のアパーチャ又は形状を定めて標的部位401に適合するように特定の方法で位置付けられる。治療中、放射線は、組み合わされたリーフペアによって定められたアパーチャを通過し、下の標的部位に当たる。本明細書で記載されるものなどの高速MLC(例えば、eMLC)は、離散時間間隔の間に各リーフペアを開状態又は閉状態に開閉する。各リーフペアは、離散時間間隔の間に異なる時間部分(例えば、開放時間部分)に対して開くことができ、各リーフペアは、対応する開放時間部分の間に異なる幅で開くことができる。更に、治療ビームは、離散時間間隔全体の間でアクティブになることができる。
有利には、離散時間間隔全体の間で治療ビームをアクティブにし、各リーフペアを指定された幅(他のリーフペアの幅とは異なる場合がある)まで離散時間間隔の一部だけ開くことを可能にすることによって、正確な線量の放射線を様々な複雑な標的部位形状に送出することができる。図4A~Cの動作は、図5Bに関して更に説明される。
図5Aは、本明細書に記載の実施形態による、高速MLCを用いた高速スライディングウィンドウの方法500を示すフローチャートである。一般に、方法500は、ハードウェア(例えば、処理デバイス、回路、専用ロジック、プログラマブルロジック、マイクロコード、デバイスのハードウェアなど)、ソフトウェア(例えば、処理デバイス上で動作又は実行される命令)又はそれらの組み合わせを含むことができる処理ロジックによって実施することができる。幾つかの実施形態では、方法500は、図1Aの放射線治療システム800の処理ロジックによって実行することができる。
図5Aに示されるように、方法500は、ブロック502で開始することができ、処理ロジックが、放射線治療システムのガントリーに取り付けられたコリメータを介して、標的に配向された放射線ビームを成形する。1つの実施形態では、コリメータは、複数のリーフペアを含むマルチリーフコリメータ(MLC)である。MLCは、本明細書に記載されるように、高速MLC(例えば、eMLC)とすることができる。
ブロック504の処理ロジックは、処理デバイスによって、フルエンスフィールドを2Dグリッドに細分する複数のサブビームにわたる放射線ビームのサブビーム強度を変調することができる。1つの実施形態では、サブビーム強度は、各リーフペアが対応する移動ラインの一方の端から対応する移動ラインの他方の端までシングルパスで移動するときに、各リーフペアの前リーフ及び後リーフの移動速度を独立して変調することによって変調される。サブビーム強度の変調に対応する追加の詳細事項は、図3A-Gに関して提供される。
様々な実施形態において、本明細書に記載される2Dグリッドは、矩形グリッドである。他の実施形態では、2Dグリッドは任意の形状である。1つの実施形態では、2Dサブビームグリッドの第1の軸は、MLCの1つの軸に沿ったリーフペアのインデックスによって決定され、2Dグリッドの第2の軸は、リーフペアの移動ラインに沿っている。
ブロック506の処理ロジックは、複数のガントリー角度から複数の独立した2Dサブビーム強度パターンを送出することができる。1つの実施形態では、複数の独立した2Dサブビーム強度パターンは、ガントリーが連続的に移動する間に、複数のガントリー角度から送出することができる。1つの実施形態では、複数のリーフペアの各々は、後続の各ガントリー角度に対してフルエンスパターンを送出するときに方向を変える。
1つの実施形態では、処理ロジックは、特定のガントリー角度から2Dフルエンスパターンを送出するのに使用される複数のリーフペアの動きを、事前に選択された時間期間未満で発生するように制約することができる(図3D-Fに関して説明されるように)。1つの実施形態では、処理ロジックは、(図3A~Fに関して説明されるように)事前に選択された時間期間内で事前に選択された時間期間よりも短い特定のガントリー角度に対するリーフペアの動きを中心に置くことができる。1つの実施形態では、特定のガントリー角度から強度パターンを送出するときにリーフペアの第2のリーフに続くリーフペアの第1のリーフは、後続のガントリー角度の強度パターンを送出する方向を反転するまでは、その移動の終わりには到達しない。(例えば、方向を反転する前に他のリーフペアが移動を終了するのを待機する必要がないリーフペア)。
1つの実施形態では、ガントリーの連続運動は、ヘリカル運動とすることができる。例えば、処理ロジックは、ガントリーを連続的に回転させることができ、ここで特定のガントリー角度の2Dサブビーム強度パターンは、小さな円弧上に強度パターンを送出することによって近似される。本明細書で使用される場合、「小さな円弧」は、十分に小さいので意図された線量分布を計画する目的で単一のガントリー角度として扱うことができる、全ガントリー回転の部分円弧を指すことができる。1つの実施形態では、「小さな円弧」は、全ガントリー回転の周りの約7度を指すことができる。他の実施形態では、他の円弧サイズを使用して、1次元のビームレット強度パターンを送出することができる。
