JP7492262B2 - Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device - Google Patents

Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device Download PDF

Info

Publication number
JP7492262B2
JP7492262B2 JP2021036096A JP2021036096A JP7492262B2 JP 7492262 B2 JP7492262 B2 JP 7492262B2 JP 2021036096 A JP2021036096 A JP 2021036096A JP 2021036096 A JP2021036096 A JP 2021036096A JP 7492262 B2 JP7492262 B2 JP 7492262B2
Authority
JP
Japan
Prior art keywords
cylindrical
magnus
cylindrical blade
rotation axis
generating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021036096A
Other languages
Japanese (ja)
Other versions
JP2022136469A (en
Inventor
敦史 清水
賢司 市石
芳雄 黒田
ムリア ハビエル ビダル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Challenergy Inc
Original Assignee
Challenergy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Challenergy Inc filed Critical Challenergy Inc
Priority to JP2021036096A priority Critical patent/JP7492262B2/en
Publication of JP2022136469A publication Critical patent/JP2022136469A/en
Application granted granted Critical
Publication of JP7492262B2 publication Critical patent/JP7492262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は、流体中で回転する略円筒形状の円筒翼が発生するマグナス力を用いたマグナス式推力発生装置、前記マグナス式推力発生装置を用いた風力回転装置、水力回転装置、潮力回転装置、ならびに前記マグナス式推力発生装置を用いた風力発電機、水力発電機、潮力発電機などの流体機械に関する。 The present invention relates to a Magnus thrust generating device that uses the Magnus force generated by a roughly cylindrical blade that rotates in a fluid, a wind-powered rotating device, a hydraulic rotating device, and a tidal rotating device that use the Magnus thrust generating device, and fluid machinery such as a wind-powered generator, a hydraulic generator, and a tidal generator that use the Magnus thrust generating device.

従来から、流体中で回転する円筒翼が発生するマグナス力を利用する装置が知られている。例えば、特許文献1には、発電機軸を中心として回転するとともに円筒翼を軸支する支持部材と、支持部材上に垂設され、各個に独立して回転する複数の円筒翼とを備え、支持部材上に垂設される円筒翼が発電機軸を中心とする円周軌道上に配設される、マグナス式推力発生装置(縦軸式マグナス型風力発電装置)が開示されている。 Conventionally, devices that utilize the Magnus force generated by cylindrical blades rotating in a fluid have been known. For example, Patent Document 1 discloses a Magnus type thrust generating device (vertical axis type Magnus type wind power generating device) that includes a support member that rotates around the generator shaft and supports the cylindrical blades, and a plurality of cylindrical blades that are suspended from the support member and rotate independently, with the cylindrical blades suspended from the support member being arranged on a circumferential orbit centered on the generator shaft.

特開2010-121518号公報JP 2010-121518 A

本発明は、円筒翼強度を高めることが可能なマグナス式推力発生装置、前記マグナス式推力発生装置を用いた風力回転装置、水力回転装置、潮力回転装置、ならびに前記マグナス式推力発生装置を用いた風力発電機、水力発電機、潮力発電機を提供することを目的とする。 The present invention aims to provide a Magnus thrust generating device capable of increasing the strength of cylindrical blades, a wind-powered rotating device, a hydro-powered rotating device, and a tidal-powered rotating device that use the Magnus thrust generating device, as well as a wind-powered generator, a hydro-powered generator, and a tidal-powered generator that use the Magnus thrust generating device.

本発明は、上記のような問題を解決するものであって、本発明の一実施形態に係るマグナス式推力発生装置は、
支持筐体と、
前記支持筐体に対して第1の回転軸を中心として回転可能な回転部と、
前記第1の回転軸を中心として公転可能であって、前記第1の回転軸に対して平行な第2の回転軸を中心として自転可能な複数の円筒翼と
前記回転部に固定されることで前記第1の回転軸を中心として回転可能であって前記第1の回転軸を中心とする円周上に前記円筒翼を支持する支持部と、
を備え、
前記円筒翼は、
筒状の円筒翼本体と、
前記円筒翼本体に設置される補強部と、
を有し、
前記補強部は、
少なくとも1つの部材で、全体で環状に形成され、前記円筒翼本体の内周に設置される補強部材と、
少なくとも1つの部材で、全体で環状に形成され、前記円筒翼本体の外周に設置される補強補助部材と、
を有する。
The present invention aims to solve the above problems, and provides a Magnus thrust generating device according to one embodiment of the present invention,
A supporting housing;
a rotating unit rotatable about a first rotation axis relative to the support housing;
A plurality of cylindrical blades capable of revolving around the first rotation axis and rotating around a second rotation axis parallel to the first rotation axis ;
a support portion that is fixed to the rotating portion to be rotatable about the first rotation axis and that supports the cylindrical blade on a circumference centered on the first rotation axis;
Equipped with
The cylindrical blade is
A cylindrical blade body,
A reinforcing portion provided on the cylindrical blade body;
having
The reinforcing portion is
A reinforcing member formed in an annular shape as a whole by at least one member and installed on an inner periphery of the cylindrical blade body;
A reinforcing auxiliary member formed in an annular shape as a whole by at least one member and installed on the outer periphery of the cylindrical blade body;
has.

また、本発明の一実施形態に係る風力回転装置、水力回転装置または潮力回転装置は、前記マグナス式推力発生装置を用いたものである。 In addition, a wind-powered rotating device, a hydraulic rotating device, or a tidal rotating device according to one embodiment of the present invention uses the Magnus thrust generating device.

また、本発明の一実施形態に係る風力発電機、水力発電機または潮力発電機は、前記マグナス式推力発生装置を用いたものである。 In addition, a wind power generator, a hydroelectric power generator, or a tidal power generator according to one embodiment of the present invention uses the Magnus thrust generating device.

本発明の一実施形態に係るマグナス式推力発生装置によれば、回転翼本体に設置される補強部を有する。そのため、円筒翼の強度を高めることが可能となる。 The Magnus thrust generating device according to one embodiment of the present invention has a reinforcing part installed on the rotor body. This makes it possible to increase the strength of the cylindrical blade.

本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a vertical axis type Magnus wind power generator 1 according to an embodiment of the present invention. 本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示す正面図である。FIG. 1 is a front view showing an example of a vertical axis type Magnus wind power generator 1 according to an embodiment of the present invention. 本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示す分解正面図である。FIG. 1 is an exploded front view showing an example of a vertical axis type Magnus wind power generator 1 according to an embodiment of the present invention. 本発明の実施形態に係る垂直軸型マグナス式風力発電機1の円筒翼4の一例を示す平面図である。FIG. 2 is a plan view showing an example of a cylindrical blade 4 of the vertical axis type Magnus wind power generator 1 according to the embodiment of the present invention. 本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示すV-V線断面図である。1 is a cross-sectional view taken along line VV, showing an example of a vertical axis type Magnus wind power generator 1 according to an embodiment of the present invention. FIG. 本発明の実施形態に係る円筒翼4の一例を示す断面図である。1 is a cross-sectional view showing an example of a cylindrical blade 4 according to an embodiment of the present invention. 本発明の第1実施形態に係る円筒翼4の補強部44の一例を示す断面図である。2 is a cross-sectional view showing an example of a reinforcing portion 44 of a cylindrical blade 4 according to the first embodiment of the present invention. FIG. 図7におけるVIII-VIII断面図である。8 is a cross-sectional view taken along line VIII-VIII in FIG. 7. 図7におけるA部分の拡大図である。FIG. 8 is an enlarged view of part A in FIG. 7 . 本発明の第2実施形態に係る円筒翼4の補強部44の一例を示す拡大断面図である。6 is an enlarged cross-sectional view showing an example of a reinforcing portion 44 of a cylindrical blade 4 according to a second embodiment of the present invention. FIG. 本発明の第3実施形態に係る円筒翼4の補強部44の一例を示す拡大断面図である。11 is an enlarged cross-sectional view showing an example of a reinforcing portion 44 of a cylindrical blade 4 according to a third embodiment of the present invention. FIG.

以下に本発明の具体的な実施形態を示す。実施形態はあくまで一例であり、この例に限定されるものではない。なお、以下の実施形態では、マグナス式推力発生装置の適用例の1つとして、マグナス式推力発生装置を用いた垂直軸型マグナス式風力発電機1について説明する。 Specific embodiments of the present invention are described below. The embodiments are merely examples, and the present invention is not limited to these examples. In the following embodiment, a vertical axis type Magnus type wind power generator 1 using a Magnus type thrust generating device will be described as one application example of a Magnus type thrust generating device.

