JP7475101B1 - Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device - Google Patents

Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device Download PDF

Info

Publication number
JP7475101B1
JP7475101B1 JP2023574211A JP2023574211A JP7475101B1 JP 7475101 B1 JP7475101 B1 JP 7475101B1 JP 2023574211 A JP2023574211 A JP 2023574211A JP 2023574211 A JP2023574211 A JP 2023574211A JP 7475101 B1 JP7475101 B1 JP 7475101B1
Authority
JP
Japan
Prior art keywords
wall surface
support shaft
surface portion
support
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023574211A
Other languages
Japanese (ja)
Other versions
JPWO2024004347A1 (en
JPWO2024004347A5 (en
Inventor
敦史 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Challenergy Inc
Original Assignee
Challenergy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Challenergy Inc filed Critical Challenergy Inc
Publication of JPWO2024004347A1 publication Critical patent/JPWO2024004347A1/ja
Application granted granted Critical
Publication of JP7475101B1 publication Critical patent/JP7475101B1/en
Publication of JPWO2024004347A5 publication Critical patent/JPWO2024004347A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B7/00Water wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)
  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

【課題】装置の性能と強度の向上を両立させることを可能とする抗力型タービン装置を提供する。【解決手段】抗力型タービン装置1Aは、支持軸3と、支持軸3の軸方向に対して所定の間隔を空けて支持軸3に固定される複数の支持部材4と、複数の支持部材4の間を軸方向に沿って、かつ、支持軸3の径方向に離間した状態で支持軸3の周囲に配置されて、複数の支持部材4により支持される複数の受圧部材5とを備える。受圧部材5は、軸方向に垂直な平面視において、外側端53と内側端54との間に延設される壁面部として、外側端53から進行方向側かつ支持軸寄りに延設されて、径方向外側に膨出する凸面状に形成された外側壁面部50と、外側壁面部50から進行方向側かつ支持軸寄りに延設されて、凸面状又は平面状に形成された中間壁面部51と、中間壁面部51から内側端54に延設されて、凸面状又は平面状に形成された内側壁面部52とを有する。【選択図】図1[Problem] To provide a drag type turbine device that can improve both the performance and strength of the device. [Solution] The drag type turbine device 1A includes a support shaft 3, a plurality of support members 4 fixed to the support shaft 3 at a predetermined interval in the axial direction of the support shaft 3, and a plurality of pressure-receiving members 5 that are arranged around the support shaft 3 with a predetermined distance between the plurality of support members 4 along the axial direction and spaced apart from each other in the radial direction of the support shaft 3 and are supported by the plurality of support members 4. In a plan view perpendicular to the axial direction, the pressure-receiving member 5 has, as wall surface portions extending between an outer end 53 and an inner end 54, an outer wall surface portion 50 that extends from the outer end 53 toward the traveling direction and the support shaft and is formed in a convex shape that bulges outward in the radial direction, an intermediate wall surface portion 51 that extends from the outer wall surface portion 50 toward the traveling direction and the support shaft and is formed in a convex or flat shape, and an inner wall surface portion 52 that extends from the intermediate wall surface portion 51 to the inner end 54 and is formed in a convex or flat shape. [Selected Figure] FIG.

Description

本発明は、抗力型タービン装置、前記抗力型タービン装置を用いた風力回転装置、水力回転装置、潮力回転装置、並びに、前記抗力型タービン装置を用いた風力発電機、水力発電機、潮力発電機に関する。 The present invention relates to a drag-type turbine device, a wind-powered rotating device, a hydroelectric rotating device, and a tidal-powered rotating device that use the drag-type turbine device, as well as a wind-powered generator, a hydroelectric generator, and a tidal-powered generator that use the drag-type turbine device.

従来から、抗力型タービン装置を用いた回転装置や発電機が知られている。例えば、抗力型風力発電機として、特許文献1には、横断面がC字状(円弧状)の複数のブレードを有するサボニウス型風車が開示され、特許文献2には、横断面がJ字状の複数のブレードを有するバッハ型風車が開示されている。Rotating devices and generators using drag-type turbine devices have been known for some time. For example, as a drag-type wind power generator, Patent Document 1 discloses a Savonius-type wind turbine with multiple blades having a C-shaped (arcuate) cross section, and Patent Document 2 discloses a Bach-type wind turbine with multiple blades having a J-shaped cross section.