1つの実施形態では、処理ロジックは、軸方向支持体(例えば、治療寝台)を介してガントリーの中心を通り標的を軸方向に移動させ、ガントリー及び軸方向支持体は、標的の照射中に同時に移動して、ヘリカル送出を実行する。1つの実施形態では、標的の照射中のヘリカルピッチは、0.5以上である。他の実施形態では、0.5よりも大きいか又はより小さい他のヘリカルピッチを使用することもできる。
図5Bは、実施形態による、リーフごとのフィールド幅を有するバイナリMLC送出のための方法501を示すフローチャートである。一般に、方法501は、ハードウェア(例えば、処理デバイス、回路、専用ロジック、プログラマブルロジック、マイクロコード、デバイスのハードウェアなど)、ソフトウェア(例えば、処理デバイス上で動作又は実行される命令)又はそれらの組み合わせを含むことができる処理ロジックによって実施することができる。幾つかの実施形態では、方法501は、図1Aの放射線治療システム800の処理ロジックによって実行することができる。
図5Bに示されるように、方法501は、処理ロジックでブロック503から開始することができ、処理ロジックは、放射線ビームがアクティブである間にMLCリーフ制御命令を含むように複数の放射線ビーム送出位置セクションを決定する。1つの実施形態では、本明細書で説明するように、複数の放射線ビーム送出位置セクションの各々は、離散時間間隔にわたる(例えば、放射線治療システムのガントリーの円弧に沿った)ある範囲の放射線ビーム位置に対応する。例えば、放射線ビーム送出位置セクション(例えば、投影)は、異なる位置又は異なる方向のうちの少なくとも1つから送出される放射線ビームに対応することができる。
言い換えれば、位置セクションは、LINACが特定の方向に放射線治療ビームを送出することができる位置ノードであると考えることができる。位置セクションは、ある範囲の位置(例えば、ゾーン)を含むことができる。例えば、ヘリカル治療送出システムにおける円弧は、複数の別個の位置セクションに分割することができる(例えば、各位置セクションが円弧の周りに幾つかの角度を含む場合)。1つの実施形態では、位置セクションは、円弧の周りに約7度(例えば、7度のガントリー回転)を含むことができる。他の非ヘリカルの実施形態では、位置セクションは、3次元空間に関して定義することができる。1つの実施形態では、異なる方向は一定のままであるが、異なる位置は、治療標的の長さにわたって放射線ビームを掃引する線形軌道に従う。1つの実施形態では、異なる方向は同一平面上にはない。
ブロック505において、処理ロジックは、複数の放射線ビーム送出位置セクションの各々に対して複数の開口を生成し、複数の開口の各々は、MLCの複数のリーフペアの1つに対応する。有利には、複数の位置セクションの各々に対する複数の開口の各々は、異なる幅に対応することができる。例えば、1つの実施形態では、複数の開口のうちの2以上が、同じ位置セクション内の異なる幅に対応する。1つの実施形態では、複数の開口は、治療対象の輪郭に適合し、放射線ビームに沿ってMLCに逆投影され、MLC内の複数のリーフペアの最大移動範囲内にある。
ブロック507において、処理ロジックは、複数の放射線ビーム送出位置セクションの各々について複数のリーフの開放時間部分を生成し、複数のリーフの開放時間部分の各々は、MLCの複数のリーフペアの1つに対応する。1つの実施形態では、リーフの開放時間部分は、離散時間間隔よりも短い離散時間量である。別の実施形態では、リーフの開放時間部分は、離散時間間隔に等しい離散時間量とすることができる。有利には、リーフの開放時間部分は、複数のリーフペアの各々が、離散時間間隔の間に異なる時間量で開放可能にする。例えば、本実施形態では、離散時間間隔の間の複数のリーフ開時間部分のうちの2つ以上が異なることができる。
ブロック509において、処理ロジックは、処理デバイスによって、放射線治療システムの放射線ビームがアクティブである間、放射線ビーム位置の範囲に対応する離散時間間隔中の複数のリーフ開放時間部分の対応するリーフ開放時間部分に対して、複数のリーフペアの各リーフペアが、複数の開口のうちの対応する開口に開かれるようにMLCの複数のリーフペアを制御する。1つの実施形態では、治療ビームは、離散時間間隔全体の間アクティブである(例えば、LINACが位置セクションを通過するとき)。
1つの実施形態では、複数のリーフの開放時間部分は、異なる強度の重なり合う放射線フィールドを形成し、これらが組み合わされて、治療標的に送出される強度変調されたフルエンスフィールドをもたらす。有利には、上記の操作により、放射線治療送出システムは、標的部位の輪郭に正確に適合しながら、放射線治療ビームを効果的に時間変調することができる。