図1は、本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示す斜視図である。図2は、本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示す正面図である。図3は、本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示す分解正面図である。図4は、本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示す平面図である。図5は、本発明の実施形態に係る垂直軸型マグナス式風力発電機1の一例を示すV-V線断面図である。 Figure 1 is a perspective view showing an example of a vertical axis type Magnus type wind power generator 1 according to an embodiment of the present invention. Figure 2 is a front view showing an example of a vertical axis type Magnus type wind power generator 1 according to an embodiment of the present invention. Figure 3 is an exploded front view showing an example of a vertical axis type Magnus type wind power generator 1 according to an embodiment of the present invention. Figure 4 is a plan view showing an example of a vertical axis type Magnus type wind power generator 1 according to an embodiment of the present invention. Figure 5 is a V-V line cross-sectional view showing an example of a vertical axis type Magnus type wind power generator 1 according to an embodiment of the present invention.

垂直軸型マグナス式風力発電機1は、設置面Sに対して設置される支持筐体2と、支持筐体2の内部に配置される発電機21及び増速機22と、増速機22を介して発電機21に連結されるとともに、設置面Sに対して垂直な第1の回転軸O1を中心として回転可能な回転部3と、第1の回転軸O1を中心として公転可能であって、第1の回転軸O1に対して平行な第2の回転軸O2を中心として自転可能な複数の円筒翼4と、複数の円筒翼4とともに各組を構成し、各組の円筒翼4の軸方向に沿って長手方向5Lが配置される複数の整流板5及び複数の遮蔽板7と、回転部3に固定されることで第1の回転軸O1を中心として回転可能であって、円筒翼4、整流板5及び遮蔽板7の各組毎に、第1の回転軸O1を中心とする円周C1上に円筒翼4を支持するとともに、円筒翼4が公転するときの進行方向とは反対側に整流板5及び遮蔽板7を支持する支持部6とを備える。 The vertical axis type Magnus wind power generator 1 includes a support housing 2 that is installed on an installation surface S, a generator 21 and a gearbox 22 that are arranged inside the support housing 2, a rotating unit 3 that is connected to the generator 21 via the gearbox 22 and can rotate around a first rotation axis O1 that is perpendicular to the installation surface S, a plurality of cylindrical blades 4 that can revolve around the first rotation axis O1 and rotate around a second rotation axis O2 that is parallel to the first rotation axis O1, a plurality of straightening plates 5 and a plurality of shielding plates 7 that form each group together with the plurality of cylindrical blades 4 and whose longitudinal direction 5L is arranged along the axial direction of the cylindrical blades 4 of each group, and a support unit 6 that is fixed to the rotating unit 3 and can rotate around the first rotation axis O1, and supports the cylindrical blades 4 on a circumference C1 centered on the first rotation axis O1 for each group of cylindrical blades 4, straightening plates 5, and shielding plates 7, and supports the straightening plates 5 and shielding plates 7 on the opposite side to the traveling direction when the cylindrical blades 4 revolve.

なお、本実施形態の説明において、「平行」とは、完全に平行な場合だけでなく、垂直軸型マグナス式風力発電機1の機能が損なわれない程度のずれを許容した略平行な場合も含む。同様に、「垂直」とは、完全に垂直な場合でだけでなく、垂直軸型マグナス式風力発電機1の機能が損なわれない程度のずれを許容した略垂直な場合も含む。また、本実施形態に係る垂直軸型マグナス式風力発電機1は、図1に示すように、2つの円筒翼4と、2つの整流板5とを備え、円筒翼4、整流板5及び遮蔽板7の組数は、2組であるものとして説明する。 In the description of this embodiment, "parallel" does not only mean completely parallel, but also means approximately parallel, allowing for a degree of misalignment that does not impair the function of the vertical-axis Magnus wind power generator 1. Similarly, "vertical" does not only mean completely vertical, but also means approximately vertical, allowing for a degree of misalignment that does not impair the function of the vertical-axis Magnus wind power generator 1. In addition, the vertical-axis Magnus wind power generator 1 according to this embodiment will be described as having two cylindrical blades 4 and two straightening plates 5, as shown in FIG. 1, and the number of sets of cylindrical blades 4, straightening plates 5, and shielding plates 7 is two.

支持筐体2は、第1の回転軸O1と同軸状に配置される円筒状の筐体である。支持筐体2の上部には、その上部から回転部3の上部30を突設させるとともに、第1の回転軸O1が設置面Sに対して垂直となるように、回転部3を軸支する軸受ユニット20を備える。なお、支持筐体2は、トラス状の筐体としてもよい。 The support housing 2 is a cylindrical housing arranged coaxially with the first rotation axis O1. The upper part 30 of the rotating part 3 protrudes from the upper part of the support housing 2, and a bearing unit 20 is provided to support the rotating part 3 so that the first rotation axis O1 is perpendicular to the installation surface S. The support housing 2 may be a truss-shaped housing.

回転部3は、軸受ユニット20に軸支される回転シャフト等で構成されており、軸受ユニット20の上面に対して突設された上部30の周壁部分に支持部6が固定される。 The rotating part 3 is composed of a rotating shaft supported by the bearing unit 20, and the support part 6 is fixed to the peripheral wall of the upper part 30 that protrudes from the upper surface of the bearing unit 20.

発電機21は、増速機22を介して回転部3に連結されており、回転部3が回転する際の回転エネルギーを電気エネルギーに変換することで発電するように構成されている。なお、発電機21は、増速機22を介さずに直接回転部3に連結してもよい。 The generator 21 is connected to the rotating part 3 via the speed-up gear 22, and is configured to generate electricity by converting the rotational energy generated when the rotating part 3 rotates into electrical energy. The generator 21 may also be connected directly to the rotating part 3 without the speed-up gear 22.

垂直軸型マグナス式風力発電機1の定格出力として、例えば、10kw程度を想定する場合には、円筒翼4の外寸は、長さ10m程度、直径1m程度であり、整流板5の外寸は、長さ10m程度、幅1.6m程度、厚さ0.5~3mm程度である。 If the rated output of the Magnus vertical axis wind turbine 1 is assumed to be, for example, about 10 kW, the external dimensions of the cylindrical blades 4 are about 10 m in length and 1 m in diameter, and the external dimensions of the baffle vane 5 are about 10 m in length, 1.6 m in width, and 0.5 to 3 mm in thickness.

複数の円筒翼4は、支持部6により円周C1上に支持されることで、図5に示すように、第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、複数の第2の回転軸O2は、円周C1上で所定の間隔(円筒翼支持間隔)を空けるようにして円周C1上に配置される。本実施形態では、2つの円筒翼4に対する2つの第2の回転軸O2は、第1の回転軸O1を挟んで対向するようにして円周C1上に配置される。 The multiple cylindrical blades 4 are supported on the circumference C1 by the support portion 6, so that, as shown in FIG. 5, on a plane perpendicular to the first rotation axis O1 and the second rotation axis O2, the multiple second rotation axes O2 are arranged on the circumference C1 at a predetermined interval (cylindrical blade support interval) on the circumference C1. In this embodiment, the two second rotation axes O2 for the two cylindrical blades 4 are arranged on the circumference C1 so as to face each other across the first rotation axis O1.

円筒翼4は、円筒状に形成された円筒状の円筒翼本体40を備え、円筒翼本体40は、第2の回転軸O2と平行な円筒翼4の軸方向に対する両端部として、鉛直方向の上側に配置される上端部(一端部)40aと、鉛直方向の下側に配置される下端部(他端部)40bとを備える。また、円筒翼4は、上端部40a及び下端部40bにそれぞれ配置されて、円筒翼4の直径よりも大きな円板状の翼端板41と、第2の回転軸O2を中心として円筒翼4を時計回りR2に回転(自転)させる円筒翼モータ(回転駆動部)42と、円筒翼本体40に連結されて、上端部40a及び下端部40bにおいて第2の回転軸O2と同軸上にそれぞれ配置される上部回転伝達軸部(一端側回転伝達軸部)42a及び下部回転伝達軸部(他端側回転伝達軸部)42bとを備える。 The cylindrical blade 4 includes a cylindrical blade body 40 formed in a cylindrical shape, and the cylindrical blade body 40 includes an upper end (one end) 40a arranged on the upper side in the vertical direction and a lower end (other end) 40b arranged on the lower side in the vertical direction as both ends in the axial direction of the cylindrical blade 4 parallel to the second rotation axis O2. The cylindrical blade 4 also includes a disk-shaped blade end plate 41 arranged at each of the upper end 40a and the lower end 40b and larger than the diameter of the cylindrical blade 4, a cylindrical blade motor (rotation drive unit) 42 that rotates (spins) the cylindrical blade 4 clockwise R2 around the second rotation axis O2, and an upper rotation transmission shaft part (one end side rotation transmission shaft part) 42a and a lower rotation transmission shaft part (other end side rotation transmission shaft part) 42b that are connected to the cylindrical blade body 40 and arranged coaxially with the second rotation axis O2 at the upper end 40a and the lower end 40b, respectively.