特開2006-152937号公報JP 2006-152937 A 特開平6-323237号公報Japanese Patent Application Laid-Open No. 6-323237

特許文献1及び特許文献2に開示された抗力型風力発電機では、抗力型風力発電機の回転中心に支持軸を備えることなく、上下方向に間隔を空けて配置された支持部材によりブレードを支持するものである。そのため、ブレードの設計では、その形状や配置の自由度が高いというメリットを有するが、支持軸を備えない構成とした場合に装置の強度を確保するには、ブレードの強度を高める必要があるため、ブレードの重量が大きくなり、装置コストの上昇が避けらなかった。一方、抗力型風力発電機の回転中心に支持軸を備える構成とした場合、支持軸の存在によりブレードの設計に制約が生じるほか、風上側から風下側に進むブレードから、風下側から風上側に進むブレードに向かって流入する気流が阻害されるため、発電効率の低下を招くことになり、装置の性能と強度の向上を両立させることは困難であった。In the drag-type wind power generators disclosed in Patent Documents 1 and 2, the blades are supported by support members arranged at intervals in the vertical direction without a support shaft at the rotation center of the drag-type wind power generator. Therefore, the blade design has the advantage of having a high degree of freedom in its shape and arrangement, but in a configuration without a support shaft, the strength of the blades must be increased to ensure the strength of the device, which makes the blades heavier and unavoidably increases the cost of the device. On the other hand, if a support shaft is provided at the rotation center of the drag-type wind power generator, the presence of the support shaft places restrictions on the blade design, and the airflow flowing from the blade moving from the upwind side to the downwind side to the blade moving from the downwind side to the upwind side is obstructed, resulting in a decrease in power generation efficiency, making it difficult to achieve both improved performance and strength of the device.

そこで、本発明は、装置の性能と強度の向上を両立させることを可能とする抗力型タービン装置、前記抗力型タービン装置を用いた風力回転装置、水力回転装置、潮力回転装置、並びに、前記抗力型タービン装置を用いた風力発電機、水力発電機、潮力発電機を提供することを目的とする。 Therefore, the present invention aims to provide a drag-type turbine device that makes it possible to achieve both improved performance and strength of the device, a wind-powered rotating device, a hydroelectric rotating device, and a tidal-powered rotating device that use the drag-type turbine device, as well as a wind-powered generator, a hydroelectric generator, and a tidal-powered generator that use the drag-type turbine device.

本発明は、上記のような問題を解決するものであって、本発明の一実施形態に係る抗力型タービン装置は、
回転可能に軸支される支持軸と、
前記支持軸の軸方向に対して所定の間隔を空けて前記支持軸に固定される複数の支持部材と、
複数の前記支持部材の間を前記軸方向に沿って、かつ、前記支持軸の径方向に離間した状態で前記支持軸の周囲に配置されて、複数の前記支持部材により支持される複数の受圧部材とを備え、
複数の前記受圧部材の各々は、
前記軸方向に垂直な平面視において、前記径方向外側に配置される外側端と、前記支持軸に対して前記外側端の反対側で前記外側端よりも前記径方向内側に配置される内側端との間に延設される壁面部として、
前記外側端から、前記受圧部材が流体圧を受けて前記支持軸が回転するときの進行方向側かつ前記支持軸寄りに延設されて、前記径方向外側に膨出する凸面状に形成された外側壁面部と、
前記外側壁面部から、湾曲状又は屈曲状の外側境界部を介して前記進行方向側かつ前記支持軸寄りに延設されて、前記外側壁面部よりも緩やかに前記径方向外側に膨出する凸面状又は平面状に形成された中間壁面部と、
前記中間壁面部から、湾曲状又は屈曲状の内側境界部を介して前記中間壁面部よりも前記進行方向側に配置された前記内側端に延設されて、前記径方向外側に膨出する凸面状又は平面状に形成された内側壁面部とを有する。
The present invention aims to solve the above problems, and provides a drag type turbine device according to one embodiment of the present invention,
A support shaft that is rotatably supported;
A plurality of support members fixed to the support shaft at predetermined intervals in the axial direction of the support shaft;
a plurality of pressure-receiving members that are disposed around the support shaft in a state spaced apart from each other along the axial direction and in a radial direction of the support shaft and are supported by the plurality of support members;
Each of the plurality of pressure-receiving members includes
As a wall surface portion extending between an outer end disposed radially outward in a plan view perpendicular to the axial direction and an inner end disposed radially inward relative to the outer end on the opposite side of the outer end with respect to the support shaft,
an outer wall surface portion extending from the outer end toward a direction of travel of the pressure-receiving member when the support shaft rotates under the fluid pressure and toward the support shaft, the outer wall surface portion being formed in a convex shape that bulges outward in the radial direction;
an intermediate wall portion extending from the outer wall portion toward the support shaft in the traveling direction via a curved or bent outer boundary portion and formed in a convex or flat shape that gradually bulges outward in the radial direction from the outer wall portion;
The inner wall portion extends from the intermediate wall portion via a curved or bent inner boundary portion to the inner end located on the traveling direction side of the intermediate wall portion, and is formed in a convex or flat shape that bulges radially outward.