図6は、本明細書で論じられる方法の何れか1又は2以上をシステムに実行させるための命令セットを実行することができるシステム600の実施例を示している。代替の実施構成では、マシンは、LAN、イントラネット、エクストラネット、及び/又はインターネットにおける他のマシンに接続(例えば、ネットワーク化)することができる。システムの各々は、クライアント/サーバネットワーク環境のサーバ又はクライアントマシンの能力において、ピアツーピア(又は分散型)ネットワーク環境のピアマシンとして、或いはクラウドコンピューティングインフラストラクチャ又は環境におけるサーバ又はクライアントマシンとして動作することができる。
システムは、当該マシンによって実行されるアクションを指定する命令セット(シーケンシャル又はその他)を実行できるマシンである。更に、単一のマシンが示されているが、「マシン」という用語は、本明細書で論じられる方法の何れか1又は2以上を実行する命令セット(又は複数のセット)を個別に又は共同で実行するマシンの集合を含むと解釈されるものとする。
以下に説明され、図6に示されるように、システム600は、画像診断システム605、治療計画システム610、及び治療送出システム615を含むことができる。画像診断システム605は、その後の医療診断、治療計画、治療シミュレーション、及び/又は治療送出のために使用できる、患者の医療診断画像を生成できる任意のシステムとすることができる。例えば、画像診断システム605は、コンピュータ断層撮影(CT)システム、磁気共鳴画像(MRI)システム、ポジトロン放出断層撮影(PET)システム、このようなシステムの組み合わせ、又は同様のものとすることができる。説明を簡単にするために、画像診断システム605は、X線撮像モダリティに関連して以下で説明することができる。他の実施形態では、上記で論じたような他の撮像モダリティを使用してもよい。
1つの実施形態では、画像診断システム605は、撮像ビーム(例えば、X線)を生成するための撮像源620と、撮像源620によって生成されたビーム、又は、撮像源(MRI又はPETスキャンなど)からのビームによって刺激された2次ビーム若しくは放出を検出及び受信するための撮像検出器630と、を含む。
1つの実施形態では、撮像源620及び撮像検出器630は、撮像動作を制御して画像データを処理するためにデジタル処理システム625に結合することができる。1つの実施形態では、画像診断システム605は、治療送出システム615及び/又は治療計画システム610から撮像コマンドを受信することができる。
画像診断システム605は、デジタル処理システム625、撮像源620、及び画像検出器630の間でデータ及びコマンドを転送するためのバス又は他の手段680を含む。デジタル処理システム625は、1又は2以上の汎用プロセッサ(例えば、マイクロプロセッサ)、デジタル信号プロセッサ(DSP)などの専用プロセッサ、或いはコントローラ又はフィールドプログラマブルゲートアレイ(FPGA)などの他のタイプの処理デバイス)を含むことができる。デジタル処理システム625はまた、メモリ、記憶装置、ネットワークアダプタ及び同様のものなどの他の構成要素(図示せず)を含むことができる。デジタル処理システム625は、例えば、医療におけるデジタル画像及び通信(DICOM)フォーマットなどの標準フォーマットでデジタル診断画像を生成するように構成することができる。他の実施形態では、デジタル処理システム625は、他の標準又は非標準のデジタル画像フォーマットを生成することができる。デジタル処理システム625は、例えば、ダイレクトリンク、ローカルエリアネットワーク(LAN)リンク、又はインターネットなどのワイドエリアネットワーク(WAN)リンクとすることができる、データリンク683を介して診断画像ファイル(例えば、前述のDICOMフォーマットされたファイル)を治療送出システム615に送信することができる。加えて、システム間で転送される情報は、遠隔診断又は治療計画構成など、システムを接続する通信媒体を介してプル又はプッシュすることができる。遠隔診断又は治療計画において、ユーザは、システムユーザと患者との間に物理的分離が存在するにもかかわらず、本開示の実施形態を利用して、患者を診断又は治療することができる。
1つの実施形態では、治療送出システム615は、治療計画に従って標的ボリュームに処方された放射線量を投与するための治療的及び/又は外科的放射線源660を含む。治療送出システム615はまた、コーンビームCTなどのコンピュータ断層撮影(CT)を実行する撮像システム665を含むことができ、撮像システム665によって生成される画像は、2次元(2D)又は3次元(3D)とすることができる。