整流板5は、平板状に形成されており、整流板5の長手方向5Lに対する両端部として、上端部(一端部)50aと、下端部(他端部)50bとを備え、整流板5の幅方向5Wに対する両縁部として、円筒翼4側に配置されて円筒翼4に近い前端縁部50cと、前端縁部50cとは反対側に配置されて円筒翼4から遠い後端縁部50dとを備える。また、整流板5は、整流板5の板厚方向に対して垂直な表面として、第1の回転軸O1側に配置される内側表面50eと、内側表面50eとは反対側の外側表面50fとを備える。 The straightening vane 5 is formed in a flat plate shape, and has an upper end (one end) 50a and a lower end (the other end) 50b as both ends in the longitudinal direction 5L of the straightening vane 5, and has a front end edge 50c arranged on the cylindrical blade 4 side and close to the cylindrical blade 4, and a rear end edge 50d arranged on the opposite side of the front end edge 50c and far from the cylindrical blade 4 as both edges in the width direction 5W of the straightening vane 5. The straightening vane 5 also has an inner surface 50e arranged on the first rotation axis O1 side and an outer surface 50f opposite the inner surface 50e as surfaces perpendicular to the plate thickness direction of the straightening vane 5.

整流板5は、整流板5の後端縁部50dに、整流板5の上端部50a及び下端部50bに近づくにつれて整流板5の幅が狭くなるテーパ部53を備える。テーパ部53は、直線形状でもよいし、例えば、放物線を描くような曲線形状でもよいし、直線形状と曲線形状とを組み合わせたものでもよい。なお、本実施形態では、整流板5は、整流板5の両端部50a、50bに、同一の直線形状のテーパ部53をそれぞれ備えるが、整流板5は、整流板5の両端部50a、50bに、異なる形状のテーパ部53をそれぞれ備えていてもよいし、上端部50a及び下端部50bのいずれか一方にだけテーパ部53を備えていてもよい。 The straightening plate 5 has a tapered portion 53 at the rear edge 50d of the straightening plate 5, in which the width of the straightening plate 5 narrows as it approaches the upper end 50a and the lower end 50b of the straightening plate 5. The tapered portion 53 may be linear, or may be a curved shape that draws a parabola, or may be a combination of a linear shape and a curved shape. In this embodiment, the straightening plate 5 has tapered portions 53 of the same linear shape at both ends 50a and 50b of the straightening plate 5, but the straightening plate 5 may have tapered portions 53 of different shapes at both ends 50a and 50b of the straightening plate 5, or may have a tapered portion 53 only at either the upper end 50a or the lower end 50b.

遮蔽板7は、整流板5と同様に平板状に形成されており、遮蔽板7の長手方向は、整流板5の長手方向5Lと平行に配置される。遮蔽板7は、遮蔽板7の幅方向に対する両縁部として、整流板5側に配置される基端縁部70aと、基端縁部70aとは反対側の先端縁部70bとを備える。 The shielding plate 7 is formed in a flat plate shape like the straightening plate 5, and the longitudinal direction of the shielding plate 7 is arranged parallel to the longitudinal direction 5L of the straightening plate 5. The shielding plate 7 has, as both edges in the width direction of the shielding plate 7, a base end edge 70a arranged on the straightening plate 5 side, and a tip end edge 70b on the opposite side to the base end edge 70a.

整流板5及び遮蔽板7は、支持部6により支持されることで、図5に示すように、第1の回転軸O1及び第2の回転軸O2に垂直な平面上において、円筒翼4の進行方向とは反対側に配置される。整流板5は、円筒翼4の進行方向とは反対側に伸びるように、前端縁部50c及び後端縁部50dが配置される。遮蔽板7は、整流板5の前端縁部50c側に配置されて、整流板5に対して第1の回転軸O1側(内側表面50e側)に立設するように支持される。このとき、円筒翼4と整流板5の前端縁部50cとの間には隙間が形成されるとともに、円筒翼4と遮蔽板7の先端縁部70bとの間には隙間が形成される。なお、整流板5及び遮蔽板7の具体的構成は後述する。 The straightening plate 5 and the shielding plate 7 are supported by the support 6, and are arranged on the opposite side of the traveling direction of the cylindrical blade 4 on a plane perpendicular to the first rotation axis O1 and the second rotation axis O2, as shown in FIG. 5. The straightening plate 5 is arranged so that the front end edge 50c and the rear end edge 50d extend in the opposite direction to the traveling direction of the cylindrical blade 4. The shielding plate 7 is arranged on the front end edge 50c side of the straightening plate 5 and is supported so as to stand on the first rotation axis O1 side (inner surface 50e side) with respect to the straightening plate 5. At this time, a gap is formed between the cylindrical blade 4 and the front end edge 50c of the straightening plate 5, and a gap is formed between the cylindrical blade 4 and the tip edge 70b of the shielding plate 7. The specific configuration of the straightening plate 5 and the shielding plate 7 will be described later.

支持部6は、円筒翼4、整流板5及び遮蔽板7の各組毎に、第1の回転軸O1を中心とする円周C1上に円筒翼4を配置するように、軸方向に対する円筒翼4の両端部40a、40bを軸支するとともに、円筒翼4が第1の回転軸O1を中心として時計回りR1に公転するときの進行方向とは反対側に整流板5及び遮蔽板7を配置するように、整流板5及び遮蔽板7を支持する。 For each set of cylindrical blade 4, baffle plate 5, and shield plate 7, the support portion 6 supports both ends 40a, 40b of the cylindrical blade 4 in the axial direction so that the cylindrical blade 4 is positioned on a circumference C1 centered on the first rotation axis O1, and supports the baffle plate 5 and shield plate 7 so that the baffle plate 5 and shield plate 7 are positioned on the opposite side to the direction of travel when the cylindrical blade 4 revolves clockwise R1 around the first rotation axis O1.

支持部6が、円周C1上に円筒翼4を支持する態様としては、支持部6が、図5に示すように、円筒翼4の中心である第2の回転軸O2と円周C1とが重なった状態で円筒翼4を支持する場合だけでなく、第2の回転軸O2と円周C1との間には、垂直軸型マグナス式風力発電機1の機能が損なわれない程度のずれが許容されるものであり、支持部6が、例えば、円筒翼4の円形状の断面と円周C1とが重なった状態で円筒翼4を支持する場合も含む。なお、支持部6の具体的構成は後述する。 The manner in which the support part 6 supports the cylindrical blade 4 on the circumference C1 includes not only the case in which the support part 6 supports the cylindrical blade 4 with the second rotation axis O2, which is the center of the cylindrical blade 4, overlapping with the circumference C1 as shown in FIG. 5, but also the case in which a misalignment between the second rotation axis O2 and the circumference C1 is permitted to an extent that does not impair the function of the vertical axis type Magnus wind power generator 1, and the support part 6 supports the cylindrical blade 4 with, for example, the circular cross section of the cylindrical blade 4 overlapping with the circumference C1. The specific configuration of the support part 6 will be described later.

垂直軸型マグナス式風力発電機1は、円筒翼モータ42により第2の回転軸O2を中心として円筒翼4を時計回りR2に回転(自転)させた状態において、所定の方向から風(空気流)を受けると、円筒翼4にマグナス力が発生する。そして、円筒翼4に発生したマグナス力は、第1の回転軸O1を中心として円筒翼4を時計回りR1に公転させる方向に作用する。 When the vertical axis type Magnus wind power generator 1 receives wind (air flow) from a specific direction while the cylindrical blade motor 42 is rotating (spinning) the cylindrical blade 4 clockwise R2 around the second rotation axis O2, a Magnus force is generated in the cylindrical blade 4. The Magnus force generated in the cylindrical blade 4 acts in a direction that causes the cylindrical blade 4 to revolve clockwise R1 around the first rotation axis O1.

このとき、整流板5は、風向に対して円筒翼4が存在する位置に応じて、マグナス力の大きさを制御する。具体的には、円筒翼4が、風上側に存在する場合には、整流板5は、風向と円筒翼4の自転方向とが逆方向になる領域(流れ減速側)に存在する。そのため、整流板5は、流れ減速側における風の流れを阻害することになるが、円筒翼4に発生するマグナス力を大きく低下させることにはならないため、マグナス力は、円筒翼4を公転させる回転力として作用する。 At this time, the straightening vane 5 controls the magnitude of the Magnus force depending on the position of the cylindrical blade 4 relative to the wind direction. Specifically, when the cylindrical blade 4 is on the upwind side, the straightening vane 5 is in an area (flow deceleration side) where the wind direction and the rotation direction of the cylindrical blade 4 are opposite. Therefore, although the straightening vane 5 obstructs the wind flow on the flow deceleration side, it does not significantly reduce the Magnus force generated in the cylindrical blade 4, so the Magnus force acts as a rotational force that revolves the cylindrical blade 4.