本発明の一実施形態に係る風力回転装置、水力回転装置又は潮力回転装置は、前記抗力型タービン装置を用いたものである。本発明の一実施形態に係る風力発電機、水力発電機又は潮力発電機は、前記抗力型タービン装置を用いたものである。 A wind-powered rotating device, a hydroelectric rotating device, or a tidal rotating device according to one embodiment of the present invention uses the drag-type turbine device.A wind-powered generator, a hydroelectric generator, or a tidal generator according to one embodiment of the present invention uses the drag-type turbine device.

本発明の一実施形態に係る抗力型タービン装置によれば、複数の受圧部材の各々が、支持軸の軸方向に垂直な平面視において、径方向外側に配置される外側端と、支持軸に対して外側端の反対側で外側端よりも径方向内側に配置される内側端との間に延設される壁面部として、外側端から、進行方向側かつ支持軸寄りに延設されて、径方向外側に膨出する凸面状に形成された外側壁面部と、外側壁面部から、進行方向側かつ支持軸寄りに延設されて、外側壁面部よりも緩やかに径方向外側に膨出する凸面状又は平面状に形成された中間壁面部と、中間壁面部から、中間壁面部よりも進行方向側に配置された内側端に延設されて、径方向外側に膨出する凸面状又は平面状に形成された内側壁面部とを有する。According to one embodiment of the drag-type turbine device of the present invention, each of the multiple pressure-receiving members has a wall portion extending between an outer end arranged radially outward in a plan view perpendicular to the axial direction of the support shaft and an inner end arranged on the opposite side of the outer end with respect to the support shaft and radially inward from the outer end, the wall portion having an outer wall portion extending from the outer end toward the direction of travel and the support shaft and formed in a convex shape that bulges radially outward, an intermediate wall portion extending from the outer wall portion toward the direction of travel and the support shaft and formed in a convex or flat shape that bulges radially outward more gently than the outer wall portion, and an inner wall portion extending from the intermediate wall portion to an inner end arranged on the direction of travel side of the intermediate wall portion and formed in a convex or flat shape that bulges radially outward.

これにより、複数の受圧部材は、支持軸に固定された複数の支持部材により支持されることにより、装置全体では、モノコック構造をなすように構成されるとともに、支持軸と複数の受圧部材との間に間隙を形成するように配置される。そして、所定の方向から流体の流れを受けたとき、その流体は、外側端から外側壁面部に沿って流れ込み、支持軸と中間壁面部及び内側壁面部との間を通過し、内側端から流れ出る。そのため、装置の性能と強度の向上を両立させることができる。 As a result, the multiple pressure-receiving members are supported by multiple support members fixed to the support shaft, so that the entire device is configured to form a monocoque structure and is arranged to form gaps between the support shaft and the multiple pressure-receiving members. When a fluid flows from a predetermined direction, the fluid flows in from the outer end along the outer wall surface portion, passes between the support shaft and the intermediate wall surface portion and inner wall surface portion, and flows out from the inner end. This makes it possible to achieve both improved performance and strength of the device.