治療送出システム615はまた、放射線源660を制御し、画像診断システム605及び/又は治療計画システム610からデータを受信及び処理し、治療寝台675などの患者支持装置を制御するためのデジタル処理システム670を含むことができる。デジタル処理システム670は、カメラフィードバックシステムに接続されるか、又はその一部とすることができる。デジタル処理システム670は、本明細書に記載の動作の何れかを実行するように構成することができる。デジタル処理システム670は、1又は2以上の汎用プロセッサ(例えば、マイクロプロセッサ)、デジタル信号プロセッサ(DSP)などの専用プロセッサ、又はコントローラ又はフィールドプログラマブルゲートアレイ(FPGA)などの他のタイプのデバイスを表す処理デバイスを含むことができる。デジタル処理システム670の処理デバイスは、本明細書に記載の動作を実行するための命令を実行するように構成することができる。
1つの実施形態では、デジタル処理システム670は、処理デバイスによって実行される情報及び命令を記憶するために、処理デバイスに結合されたランダムアクセスメモリ(RAM)又は他の動的記憶装置を含むことができるシステムメモリを含む。システムメモリはまた、処理デバイスによる命令の実行中に一時変数又は他の中間情報を記憶するのに用いることができる。システムメモリは、処理デバイスのための静的情報及び命令を記憶するための読み取り専用メモリ(ROM)及び/又は他の静的記憶装置を含むことができる。
デジタル処理システム670はまた、情報及び命令を記憶するための1又は2以上の記憶装置(例えば、磁気ディスクドライブ又は光ディスクドライブ)を表す記憶装置を含むことができる。記憶装置は、本明細書で論じられる治療送出ステップを実行するための命令を記憶するのに使用することができる。デジタル処理システム670は、バス692又は他のタイプの制御及び通信インターフェースによって、放射線源660及び治療寝台675に結合することができる。
1つの実施形態では、治療送出システム615は、バス692を介してデジタル処理システム670に接続された入力デバイス678及びディスプレイ677を含む。ディスプレイ677は、標的の動きの速度(例えば、治療中の標的ボリュームの動きの速度)を識別する傾向データを表示することができる。ディスプレイはまた、患者の現在の放射線被曝及び患者の予測放射線被曝を表示することもできる。入力デバイス678は、臨床医が治療中に治療実施計画のパラメータを調整できるようにすることができる。
治療計画システム610は、治療計画及び/又はシミュレーション計画を生成及び修正するための処理デバイス640を含む。処理デバイス640は、1又は2以上の汎用プロセッサ(例えば、マイクロプロセッサ)、デジタル信号プロセッサ(DSP)などの専用プロセッサ、或いはコントローラ又はフィールドプログラマブルゲートアレイ(FPGA)などの他のタイプのデバイスを表すことができる。処理デバイス640は、本明細書で論じられるシミュレーション生成動作及び/又は治療計画動作を実行するための命令を実行するように構成することができる。
治療計画システム610はまた、処理デバイス640によって実行される情報及び命令を記憶するために、バス686によって処理デバイス640に結合されたランダムアクセスメモリ(RAM)又は他の動的記憶装置を含むことができるシステムメモリ635を含むことができる。システムメモリ635はまた、処理デバイス640による命令の実行中に一時変数又は他の中間情報を記憶するのに用いることができる。システムメモリ635はまた、処理デバイス640のための静的情報及び命令を記憶するためにバス686に結合された読み取り専用メモリ(ROM)及び/又は他の静的記憶装置を含むことができる。
治療計画システム610はまた、情報及び命令を記憶するためにバス686に結合された1又は2以上の記憶装置(例えば、磁気ディスクドライブ又は光ディスクドライブ)を表す記憶装置645を含むことができる。記憶装置645は、本明細書で論じられる治療計画ステップを実行するための命令を記憶するのに用いることができる。
処理デバイス640はまた、情報(例えば、VOIの2D又は3D表現)をユーザに表示するために、陰極線管(CRT)又は液晶ディスプレイ(LDC)などのディスプレイデバイス650に結合することができる。キーボードなどの入力デバイス655は、情報及び/又はコマンド選択を処理デバイス640に通信するために、処理デバイス640に結合することができる。1又は2以上の他のユーザ入力デバイス(例えば、マウス、トラックボール又はカーソル方向キー)を使用して、方向情報を通信し、デバイス640を処理するためのコマンドを選択して、ディスプレイ650上のカーソルの動きを制御することもできる。