一方、円筒翼4が、風下側に存在する場合には、整流板5は、風向と円筒翼4の自転方向とが一致する領域(流れ加速側)に存在する。そのため、整流板5は、流れ加速側における風の流れを阻害することにより、円筒翼4に発生するマグナス力を低下させるため、マグナス力が、円筒翼4を公転させる回転力を打ち消すように作用することを抑制する。 On the other hand, when the cylindrical blade 4 is on the downwind side, the baffle vane 5 is in the area (flow acceleration side) where the wind direction and the rotation direction of the cylindrical blade 4 coincide. Therefore, the baffle vane 5 reduces the Magnus force generated in the cylindrical blade 4 by obstructing the wind flow on the flow acceleration side, thereby preventing the Magnus force from acting to counteract the rotational force that revolves the cylindrical blade 4.

以上のように、円筒翼4が、整流板5により円筒翼4に発生するマグナス力が制御された状態で時計回りR1に公転することにより、回転部3を時計回りに回転させて、回転部3に連結された発電機21で発電する。 As described above, the cylindrical blade 4 revolves clockwise R1 while the Magnus force generated on the cylindrical blade 4 is controlled by the baffle vane 5, causing the rotating part 3 to rotate clockwise, generating electricity with the generator 21 connected to the rotating part 3.

支持部6は、整流板5に対して第1の回転軸O1側に配置されて、長手方向5Lに対する整流板5の両端部50a、50b間に亘って整流板5の長手方向5Lに沿うように整流板5及び遮蔽板7を支持する整流板支持部61と、整流板支持部61の上端部(一端部)610aと回転部3とを連結する第1の連結アーム部62と、整流板支持部61の下端部(他端部)610bと回転部3とを連結する第2の連結アーム部63と、円筒翼4の上端部40a側を軸支するとともに、第1の連結アーム部62に連結される第1の円筒翼支持部(一端側支持部)64と、円筒翼4の下端部40b側を軸支するとともに、第2の連結アーム部63に連結される第2の円筒翼支持部(他端側支持部)65とを、円筒翼4、整流板5及び遮蔽板7の各組毎(本実施形態では2組)に備える。 The support portion 6 is arranged on the first rotation axis O1 side with respect to the straightening plate 5, and includes a straightening plate support portion 61 that supports the straightening plate 5 and the shielding plate 7 along the longitudinal direction 5L of the straightening plate 5 between both ends 50a, 50b of the straightening plate 5 in the longitudinal direction 5L, a first connecting arm portion 62 that connects an upper end portion (one end portion) 610a of the straightening plate support portion 61 to the rotating portion 3, and a lower end portion (the other end portion) 610b of the straightening plate support portion 61 to the rotating portion 3. A second connecting arm 63 that connects the first connecting arm 62 and the second connecting arm 63 is provided for each set (two sets in this embodiment) of the cylindrical wing 4, the straightening plate 5, and the shielding plate 7. A first cylindrical wing support part (one end support part) 64 that supports the upper end 40a of the cylindrical wing 4 and is connected to the first connecting arm 62 and a second cylindrical wing support part (other end support part) 65 that supports the lower end 40b of the cylindrical wing 4 and is connected to the second connecting arm 63 are provided for each set (two sets in this embodiment) of the cylindrical wing 4, the straightening plate 5, and the shielding plate 7.

整流板支持部61は、両端部50a、50b間に亘って整流板5の長手方向5Lに沿うように配置されて、整流板5を支持する整流板支持アーム部610と、整流板5の長手方向5Lに対して所定の間隔(補強間隔)で配置されるとともに、整流板5の幅方向5Wに対する整流板5の両縁部50c、50d間に亘って長手方向5Lに対して所定の角度(本実施形態では直角)を有するように配置されて、整流板5及び遮蔽板7を支持する複数の整流板補強部材611とを備える。 The straightening plate support portion 61 is arranged along the longitudinal direction 5L of the straightening plate 5 between both ends 50a, 50b and includes a straightening plate support arm portion 610 that supports the straightening plate 5, and a plurality of straightening plate reinforcing members 611 that are arranged at a predetermined interval (reinforcement interval) with respect to the longitudinal direction 5L of the straightening plate 5 and at a predetermined angle (right angle in this embodiment) with respect to the longitudinal direction 5L between both edge portions 50c, 50d of the straightening plate 5 in the width direction 5W of the straightening plate 5, and support the straightening plate 5 and the shielding plate 7.

第1の円筒翼支持部64は、円筒翼4の上端部40a側において円筒翼4の軸心を揺動可能な状態で軸支する揺動軸支構造部640と、第1の連結アーム部62の先端部620bと揺動軸支構造部640とを連結する第1の円筒翼支持アーム部641と、第1の連結アーム部62の屈曲部620cと揺動軸支構造部640とを連結する第2の円筒翼支持アーム部642とを備える。揺動軸支構造部640は、その内部に、円筒翼4の上端部40aに設けられた回転軸を軸支する第1の軸受(不図示)等を備える。 The first cylindrical wing support section 64 includes an oscillating shaft support structure 640 that supports the axis of the cylindrical wing 4 in a swingable state at the upper end 40a side of the cylindrical wing 4, a first cylindrical wing support arm section 641 that connects the tip end 620b of the first connecting arm section 62 to the oscillating shaft support structure 640, and a second cylindrical wing support arm section 642 that connects the bent section 620c of the first connecting arm section 62 to the oscillating shaft support structure 640. The oscillating shaft support structure section 640 includes a first bearing (not shown) that supports a rotating shaft provided at the upper end 40a of the cylindrical wing 4, etc.

第2の円筒翼支持部65は、円筒翼4の下端部40b側において円筒翼4の軸心を固定した状態で軸支するとともに、円筒翼モータ42を支持する固定軸支構造部650と、第2の連結アーム部63の先端部630bと固定軸支構造部650とを連結する第1の円筒翼支持アーム部651と、第2の連結アーム部63の屈曲部630cと固定軸支構造部650とを連結する第2の円筒翼支持アーム部652とを備える。固定軸支構造部650は、その内部に、円筒翼4の下端部40bに設けられた回転軸を軸支する第2の軸受(不図示)等を備えるとともに、円筒翼モータ42の回転駆動力が、その円筒翼4の回転軸に伝達されるように、円筒翼モータ42を支持する。 The second cylindrical wing support section 65 is provided with a fixed support structure 650 that supports the cylindrical wing motor 42 while fixing the axis of the cylindrical wing 4 at the lower end 40b side of the cylindrical wing 4, a first cylindrical wing support arm section 651 that connects the tip 630b of the second connecting arm section 63 to the fixed support structure section 650, and a second cylindrical wing support arm section 652 that connects the bent section 630c of the second connecting arm section 63 to the fixed support structure section 650. The fixed support structure section 650 is provided with a second bearing (not shown) that supports the rotating shaft provided at the lower end 40b of the cylindrical wing 4, and supports the cylindrical wing motor 42 so that the rotational driving force of the cylindrical wing motor 42 is transmitted to the rotating shaft of the cylindrical wing 4.

また、支持部6は、整流板5の長手方向5Lに対する整流板支持アーム部610の中間部610cと、第1の連結アーム部62の回転部3側の固定端部620a及び第2の連結アーム部63の回転部3側の固定端部630aが隣接する隣接部661とを連結する第3の連結アーム部66を、円筒翼4、整流板5及び遮蔽板7の各組毎(本実施形態では2組)にさらに備える。 The support section 6 further includes a third connecting arm section 66 that connects the intermediate section 610c of the baffle support arm section 610 relative to the longitudinal direction 5L of the baffle 5 to the adjacent section 661 adjacent to the fixed end section 620a on the rotating section 3 side of the first connecting arm section 62 and the fixed end section 630a on the rotating section 3 side of the second connecting arm section 63, for each set (two sets in this embodiment) of the cylindrical blade 4, the baffle 5, and the shielding plate 7.

支持部6が備える各アーム部(整流板支持アーム部610、第1の連結アーム部62、第2の連結アーム部63、第1の円筒翼支持アーム部641、651、第2の円筒翼支持アーム部642、652、及び、第3の連結アーム部66)は、例えば、スチール、ステンレス、アルミニウム、アルミニウム合金、チタニウム、チタニウム合金等の金属材料や、炭素繊維強化樹脂、ガラス繊維強化樹脂等の樹脂材料を用いて、円形、楕円形、多角形等の任意の断面形状を有する管状部材、L型、H型、I型等の任意の断面形状を有する板状部材、又は、ワイヤー部材として形成されている。なお、支持部6が備える各アーム部は、各アーム部が配置される場所や各部が支持する荷重に応じて、各部の外形形状、断面形状、断面積、及び、材料等を変更するようにしてもよい。 Each arm part (baffle support arm part 610, first connecting arm part 62, second connecting arm part 63, first cylindrical wing support arm part 641, 651, second cylindrical wing support arm part 642, 652, and third connecting arm part 66) of the support part 6 is formed as a tubular member having any cross-sectional shape such as a circle, an ellipse, a polygon, or a plate-like member having any cross-sectional shape such as an L-shape, an H-shape, an I-shape, or a wire member using, for example, a metal material such as steel, stainless steel, aluminum, an aluminum alloy, titanium, or a titanium alloy, or a resin material such as a carbon fiber reinforced resin or a glass fiber reinforced resin. Note that the outer shape, cross-sectional shape, cross-sectional area, and material of each arm part of the support part 6 may be changed depending on the location where each arm part is arranged and the load supported by each part.