第1の実施形態に係る垂直軸抗力型風力発電機1Aの一例を示す全体斜視図である。FIG. 1 is an overall perspective view showing an example of a vertical axis resistance type wind power generator 1A according to a first embodiment. 第1の実施形態に係る垂直軸抗力型風力発電機1Aの一例を示す部分分解斜視図である。FIG. 1 is a partially exploded perspective view showing an example of a vertical axis resistance type wind power generator 1A according to a first embodiment. 第1の実施形態に係る垂直軸抗力型風力発電機1Aの一例を示す横断面図である。FIG. 1 is a cross-sectional view showing an example of a vertical axis resistance type wind power generator 1A according to a first embodiment. 第1の実施形態に係る垂直軸抗力型風力発電機1Aの配置例と各パラメータを示す概要図である。FIG. 2 is a schematic diagram showing an example of the arrangement of a vertical axis drag type wind power generator 1A according to the first embodiment and each parameter. 受圧部材5の第1のパラメータ例における出力係数Cpを示す分布図である。11 is a distribution diagram showing the output coefficient Cp in a first parameter example of the pressure-receiving member 5. FIG. 受圧部材5の第2のパラメータ例における出力係数Cpを示す分布図である。FIG. 13 is a distribution diagram showing the output coefficient Cp in a second parameter example of the pressure-receiving member 5. 受圧部材5の第3のパラメータ例における出力係数Cpを示す分布図である。FIG. 13 is a distribution diagram showing the output coefficient Cp in a third parameter example of the pressure-receiving member 5. 受圧部材5の第4のパラメータ例における出力係数Cpを示す分布図である。FIG. 13 is a distribution diagram showing the output coefficient Cp in a fourth parameter example of the pressure-receiving member 5. 受圧部材5の第5のパラメータ例における出力係数Cpを示す分布図である。FIG. 13 is a distribution diagram showing the output coefficient Cp in a fifth parameter example of the pressure-receiving member 5. 受圧部材5の第6のパラメータ例における出力係数Cpを示す分布図である。FIG. 13 is a distribution diagram showing the output coefficient Cp in a sixth parameter example of the pressure-receiving member 5. 受圧部材5の第1のパラメータ例における出力係数比Cp_ratioを示す分布図である。13 is a distribution diagram showing a power coefficient ratio Cp_ratio in a first parameter example of the pressure-receiving member 5. FIG. 受圧部材5の第2のパラメータ例における出力係数比Cp_ratioを示す分布図である。FIG. 13 is a distribution diagram showing the power coefficient ratio Cp_ratio in a second parameter example of the pressure-receiving member 5. 受圧部材5の第3のパラメータ例における出力係数比Cp_ratioを示す分布図である。FIG. 13 is a distribution diagram showing the power coefficient ratio Cp_ratio in a third parameter example of the pressure-receiving member 5. 受圧部材5の第4のパラメータ例における出力係数比Cp_ratioを示す分布図である。FIG. 13 is a distribution diagram showing the power coefficient ratio Cp_ratio in a fourth parameter example of the pressure-receiving member 5. 受圧部材5の第5のパラメータ例における出力係数比Cp_ratioを示す分布図である。FIG. 13 is a distribution diagram showing the power coefficient ratio Cp_ratio in a fifth parameter example of the pressure-receiving member 5. 受圧部材5の第6のパラメータ例における出力係数比Cp_ratioを示す分布図である。FIG. 13 is a distribution diagram showing the power coefficient ratio Cp_ratio in a sixth parameter example of the pressure-receiving member 5. 第2の実施形態に係る垂直軸抗力型風力発電機1Bの一例を示す全体斜視図である。FIG. 11 is an overall perspective view showing an example of a vertical axis resistance type wind power generator 1B according to a second embodiment. 第2の実施形態に係る垂直軸抗力型風力発電機1Bの一例を示す部分分解斜視図である。FIG. 11 is a partially exploded perspective view showing an example of a vertical axis resistance type wind power generator 1B according to a second embodiment. 第2の実施形態に係る垂直軸抗力型風力発電機1Bの一例を示す横断面図である。FIG. 11 is a cross-sectional view showing an example of a vertical axis resistance type wind power generator 1B according to a second embodiment. 第3の実施形態に係る垂直軸抗力型風力発電機1Cの一例を示す全体斜視図である。FIG. 11 is an overall perspective view showing an example of a vertical axis resistance type wind power generator 1C according to a third embodiment. 第4の実施形態に係る垂直軸抗力型風力発電機1Dの一例を示す全体斜視図である。FIG. 13 is an overall perspective view showing an example of a vertical axis resistance type wind power generator 1D according to a fourth embodiment. 第4の実施形態に係る垂直軸抗力型風力発電機1Dの一例を示す横断面図である。FIG. 13 is a cross-sectional view showing an example of a vertical axis resistance type wind power generator 1D according to a fourth embodiment. 第5の実施形態に係る垂直軸抗力型風力発電機1Eの一例を示す全体斜視図である。FIG. 13 is an overall perspective view showing an example of a vertical axis resistance type wind power generator 1E according to a fifth embodiment.