治療計画システム610は、データベース(例えば、ストレージ645に記憶されたデータ)を治療送出システム615などの治療送出システムと共有することができ、その結果、治療送出の前に治療計画システムからエクスポートする必要がないものとすることができる。治療計画システム610は、データリンク690を介して治療送出システム615にリンクすることができ、1つの実施形態では、データリンク690は、直接リンク、LANリンク、又はWANリンクとすることができる。
データリンク683、686、及び690がLAN又はWAN接続として実装される場合、画像診断システム605、治療計画システム610、及び/又は治療送出システム615の何れかは、システムが互いに物理的に離れることができるように分散された場所に存在することができる点に留意されたい。或いは、画像診断システム605、治療計画システム610、及び/又は治療送出システム615の何れかは、1又は2以上のシステムに互いに統合することができる。
前述の説明から、本開示の態様は、少なくとも部分的にソフトウェアにて具体化できることは明らかであろう。すなわち、この技術は、例えば、メモリに含まれる命令のシーケンスを実行する処理デバイス625、640、又は670(図6を参照)に応答して、コンピュータシステム又は他のデータ処理システムにて実行することができる。様々な実施構成において、ハードウェア回路は、本開示を実施するためにソフトウェア命令と組み合わせて使用することができる。従って、技術は、ハードウェア回路とソフトウェアの何れかの特定の組み合わせ、又はデータ処理システムによって実行される命令の何れかの特定のソースに限定されない。加えて、本明細書全体を通して、説明を簡単にするために、ソフトウェアコードによって実行され又はソフトウェアコードによって引き起こされる様々な機能及び動作を説明することができる。しかしながら、当業者であれば、このような表現が意味することは、処理デバイス625、640、又は670によるコードの実行から機能が生じることである点を認識するであろう。
機械可読媒体を使用して、汎用又は特殊目的のデータ処理システムによって実行されると、本開示の様々な方法をシステムに実行させるソフトウェア及びデータを記憶することができる。この実行可能ソフトウェア及びデータは、例えば、システムメモリ及びストレージ、又はソフトウェアプログラム又はデータの少なくとも1つを保存できる他の何れかのデバイスを含む、様々な場所に記憶することができる。従って、機械可読媒体は、機械によってアクセス可能な形式で情報を提供(つまり記憶)する何れかのメカニズムを含むことができる(例えば、コンピュータ、ネットワークデバイス、携帯情報端末、製造ツール、1又は2以上のプロセッサのセットを有する任意のデバイス、その他)。例えば、機械可読媒体は、読み取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光記憶媒体、フラッシュメモリデバイスなどの記録可能/記録不可能な媒体を含む。機械可読媒体は、非一時的なコンピュータ可読記憶媒体とすることができる。
上述の議論から明らかであるように別段の記載がない限り、「受け取る」、「位置付ける」、「実行する」、「放出する」、「引き起こす」又は同様のものなどの用語は、コンピュータシステムのレジスタ及びメモリ内の物理的な(例えば、電子的な)量として表されるデータを操作して、コンピュータシステムのメモリ又はレジスタ又は他のこのような情報記憶装置又は表示デバイスの中の物理量として同様に表される別データに変換する、コンピュータシステム又は同様の電子コンピューティングデバイスの動作及び処理を指すことができる。本明細書に記載される方法の実施構成は、コンピュータソフトウェアを使用して実施することができる。認可規格に準拠するプログラミング言語で書かれている場合、本方法を実施するように設計された命令シーケンスは、様々なハードウェアプラットフォーム上で実行するため、並びに様々なオペレーティングシステムとのインターフェースのためにコンパイルすることができる。更に、本発明の実施形態は、何れかの特定のプログラミング言語に関して説明されていない。様々なプログラミング言語を用いて本発明の実施形態を実施することができると理解されよう。
本明細書に記載される方法及び装置は、医療診断撮像及び治療での使用だけに限定されない点に留意されたい。別の実施形態では、本明細書の方法及び装置は、工業用撮像及び材料の非破壊検査などの医療技術分野以外の用途で使用することができる。このような用途では、例えば、「治療」は一般に、ビーム(例えば、放射線、音響など)の適用など、治療計画システムによって制御される動作の実行を指すとすることができ、「標的」は非解剖学的な物体又は領域を指すことができる。