また、支持部6が備える各アーム部は、複数のアーム部が一体的に形成された複数の複合アーム部材により構成されており、各複合アーム部材間は、任意の接合方法(溶接、接着、ねじ固定、圧入、リベット、ピン結合、継手等)による接合部を介して接合される。 In addition, each arm section of the support section 6 is composed of multiple composite arm members in which multiple arm sections are integrally formed, and each composite arm member is joined via a joint that is formed by any joining method (welding, adhesive bonding, screw fixing, press fitting, rivets, pin connections, joints, etc.).

本実施形態では、例えば、第1の連結アーム部62、第2の連結アーム部63、第1の円筒翼支持アーム部641、651及び第2の円筒翼支持アーム部642、652が一体的に形成されることで、第1の複合アーム部材60Aを構成する。また、整流板支持アーム部610及び第3の連結アーム部66が一体的に形成されることで、第2の複合アーム部材60Bを構成する。そして、第1の複合アーム部材60Aは、接合部600A、600Bを介して回転部3に接合される。第2の複合アーム部材60Bは、接合部601A~601Cを介して第1の複合アーム部材60Aに接合される。 In this embodiment, for example, the first connecting arm section 62, the second connecting arm section 63, the first cylindrical wing support arm sections 641, 651, and the second cylindrical wing support arm sections 642, 652 are integrally formed to constitute the first composite arm member 60A. The baffle support arm section 610 and the third connecting arm section 66 are integrally formed to constitute the second composite arm member 60B. The first composite arm member 60A is joined to the rotating section 3 via joints 600A and 600B. The second composite arm member 60B is joined to the first composite arm member 60A via joints 601A to 601C.

図6は、本発明の実施形態に係る円筒翼4の一例を示す断面図である。 Figure 6 is a cross-sectional view showing an example of a cylindrical blade 4 according to an embodiment of the present invention.

円筒翼4は、円筒状の円筒翼本体40と、円筒翼4の上端部40a及び下端部40bにそれぞれ配置されて、円筒翼4の直径よりも大きな円板状の翼端板41と、を備える。上端固定部45及び下端固定部46は、連結部43で連結される。また、円筒翼本体40は、補強部44で補強される。 The cylindrical wing 4 comprises a cylindrical wing body 40 and disk-shaped wing end plates 41 that are arranged at the upper end 40a and lower end 40b of the cylindrical wing 4 and are larger in diameter than the cylindrical wing 4. The upper end fixing portion 45 and the lower end fixing portion 46 are connected by a connecting portion 43. The cylindrical wing body 40 is also reinforced by a reinforcing portion 44.

連結部43は、引っ張り強度が大きく、復元力に優れた材料の連結部材431を少なくとも含む。例えば、連結部材431の材料は、炭素鋼、高強度鋼、ステンレス等の金属材料、又は、炭素繊維強化樹脂、ガラス繊維強化樹脂、アラミド繊維等の樹脂材料等が使われる。特に、炭素繊維強化プラスチックは、軽量で好ましい。連結部材431は、円形、楕円形、多角形等の任意の断面形状を有する線状の部材であって、高強度の一本のワイヤでもよく、複数本の小径のワイヤを螺旋巻きにより合わせ、太い径のケーブル状に形成したものでよい。 The connecting portion 43 includes at least a connecting member 431 made of a material with high tensile strength and excellent resilience. For example, the material of the connecting member 431 may be a metal material such as carbon steel, high-strength steel, or stainless steel, or a resin material such as carbon fiber reinforced resin, glass fiber reinforced resin, or aramid fiber. In particular, carbon fiber reinforced plastic is preferable because of its light weight. The connecting member 431 is a linear member having any cross-sectional shape such as a circle, ellipse, or polygon, and may be a single high-strength wire, or may be a thick-diameter cable made by winding multiple small-diameter wires together in a spiral.

連結部材431は、円筒翼体4の第2の回転軸O2上に設置されると好ましい。なお、連結部材431を厳密に第2の回転軸O2に重ねて設置することは困難なので、少しの誤差、例えば、連結部材431の直径程度の誤差であれば、第2の回転軸O2上に設置されているとみなしてよい。 The connecting member 431 is preferably installed on the second rotation axis O2 of the cylindrical blade body 4. Since it is difficult to install the connecting member 431 exactly on the second rotation axis O2, it may be considered that the connecting member 431 is installed on the second rotation axis O2 if there is a small error, for example, an error of about the diameter of the connecting member 431.

補強部44は、例えば、スチール、ステンレス、アルミニウム、アルミニウム合金、チタニウム、チタニウム合金等の金属材料や、炭素繊維強化樹脂、ガラス繊維強化樹脂等の樹脂材料が使用される。補強部44の断面は、L型、H型、I型、T型、Z型等の任意の形状が好ましい。 The reinforcing portion 44 is made of, for example, a metal material such as steel, stainless steel, aluminum, aluminum alloy, titanium, or titanium alloy, or a resin material such as carbon fiber reinforced resin or glass fiber reinforced resin. The cross section of the reinforcing portion 44 is preferably an arbitrary shape such as an L-shape, H-shape, I-shape, T-shape, or Z-shape.

補強部44は、円筒翼本体40に少なくとも1つ設置され、少なくとも1つは第2の回転軸O2方向で円筒翼本体40の中央に設置されることが好ましい。なお、補強部44を厳密に円筒翼本体40の中央に設置することは困難なので、例えば、円筒翼40の第2の回転軸O2方向の長さに対して10%程度の誤差であれば、第2の回転軸O2方向で円筒翼本体40の中央に設置されているとみなしてよい。 At least one reinforcing section 44 is provided on the cylindrical blade body 40, and at least one is preferably provided at the center of the cylindrical blade body 40 in the direction of the second rotation axis O2. Since it is difficult to provide the reinforcing section 44 exactly at the center of the cylindrical blade body 40, for example, if there is an error of about 10% with respect to the length of the cylindrical blade 40 in the direction of the second rotation axis O2, it may be considered that the reinforcing section 44 is provided at the center of the cylindrical blade body 40 in the direction of the second rotation axis O2.

本実施形態の補強部44は、円筒翼本体40の第2の回転軸O2方向で等間隔に3つ設置されているが、補強部44は3つに限らず、少なくとも1つ設置すればよい。なお、補強部44の少なくとも1つは第2の回転軸O2方向で円筒翼本体40の中央に設置されることが好ましい。 In this embodiment, three reinforcing parts 44 are installed at equal intervals in the direction of the second rotation axis O2 of the cylindrical blade main body 40, but the number of reinforcing parts 44 is not limited to three, and at least one may be installed. It is preferable that at least one of the reinforcing parts 44 is installed in the center of the cylindrical blade main body 40 in the direction of the second rotation axis O2.

円筒翼本体40は第2の回転軸O2方向の中央付近が最も径方向に座屈しやすいため、補強部44を円筒翼本体40の中央に設置することにより、円筒翼本体40の強度を高めることができる。さらに、補強部44を円筒翼本体40の中央に設置することにより、円筒翼4の共振周波数を大きくすることができるので、破損の原因となる異常振動が起こりにくくなる。したがって、補強部44の数は、奇数が好ましい。なお、補強部44を複数設置する場合、設置場所によって異なる形状にしてもよい。 Since the cylindrical blade body 40 is most susceptible to radial buckling near the center in the direction of the second rotation axis O2, the strength of the cylindrical blade body 40 can be increased by placing the reinforcing part 44 at the center of the cylindrical blade body 40. Furthermore, by placing the reinforcing part 44 at the center of the cylindrical blade body 40, the resonant frequency of the cylindrical blade 4 can be increased, making it less likely that abnormal vibrations that could cause damage will occur. Therefore, it is preferable that the number of reinforcing parts 44 is an odd number. Note that when multiple reinforcing parts 44 are placed, they may be shaped differently depending on the installation location.

補強部44を設置することによって、円筒翼本体40の厚さを大きくすることなく、強度を高めることができる。また、複数の補強部44を設置することによって、円筒翼本体40の強度をより高めることができる。さらに、複数の補強部44を等間隔に設置することによって、円筒翼本体40の強度をより高めることができる。 By providing the reinforcing parts 44, the strength of the cylindrical blade body 40 can be increased without increasing the thickness. Furthermore, by providing multiple reinforcing parts 44, the strength of the cylindrical blade body 40 can be further increased. Furthermore, by providing multiple reinforcing parts 44 at equal intervals, the strength of the cylindrical blade body 40 can be further increased.