以下に本発明の具体的な実施形態を示す。実施形態はあくまで一例であり、この例に限定されるものではない。なお、以下の実施形態では、抗力型タービン装置の適用例の1つとして、抗力型タービン装置を用いた垂直軸抗力型風力発電機1(1A~1E)について説明する。また、実施形態の説明において、「平行」とは、完全に平行な場合だけでなく、垂直軸抗力型風力発電機1の機能が損なわれない程度のずれを許容した略平行な場合も含む。同様に、「垂直」とは、完全に垂直な場合でだけでなく、垂直軸抗力型風力発電機1の機能が損なわれない程度のずれを許容した略垂直な場合も含む。さらに、実施形態の説明において、「円弧」とは、完全に真円状の円弧である場合だけでなく、垂直軸抗力型風力発電機1の機能が損なわれない程度のずれを許容した略円弧である場合も含む。 Specific embodiments of the present invention are described below. The embodiments are merely examples, and are not limited to these examples. In the following embodiments, a vertical axis drag type wind power generator 1 (1A-1E) using a drag type turbine device will be described as one application example of a drag type turbine device. In addition, in the description of the embodiments, "parallel" includes not only the case of being completely parallel, but also the case of being approximately parallel with a degree of deviation that does not impair the function of the vertical axis drag type wind power generator 1. Similarly, "vertical" includes not only the case of being completely vertical, but also the case of being approximately vertical with a degree of deviation that does not impair the function of the vertical axis drag type wind power generator 1. Furthermore, in the description of the embodiments, "arc" includes not only the case of a completely circular arc, but also the case of being approximately arc with a degree of deviation that does not impair the function of the vertical axis drag type wind power generator 1.

(第1の実施形態)
図1は、第1の実施形態に係る垂直軸抗力型風力発電機1Aの一例を示す全体斜視図である。図2は、第1の実施形態に係る垂直軸抗力型風力発電機1Aの一例を示す部分分解斜視図である。図3は、第1の実施形態に係る垂直軸抗力型風力発電機1Aの一例を示す横断面図である。
First Embodiment
Fig. 1 is an overall perspective view showing an example of a vertical axis drag type wind power generator 1A according to the first embodiment. Fig. 2 is a partially exploded perspective view showing an example of a vertical axis drag type wind power generator 1A according to the first embodiment. Fig. 3 is a cross-sectional view showing an example of a vertical axis drag type wind power generator 1A according to the first embodiment.

垂直軸抗力型風力発電機1Aは、設置面(不図示)に設置される支持筐体2と、支持筐体2に回転可能に軸支される支持軸3と、支持軸3の軸方向Daに対して所定の間隔L1を空けて支持軸3に固定される複数の支持部材4と、複数の支持部材4の間を軸方向Daに沿って、かつ、支持軸3の径方向Dr1,Dr2に離間した状態で支持軸3の周囲に配置されて、複数の支持部材4により支持される複数の受圧部材5とを備える。垂直軸抗力型風力発電機1Aは、受圧部材5が所定の方向から流れる風(空気流)による風圧(流体圧)を受けることで、支持軸3が進行方向Dt(本実施形態では、時計回り(図3参照))に回転するものであり、抗力型の風力タービンとして機能する。The vertical-axis drag-type wind power generator 1A includes a support housing 2 installed on an installation surface (not shown), a support shaft 3 rotatably supported by the support housing 2, a plurality of support members 4 fixed to the support shaft 3 at a predetermined interval L1 with respect to the axial direction Da of the support shaft 3, and a plurality of pressure-receiving members 5 supported by the plurality of support members 4, which are arranged around the support shaft 3 along the axial direction Da and spaced apart in the radial directions Dr1 and Dr2 of the support shaft 3. The vertical-axis drag-type wind power generator 1A functions as a drag-type wind turbine, with the support shaft 3 rotating in the traveling direction Dt (in this embodiment, clockwise (see FIG. 3)) as the pressure-receiving members 5 receive wind pressure (fluid pressure) due to wind (air flow) flowing from a predetermined direction.

垂直軸抗力型風力発電機1Aの各構成部材(支持筐体2、支持軸3、支持部材4、受圧部材5)は、例えば、アルミニウム、ステンレス、チタニウム、鉄鋼等の金属材料(合金を含む)、炭素繊維強化樹脂、ガラス繊維強化樹脂等の繊維強化樹脂材料、ポリカーボネイトや塩化ビニル等の樹脂材料、又は、これらの複合材料を用いて製作される。なお、各構成部材は、上記のような各種の材料を適宜組み合わせて製作されてもよく、例えば、構成部材毎に異なる材料を用いて製作されてもよいし、構成部材の一部又は全てが、共通の材料を用いて製作されてもよい。Each component of the vertical axis drag type wind turbine generator 1A (support housing 2, support shaft 3, support member 4, pressure-receiving member 5) is made of, for example, metal materials (including alloys) such as aluminum, stainless steel, titanium, and steel, fiber-reinforced resin materials such as carbon fiber reinforced resin and glass fiber reinforced resin, resin materials such as polycarbonate and polyvinyl chloride, or composite materials of these. Each component may be made by appropriately combining the above-mentioned various materials, and for example, each component may be made of a different material, or some or all of the components may be made of a common material.