上述の明細書では、本発明の実施形態は、特定の実施例に関して説明されている。しかしながら、添付の特許請求の範囲に記載される本発明のより広範な趣旨及び範囲から逸脱することなく、様々な修正及び変更をそれらに加えることができることは明らかであろう。従って、明細書及び図面は、限定的な意味ではなく例示的な意味で考えるべきである。

Claims (11)

  1. 放射線治療送出システムの電磁マルチリーフコリメータ(MLC)を制御する方法であって、
    処理デバイスが、前記放射線治療送出システムの放射線ビームがアクティブである間、電磁MLCリーフ制御命令を含むように複数の放射線ビーム送出位置セクションを決定するステップであって、前記複数の放射線ビーム送出位置セクションの各々は、前記放射線治療送出システムのガントリーの円弧に沿って区分けされて配置される、離散時間間隔にわたるある範囲の放射線ビーム位置に対応し、前記離散時間間隔は、前記電磁MLCの複数のリーフペアの平均開放時間と変調係数との積である、ステップと、
    前記処理デバイスが、前記複数の放射線ビーム送出位置セクションの各々に対して複数の開口部を生成するステップであって、前記複数の開口部の各々は、前記電磁MLCの前記複数のリーフペアのうちの1つに対応し、前記複数の開口部のうちの2又は3以上が異なる幅を有する、ステップと、
    前記処理デバイスが、前記複数の放射線ビーム送出位置セクションの各々に対して複数のリーフの開放時間部分を生成するステップであって、前記複数のリーフの開放時間部分の各々が、前記電磁MLCの前記複数のリーフペアのうちの1つに対応する、ステップと、
    前記処理デバイスが、前記放射線治療送出システムの前記放射線ビームがアクティブである間、前記複数のリーフペアの各リーフペアに対応するリーフ開放時間部分に対して、前記複数のリーフペアの各リーフペアが、前記複数の開口部のうちの対応する開口部に開かれるように前記電磁MLCの前記複数のリーフペアを制御するステップと、
    を含む、方法。
  2. 前記複数の放射線ビーム送出位置セクションの2以上が、異なる位置又は異なる方向のうちの少なくとも1つを有する、請求項1に記載の方法。
  3. 前記離散時間間隔中の前記複数のリーフの開放時間部分のうちの2又は3以上が異なる、請求項1に記載の方法。
  4. 前記異なる方向は一定のままであるが、治療標的の長さにわたって前記放射線ビームを掃引する線形軌道を辿る、請求項2に記載の方法。
  5. 前記異なる方向が同一平面上にない、請求項2に記載の方法。
  6. 前記複数の開口部及び前記複数のリーフの開放時間部分が、異なる強度の重なり合う放射線フィールドを形成し、これらが組み合わされて、治療標的に送出される強度変調されたフルエンスフィールドをもたらす、請求項2に記載の方法。
  7. 前記複数の開口部が、治療標的の輪郭に適合し、前記放射線ビームに沿って前記電磁MLCに逆投影され、前記電磁MLC内の前記複数のリーフペアの最大移動範囲内にある、請求項1に記載の方法。
  8. 前記円弧は、7度のガントリー回転に対応する、請求項1に記載の方法。
  9. 放射線治療送出システムの処理デバイスによって実行されたときに、
    前記放射線治療送出システムの放射線ビームがアクティブである間、電磁MLCリーフ制御命令を含むように複数の放射線ビーム送出位置セクションを生成するステップであって、前記複数の放射線ビーム送出位置セクションの各々は、前記放射線治療送出システムのガントリーの円弧に沿って区分けされて配置される、離散時間間隔にわたるある範囲の放射線ビーム位置に対応し、前記離散時間間隔は、前記電磁MLCの複数のリーフペアの平均開放時間と変調係数の積である、ステップと、
    前記複数の放射線ビーム送出位置セクションの各々に対して複数の開口部を生成するステップであって、前記複数の開口部の各々が、前記電磁MLCの前記複数のリーフペアのうちの1つに対応する、ステップと、
    前記複数の放射線ビーム送出位置セクションの各々に対して複数のリーフの開放時間部分を生成するステップであって、前記複数のリーフの開放時間部分の各々が、前記電磁MLCの前記複数のリーフペアの1つに対応する、ステップと、
    前記処理デバイスによって、前記放射線治療送出システムの前記放射線ビームがアクティブである間、前記複数のリーフペアの各リーフペアに対応するリーフ開放時間部分に対して、前記複数のリーフペアの各リーフペアが、前記複数の開口部のうちの対応する開口部に開かれるように前記電磁MLCの前記複数のリーフペアを制御するステップと、
    を前記処理デバイスに行わせる命令を含む、非一時的なコンピュータ可読媒体。