補強部44の設置により、円筒翼本体40の厚さが小さくても強度を高めることができる。したがって、円筒翼本体40の厚さを大きくして強度を高める場合よりも、円筒翼本体40の重量や慣性モーメントの増加を最小限にとどめながら強度を高めることができ、円筒翼4を円滑に回転させることができる。また、円筒翼4の共振周波数が大きくなることで、破損の原因となる異常振動が起こりにくくなる。補強部44を複数設置する場合には、奇数個でも偶数個でもよい。 By installing the reinforcing parts 44, the strength of the cylindrical blade main body 40 can be increased even if the thickness of the cylindrical blade main body 40 is small. Therefore, compared to increasing the thickness of the cylindrical blade main body 40 to increase the strength, it is possible to increase the strength while minimizing the increase in the weight and moment of inertia of the cylindrical blade main body 40, and the cylindrical blade 4 can rotate smoothly. In addition, by increasing the resonant frequency of the cylindrical blade 4, abnormal vibrations that can cause damage are less likely to occur. When installing multiple reinforcing parts 44, either an odd number or an even number may be used.

図7は、本発明の第1実施形態に係る円筒翼4の補強部44の一例を示す断面図である。図8は、図7におけるVIII-VIII断面図である。図9は、図7におけるA部分の拡大図である。 Figure 7 is a cross-sectional view showing an example of a reinforcing portion 44 of a cylindrical blade 4 according to the first embodiment of the present invention. Figure 8 is a cross-sectional view taken along line VIII-VIII in Figure 7. Figure 9 is an enlarged view of part A in Figure 7.

補強部44は、円筒翼本体40の内周に設置される補強部材441と、円筒翼本体40の外周に設置される補強補助部材442と、を有する。なお、補強補助部材442は、設置しなくてもよい。第1実施形態の補強部材441は、周方向に等間隔に並んだ3つの部材から全体で環状に形成される。なお、補強部材441は、少なくとも1つの部材で環状に形成すればよい。 The reinforcing portion 44 has a reinforcing member 441 installed on the inner circumference of the cylindrical blade main body 40, and a reinforcing auxiliary member 442 installed on the outer circumference of the cylindrical blade main body 40. Note that the reinforcing auxiliary member 442 does not have to be installed. The reinforcing member 441 in the first embodiment is formed in a ring shape as a whole from three members arranged at equal intervals in the circumferential direction. Note that it is sufficient that the reinforcing member 441 is formed in a ring shape from at least one member.

第1実施形態の補強部材441は、円筒翼本体40の内周に取り付けられる取付基部441aと、取付基部441aの一端から内周側に延びるフランジ部441bと、フランジ部441bの内周側から取付部441aとは反対の第2の回転軸O2と平行な方向に延びる延長部441cと、フランジ部441bの周方向の端部から取付基部441aと同じ方向に延びる接続部441dと、を有する。 The reinforcing member 441 of the first embodiment has a mounting base 441a attached to the inner circumference of the cylindrical blade main body 40, a flange portion 441b extending from one end of the mounting base 441a toward the inner circumference, an extension portion 441c extending from the inner circumference side of the flange portion 441b in a direction parallel to the second rotation axis O2 opposite to the mounting portion 441a, and a connection portion 441d extending from the circumferential end of the flange portion 441b in the same direction as the mounting base 441a.

取付基部441aは、円筒翼本体40の内周に、ボルト、リベット、接着、溶接、もしくはそれらの組み合わせにより取り付けられる。第1実施形態の補強部44は、取付基部441aと補強補助部材442とで円筒翼本体40を挟んでボルトとナットで取り付けられている。第1実施形態の補強補助部材442は、周方向に等間隔に並んだ3つの部材から全体で環状に形成される。なお、補強部材補助442は、少なくとも1つの部材で環状に形成すればよい。 The mounting base 441a is attached to the inner circumference of the cylindrical blade main body 40 by bolts, rivets, adhesives, welding, or a combination of these. The reinforcing part 44 in the first embodiment is attached by bolts and nuts, with the mounting base 441a and the reinforcing auxiliary member 442 sandwiching the cylindrical blade main body 40. The reinforcing auxiliary member 442 in the first embodiment is formed into a ring shape as a whole from three members arranged at equal intervals in the circumferential direction. Note that the reinforcing auxiliary member 442 only needs to be formed into a ring shape from at least one member.

フランジ部441bは、取付基部441aの一端から内周側に突出して延びる。したがって、補強部材441の強度を高めることができる。また、延長部441cは、フランジ部441bの内周側から取付部441aとは反対の第2の回転軸O2と平行な方向に延びる。したがって、補強部材441の強度をより高めることができる。 The flange portion 441b extends from one end of the mounting base 441a toward the inner periphery. This increases the strength of the reinforcing member 441. The extension portion 441c extends from the inner periphery of the flange portion 441b in a direction parallel to the second rotation axis O2, opposite the mounting portion 441a. This increases the strength of the reinforcing member 441.

補強部材441は、取付基部441aからフランジ部441bの一部にかけて、複数の切欠き441eが形成されている。切欠き441eを形成することによって、環状に形成したときの歪みが少なくなり、補強部材441は、円筒翼本体40の内周に的確に取り付けられる。また、円筒翼本体40と補強部材441の材料が異なる場合には熱膨張係数の差によって生じる熱応力を緩和することができる。複数の切欠き441eは、等間隔であると、歪みがより少なくなり、より的確に取り付けられるので、好ましい。なお、複数の切欠き441eの先端は穴加工等の応力集中防止部441fを設けることが好ましい。 The reinforcing member 441 has multiple notches 441e formed from the mounting base 441a to a part of the flange 441b. By forming the notches 441e, distortion when formed into a ring is reduced, and the reinforcing member 441 can be attached accurately to the inner circumference of the cylindrical blade main body 40. In addition, if the cylindrical blade main body 40 and the reinforcing member 441 are made of different materials, thermal stress caused by the difference in thermal expansion coefficients can be alleviated. It is preferable that the multiple notches 441e are equally spaced, as this reduces distortion and allows for more accurate attachment. In addition, it is preferable to provide a stress concentration prevention portion 441f such as a hole at the tip of the multiple notches 441e.

接続部441dは、補強部材441が複数で形成される場合に、隣り合うフランジ部441bの周方向の端部を接続する部分である。第1実施形態の接続部441dは、ボルトとナットによって接続される。なお、図7では二組のボルトとナット等の結合部材441gによって接続されているが、少なくとも一組の結合部材441gによって接続してもよい。ただし、複数組の方が、結合部材441gを中心に回転することなく、安定して接続することができる。また、接続部441dは、リベット、接着又は溶接、もしくはそれらの組み合わせ等によって接続されてもよい。 The connection portion 441d is a portion that connects the circumferential ends of adjacent flange portions 441b when the reinforcing member 441 is formed in multiple pieces. The connection portion 441d in the first embodiment is connected by a bolt and a nut. Note that while FIG. 7 shows the connection by two sets of connecting members 441g such as a bolt and a nut, the connection may be by at least one set of connecting members 441g. However, multiple sets can provide a stable connection without rotating around the connecting member 441g. The connection portion 441d may also be connected by riveting, gluing, welding, or a combination thereof.

このように、円筒翼4は、補強部44を設置することによって、円筒翼本体40の厚さが小さくても強度を高めることができるので、円筒翼本体40の厚さを大きくして強度を高める場合よりも円筒翼4の重量や慣性モーメントが小さくなり、円筒翼4を円滑に回転させることができる。また、円筒翼4の共振周波数が大きくなることで、破損の原因となる異常振動が起こりにくくなる。 In this way, by providing the reinforcing portion 44, the strength of the cylindrical wing 4 can be increased even if the thickness of the cylindrical wing main body 40 is small, so the weight and moment of inertia of the cylindrical wing 4 are smaller than when the thickness of the cylindrical wing main body 40 is increased to increase the strength, and the cylindrical wing 4 can rotate smoothly. In addition, by increasing the resonant frequency of the cylindrical wing 4, abnormal vibrations that could cause damage are less likely to occur.

図10は、本発明の第2実施形態に係る円筒翼4の補強部44の一例を示す拡大断面図である。 Figure 10 is an enlarged cross-sectional view showing an example of a reinforcing portion 44 of a cylindrical blade 4 according to a second embodiment of the present invention.

第2実施形態の補強部材441は、炭素繊維強化樹脂、ガラス繊維強化樹脂等の樹脂材料を用いて、一体の環状に形成される。第2実施形態の補強部材441は、円筒翼本体40の内周に取り付けられる取付基部441aと、取付基部441aのから内周側に延びるフランジ部441bと、を有する。 The reinforcing member 441 of the second embodiment is formed into an integral ring shape using a resin material such as carbon fiber reinforced resin or glass fiber reinforced resin. The reinforcing member 441 of the second embodiment has an attachment base 441a that is attached to the inner circumference of the cylindrical blade main body 40, and a flange portion 441b that extends from the attachment base 441a to the inner circumference side.

第2実施形態の補強部44は、取付基部441aが円筒翼本体40に接着によって取り付けられている。取付基部441aの内周側と円筒翼本体40を接続する補強補助部材442をさらに設けてもよい。 In the second embodiment, the reinforcing portion 44 has an attachment base 441a attached to the cylindrical blade body 40 by adhesive. A reinforcing auxiliary member 442 may be further provided to connect the inner periphery of the attachment base 441a to the cylindrical blade body 40.

このように、第2実施形態の補強部44は、円筒翼本体40の外周に補強補助部材442を設置しないので、円筒翼4の回転時の空気抵抗を減らすことができる。また、第2実施形態の補強部材441は、1つの部材で環状に形成されるので、円筒翼4の部品点数が少なくなり、軽量化することができる。 In this way, the reinforcing portion 44 of the second embodiment does not have a reinforcing auxiliary member 442 installed on the outer periphery of the cylindrical blade main body 40, so that the air resistance during rotation of the cylindrical blade 4 can be reduced. In addition, the reinforcing member 441 of the second embodiment is formed in a ring shape from a single member, so that the number of parts of the cylindrical blade 4 can be reduced, and the weight can be reduced.

なお、第2実施形態の補強部材441は、第1実施形態と同様に複数の切欠き441eが形成されてもよい。また、第2実施形態の補強部材441は、複数の部材から形成されてもよい。この場合、第2実施形態の補強部材441は、隣り合う部材を接続する接続部441dを形成してもよい。 The reinforcing member 441 of the second embodiment may have a plurality of notches 441e formed therein, as in the first embodiment. The reinforcing member 441 of the second embodiment may also be formed from a plurality of members. In this case, the reinforcing member 441 of the second embodiment may have a connection portion 441d formed therein that connects adjacent members.

図11は、本発明の第3実施形態に係る円筒翼4の補強部44の一例を示す拡大断面図である。 Figure 11 is an enlarged cross-sectional view showing an example of a reinforcing portion 44 of a cylindrical blade 4 according to a third embodiment of the present invention.

第3実施形態の補強部材441は、円筒翼本体40の内周に取り付けられる取付基部441aと、取付基部441aの上下端から内周側に延びるフランジ部441bと、を有する。すなわち、第3実施形態の補強部材441の断面は、内側に開口を向けた凹状又はC字状に形成される。その他の構成は、第1実施形態と同様である。 The reinforcing member 441 of the third embodiment has a mounting base 441a that is attached to the inner circumference of the cylindrical blade main body 40, and a flange portion 441b that extends from the upper and lower ends of the mounting base 441a toward the inner circumference. That is, the cross section of the reinforcing member 441 of the third embodiment is formed into a concave or C-shape with an opening facing inward. The other configurations are the same as those of the first embodiment.

このように、第3実施形態の補強部材441は、内側に開口を向けた凹状又はC字状に断面を形成するので、補強部材441自体の強度を高めることができる。 In this way, the reinforcing member 441 of the third embodiment has a concave or C-shaped cross section with an opening facing inward, which increases the strength of the reinforcing member 441 itself.

(他の実施形態)
上記のように、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で適宜変更可能である。
Other Embodiments
As described above, the embodiment of the present invention has been described, but the present invention is not limited to the above embodiment, and can be modified as appropriate without departing from the technical concept of the present invention.

例えば、上記実施形態では、円筒翼4が、第1の回転軸O1を中心として時計回りR1に公転するものとして説明したが、反時計回りに公転するようにしてもよい。その場合には、円筒翼4が自転する方向を時計回りR2から反時計回りに変更するとともに、それに合わせて整流板5の配置を変更すればよい。 For example, in the above embodiment, the cylindrical blade 4 is described as revolving clockwise R1 around the first rotation axis O1, but it may also revolve counterclockwise. In that case, the direction in which the cylindrical blade 4 rotates is changed from clockwise R2 to counterclockwise, and the arrangement of the baffle vane 5 is changed accordingly.

また、上記実施形態では、円筒翼4、整流板5及び遮蔽板7の組数は、2組であるものとして説明したが、円筒翼4、整流板5及び遮蔽板7の組数は適宜変更してもよく、垂直軸型マグナス式風力発電機1は、3組以上の円筒翼4、整流板5及び遮蔽板7を備えるようにしてもよい。 In addition, in the above embodiment, the number of sets of cylindrical blades 4, straightening plates 5, and shielding plates 7 is described as two, but the number of sets of cylindrical blades 4, straightening plates 5, and shielding plates 7 may be changed as appropriate, and the vertical axis type Magnus wind power generator 1 may be provided with three or more sets of cylindrical blades 4, straightening plates 5, and shielding plates 7.

また、上記実施形態では、第1の回転軸O1及び第2の回転軸O2を、設置面Sに対して垂直に配置した、すなわち、鉛直方向に対して平行に配置したものとして説明したが、鉛直方向に対して斜めに配置してもよいし、鉛直方向に対して直角に、すなわち、水平方向に配置してもよい。 In the above embodiment, the first rotation axis O1 and the second rotation axis O2 are described as being arranged perpendicular to the installation surface S, i.e., parallel to the vertical direction, but they may be arranged diagonally to the vertical direction or perpendicular to the vertical direction, i.e., horizontally.

また、上記実施形態では、マグナス式推力発生装置の適用例の1つとして、マグナス式推力発生装置を用いた垂直軸型マグナス式風力発電機1について説明したが、回転部3を発電機21に連結することに代えて、回転部3をポンプ等の回転機械に連結することにより、マグナス式推力発生装置を用いた風力回転装置としてもよい。 In the above embodiment, a vertical axis type Magnus wind power generator 1 using a Magnus thrust generator was described as one application example of a Magnus thrust generator. However, instead of connecting the rotating part 3 to the generator 21, the rotating part 3 may be connected to a rotating machine such as a pump to create a wind power rotating device using a Magnus thrust generator.

また、上記実施形態では、マグナス式推力発生装置の適用例の1つとして、マグナス式推力発生装置を用いた垂直軸型マグナス式風力発電機1について説明したが、エネルギー源として、風(空気流)を用いることに代えて、水流、波、潮流等を用いることにより、マグナス式推力発生装置を用いた水力発電機又は潮力発電機としてもよいし、さらに回転部3を発電機21に連結することに代えて、回転部3をポンプ等の回転機械に連結することにより、マグナス式推力発生装置を用いた水力回転装置又は潮力回転装置としてもよい。 In the above embodiment, the vertical axis type Magnus wind power generator 1 using the Magnus thrust generator has been described as one application example of the Magnus thrust generator. However, instead of using wind (air flow) as the energy source, a water current, wave, tidal current, etc. may be used to create a hydroelectric or tidal power generator using the Magnus thrust generator. Furthermore, instead of connecting the rotating part 3 to the generator 21, the rotating part 3 may be connected to a rotating machine such as a pump to create a hydroelectric or tidal power rotating device using the Magnus thrust generator.

本発明のマグナス式推力発生装置は、回転翼が、筒状の回転翼本体と、回転翼本体に設置される補強部と、を有することによって、円筒翼の強度を高めるとともに、円筒翼に発生するマグナス力によって効率的に回転力を得ることを可能とし、風力回転装置、水力回転装置及び潮力回転装置並びに風力発電機、水力発電機及び潮力発電機としても利用できる。 The Magnus thrust generating device of the present invention has a rotor with a cylindrical rotor body and a reinforcing part installed on the rotor body, which increases the strength of the cylindrical blade and makes it possible to efficiently obtain rotational force by the Magnus force generated in the cylindrical blade, and can be used as a wind-powered rotating device, a hydraulic rotating device, and a tidal rotating device, as well as a wind-powered generator, a hydraulic generator, and a tidal generator.

1…垂直軸型マグナス式風力発電機(マグナス式推力発生装置)、
2…支持筐体、20…軸受ユニット、21…発電機、22…増速機、3…回転部、
4…円筒翼、40…円筒翼本体、
40a…上端部(一端部)、40b…下端部(他端部)、
41…翼端部、41a…翼上端板、41b…翼下端板、
42…円筒翼モータ、43…連結部材、
44…補強部、441…補強部材、441a…取付基部、441b…フランジ部、
442…補強補助部材、
45…上端固定部、46…下端固定部、
5…整流板、6…支持部、7…遮蔽板、
O1…第1の回転軸、O2…第2の回転軸、S…設置面
1... Vertical axis type Magnus wind turbine (Magnus thrust generator),
2... supporting housing, 20... bearing unit, 21... generator, 22... speed increaser, 3... rotating part,
4...Cylindrical blade, 40...Cylindrical blade main body,
40a: upper end (one end), 40b: lower end (the other end),
41... wing tip portion, 41a... wing upper end plate, 41b... wing lower end plate,
42...Cylindrical blade motor, 43...Connecting member,
44... Reinforcing portion, 441... Reinforcing member, 441a... Mounting base portion, 441b... Flange portion,
442...reinforcing auxiliary member,
45: upper end fixing portion, 46: lower end fixing portion,
5... current plate, 6... support portion, 7... shielding plate,
O1: first rotation axis, O2: second rotation axis, S: installation surface