  10. 前記複数の放射線ビーム送出位置セクションの2以上が、異なる位置又は異なる方向のうちの少なくとも1つを有する、請求項9に記載の非一時的なコンピュータ可読媒体。
  11. 前記異なる方向は一定のままであるが、治療標的の長さにわたって前記放射線ビームを掃引する線形軌道を辿る、請求項10に記載の非一時的なコンピュータ可読媒体。
JP2021506572A 2018-08-06 2019-08-06 リーフ毎のフィールド幅を有するバイナリマルチリーフコリメータ送出 Active JP7509747B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/056,114 US10770196B2 (en) 2018-08-06 2018-08-06 Binary multileaf collimator delivery with per-leaf field width
US16/056,114 2018-08-06
PCT/US2019/045357 WO2020033442A1 (en) 2018-08-06 2019-08-06 Binary multileaf collimator delivery with per-leaf field width

Publications (2)

Publication Number Publication Date
JP2021532940A JP2021532940A (ja) 2021-12-02
JP7509747B2 true JP7509747B2 (ja) 2024-07-02

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275636A (ja) 2003-03-19 2004-10-07 Nakano Syst:Kk 放射線治療計画装置
JP2009502264A (ja) 2005-07-25 2009-01-29 オットー、カール 放射線治療の計画及び照射方法並びに装置
JP2009534135A (ja) 2006-04-27 2009-09-24 エレクタ、アクチボラグ 放射線治療装置
JP2016507328A (ja) 2013-02-26 2016-03-10 アキュレイ インコーポレイテッド 電磁作動式のマルチリーフコリメーター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275636A (ja) 2003-03-19 2004-10-07 Nakano Syst:Kk 放射線治療計画装置
JP2009502264A (ja) 2005-07-25 2009-01-29 オットー、カール 放射線治療の計画及び照射方法並びに装置
JP2009534135A (ja) 2006-04-27 2009-09-24 エレクタ、アクチボラグ 放射線治療装置
JP2016507328A (ja) 2013-02-26 2016-03-10 アキュレイ インコーポレイテッド 電磁作動式のマルチリーフコリメーター

Similar Documents

Publication Publication Date Title
JP7245352B2 (ja) 粒子を用いた回転式の放射線治療を提供する方法
US10335611B2 (en) Gantry image guided radiotherapy system and related treatment delivery methods
US11697030B2 (en) Delivering independent 2D sub-beam intensity patterns from moving radiation source
JP6377762B2 (ja) 画像誘導放射線治療
US7590219B2 (en) Automatically determining a beam parameter for radiation treatment planning
JP2019532787A (ja) 放射線療法の治療計画を選択するシステムおよび方法
CN113164136A (zh) 多模式放射设备和方法
US11712586B2 (en) Compensating for target rotation with a collimation system
CN115068843B (zh) 递送放射治疗的系统和方法
JP2022530151A (ja) 周期的な動きを利用した陽子線治療を提供する方法
US11049627B2 (en) Binary multileaf collimator delivery with per-leaf field width
JP7509747B2 (ja) リーフ毎のフィールド幅を有するバイナリマルチリーフコリメータ送出