Claims (7)

支持筐体と、
前記支持筐体に対して第1の回転軸を中心として回転可能な回転部と、
前記第1の回転軸を中心として公転可能であって、前記第1の回転軸に対して平行な第2の回転軸を中心として自転可能な複数の円筒翼と、
前記回転部に固定されることで前記第1の回転軸を中心として回転可能であって前記第1の回転軸を中心とする円周上に前記円筒翼を支持する支持部と、
を備え、
前記円筒翼は、
筒状の円筒翼本体と、
前記円筒翼本体に設置される補強部と、
を有し、
前記補強部は、
少なくとも1つの部材で、全体で環状に形成され、前記円筒翼本体の内周に設置される補強部材と、
少なくとも1つの部材で、全体で環状に形成され、前記円筒翼本体の外周に設置される補強補助部材と、
を有する、
マグナス式推力発生装置。
A supporting housing;
a rotating unit rotatable about a first rotation axis relative to the support housing;
A plurality of cylindrical blades capable of revolving around the first rotation axis and rotating around a second rotation axis parallel to the first rotation axis;
a support portion that is fixed to the rotating portion to be rotatable about the first rotation axis and that supports the cylindrical blade on a circumference centered on the first rotation axis;
Equipped with
The cylindrical blade is
A cylindrical blade body,
A reinforcing portion provided on the cylindrical blade body;
having
The reinforcing portion is
A reinforcing member formed in an annular shape as a whole by at least one member and installed on an inner periphery of the cylindrical blade body;
A reinforcing auxiliary member formed in an annular shape as a whole by at least one member and installed on the outer periphery of the cylindrical blade body;
having
Magnus thrust generator.
前記補強部材は、
前記円筒翼本体の内周に取り付けられる取付基部と、
前記取付基部の一端から内周側に延びるフランジ部と、
前記フランジ部の内周側から前記取付基部とは反対の前記第2の回転軸と平行な方向に延びる延長部と、
前記フランジ部の周方向の端部から前記取付基部と同じ方向に延びる接続部と、
を有する
請求項1に記載のマグナス式推力発生装置。
The reinforcing member is
An attachment base attached to an inner periphery of the cylindrical blade body;
a flange portion extending from one end of the mounting base toward an inner periphery;
an extension portion extending from an inner circumferential side of the flange portion in a direction parallel to the second rotation axis opposite to the mounting base;
a connecting portion extending from a circumferential end of the flange portion in the same direction as the mounting base;
2. The Magnus thrust generating device according to claim 1 ,
前記補強部材は、
前記円筒翼本体の内周に取り付けられる取付基部と、
前記取付基部の上下端から内周側に延びるフランジ部と、
を有する
請求項に記載のマグナス式推力発生装置。
The reinforcing member is
An attachment base attached to an inner periphery of the cylindrical blade body;
Flange portions extending from upper and lower ends of the mounting base toward the inner periphery;
2. The Magnus thrust generating device according to claim 1 ,
前記補強部は、前記第2の回転軸方向で前記円筒翼本体の中央に少なくとも1つ設置される
請求項1乃至3のいずれか一項に記載のマグナス式推力発生装置。
The Magnus thrust generating device according to claim 1 , wherein at least one of the reinforcing portions is provided at a center of the cylindrical wing main body in the second rotation axis direction.
前記補強部は、前記第2の回転軸方向で等間隔に複数設置される
請求項1乃至請求項4のいずれか一項に記載のマグナス式推力発生装置。
The Magnus thrust generating device according to claim 1 , wherein a plurality of the reinforcing portions are provided at equal intervals in the second rotation axis direction.
請求項1乃至請求項5のいずれか1つに記載のマグナス式推力発生装置を用いた風力回転装置、水力回転装置または潮力回転装置。 A wind-powered rotating device, a water-powered rotating device, or a tidal-powered rotating device using the Magnus thrust generating device according to any one of claims 1 to 5. 請求項1乃至請求項6のいずれか1つに記載のマグナス式推力発生装置を用いた風力発電機、水力発電機または潮力発電機。 A wind power generator, a hydroelectric power generator, or a tidal power generator using the Magnus type thrust generating device according to any one of claims 1 to 6.
JP2021036096A 2021-03-08 2021-03-08 Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device Active JP7492262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021036096A JP7492262B2 (en) 2021-03-08 2021-03-08 Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021036096A JP7492262B2 (en) 2021-03-08 2021-03-08 Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device

Publications (2)

Publication Number Publication Date
JP2022136469A JP2022136469A (en) 2022-09-21
JP7492262B2 true JP7492262B2 (en) 2024-05-29

Family

ID=83311800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021036096A Active JP7492262B2 (en) 2021-03-08 2021-03-08 Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device

Country Status (1)

Country Link
JP (1) JP7492262B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256605A (en) 2004-01-30 2005-09-22 Mekaro Akita:Kk Wind power generating device
JP2013543459A (en) 2010-09-16 2013-12-05 ヴォッベン プロパティーズ ゲーエムベーハー Rotating body balance adjustment method
WO2017002757A1 (en) 2015-07-01 2017-01-05 株式会社チャレナジー Magnus-type thrust generating device
JP2020016169A (en) 2018-07-24 2020-01-30 株式会社チャレナジー Magnus type thrust generation device, wind power rotation device, water power rotation device and tidal power generation device using magnus type thrust generation device, and wind power generator, water power generator and tidal power generator using magnus type thrust generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256605A (en) 2004-01-30 2005-09-22 Mekaro Akita:Kk Wind power generating device
JP2013543459A (en) 2010-09-16 2013-12-05 ヴォッベン プロパティーズ ゲーエムベーハー Rotating body balance adjustment method
WO2017002757A1 (en) 2015-07-01 2017-01-05 株式会社チャレナジー Magnus-type thrust generating device
JP2020016169A (en) 2018-07-24 2020-01-30 株式会社チャレナジー Magnus type thrust generation device, wind power rotation device, water power rotation device and tidal power generation device using magnus type thrust generation device, and wind power generator, water power generator and tidal power generator using magnus type thrust generation device

Also Published As

Publication number Publication date
JP2022136469A (en) 2022-09-21

Similar Documents

Publication Publication Date Title
EP2167812B1 (en) Vertical axis turbine
US20070231139A1 (en) Mounting Structure for Support Arms in a Vertical Axis Wind Turbine, and the Vertical Axis Wind Turbine
US7218011B2 (en) Diffuser-augmented wind turbine
JP5340383B2 (en) Direct drive generator and windmill
EP2063114A1 (en) Wind turbine
JP5306458B2 (en) Windmill
JP2020016169A (en) Magnus type thrust generation device, wind power rotation device, water power rotation device and tidal power generation device using magnus type thrust generation device, and wind power generator, water power generator and tidal power generator using magnus type thrust generation device
EP1944507A2 (en) A wind turbine generator and a monocoque for rotary machines
EP1834087A2 (en) Diffuser-augmented wind turbine
JP7492262B2 (en) Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device
CN107646072B (en) Horizontal axis guy rope tensioned vane fluid turbine
JP7186445B2 (en) Magnus-type thrust generator, wind power generator using the Magnus-type thrust generator, hydraulic power generator, tidal power generator, and wind power generator, hydraulic power generator, and tidal power generator using the Magnus-type thrust generator machine
KR101612238B1 (en) Spiral blade unit and wind generator
JP7492744B2 (en) Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device
JP6842055B2 (en) Assembled lift vertical axis wind turbine
JP7421221B2 (en) Magnus type thrust generator, a wind rotation device using the Magnus type thrust generator, a hydraulic rotation device, a tidal power rotation device, and a wind power generator, a hydraulic power generator, and a tidal power generator using the Magnus type thrust generator.
JP7421220B2 (en) Magnus type thrust generator, a wind rotation device using the Magnus type thrust generator, a hydraulic rotation device, a tidal power rotation device, and a wind power generator, a hydraulic power generator, and a tidal power generator using the Magnus type thrust generator.
JP2021055609A (en) Magnus-type thrust generation device, wind power rotating device using the magnus-type thrust generation device, hydropower rotating device, tide power rotating device, wind power generator using the magnus-type thrust generation device, hydropower generator and tide power generator
KR101915220B1 (en) Vertical-axis wind turbine
JP2022136468A (en) Magnus type thrust generating device, wind rotary device, hydraulic rotary device, and tidal rotary device with magnus type thrust generating device, and wind generator, hydraulic generator, and tidal generator with magnus type thrust generating device
JP7475101B1 (en) Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device
JP2022136492A (en) Magnus type thrust generating device, wind rotary device, hydraulic rotary device, and tidal rotary device with magnus type thrust generating device, and wind generator, hydraulic generator, and tidal generator with magnus type thrust generating device
WO2022124193A1 (en) Vertical-shaft windmill
JP7486246B1 (en) Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device
KR20130016155A (en) Turbine rotor for vertical wind turbine and vertical wind turbine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240510