本実施形態では、垂直軸抗力型風力発電機1Aが、図1に示すように、複数の支持部材4として、4つの支持部材4を備えるとともに、複数の受圧部材5として、4つの支持部材4の各間において、支持軸3に対して対称的に配置される一対の受圧部材5を備える、すなわち、全体では6つの受圧部材5を備える場合を中心に説明する。In this embodiment, the vertical axis resistance type wind turbine 1A is mainly described as having a vertical axis resistance type wind turbine 1A with four support members 4 as the multiple support members 4, as shown in FIG. 1, and with a pair of pressure-receiving members 5 arranged symmetrically with respect to the support axis 3 between each of the four support members 4 as the multiple pressure-receiving members 5, i.e., with a total of six pressure-receiving members 5.

支持筐体2は、支持軸3と同軸状に配置される円筒状の筐体である。支持筐体2は、その上部に、支持軸3を軸支するとともに、支持軸3が回転する際の回転エネルギーを電気エネルギーに変換する発電ユニット20を備える。なお、支持筐体2は、図1に示すように、支持軸3の下端側だけを支持するものでもよいし、支持軸3の下端側に加えて支持軸3の上端側(支持軸3の上端でもよいし、支持軸3の上端に連結されたシャフト部材でもよい)をさらに支持するものでもよい。また、支持筐体2は、トラス状の筐体としてもよい。The support housing 2 is a cylindrical housing arranged coaxially with the support shaft 3. The support housing 2 is provided with a power generation unit 20 at its upper portion, which supports the support shaft 3 and converts the rotational energy generated when the support shaft 3 rotates into electrical energy. As shown in FIG. 1, the support housing 2 may support only the lower end side of the support shaft 3, or may support the upper end side of the support shaft 3 in addition to the lower end side of the support shaft 3 (which may be the upper end of the support shaft 3 or a shaft member connected to the upper end of the support shaft 3). The support housing 2 may also be a truss-shaped housing.

発電ユニット20は、例えば、アウターロータ型の発電機で構成される。なお、発電ユニット20は、インナーロータ型の発電機で構成されてもよい。また、支持軸3と、発電ユニット20とは、直接連結されてもよいし、増速機を介して連結されてもよい。The power generating unit 20 is, for example, an outer rotor type generator. The power generating unit 20 may be an inner rotor type generator. The support shaft 3 and the power generating unit 20 may be directly connected to each other or may be connected to each other via a gearbox.

支持軸3は、円筒状又は円柱状のシャフト部材で構成され、回転中心軸O1を中心に発電ユニット20により軸支される。なお、支持軸3は、図2に示すように、1本のシャフト部材で構成されてもよいし、間隔L1と同程度の長さを有する複数本(本実施形態では、3本)のシャフト部材を連結することで構成されてもよい。The support shaft 3 is composed of a cylindrical or columnar shaft member and is supported by the power generation unit 20 around the central rotation axis O1. As shown in Figure 2, the support shaft 3 may be composed of a single shaft member, or may be composed of multiple (three in this embodiment) connected shaft members having a length approximately equal to the interval L1.

複数の支持部材4の各々は、例えば、所定の平面視形状を有する平板材でそれぞれ構成され、支持軸3がその中央付近を貫通するようにして、支持軸3に対して任意の固定方法(溶接、接着、ねじ固定、圧入、リベット、ピン結合、継手等)により固定される。その際、複数の支持部材4の各々は、例えば、リング状又はフランジ状に形成された連結固定部材30(図2では不図示)を介して支持軸3に固定される。また、複数の支持部材4の各々は、その間に配置された一対の受圧部材5に任意の固定方法(詳細は後述)により固定される。Each of the multiple support members 4 is, for example, made of a flat plate material having a predetermined shape in plan view, and is fixed to the support shaft 3 by any fixing method (welding, adhesive, screw fixing, press fitting, rivet, pin connection, joint, etc.) so that the support shaft 3 penetrates near the center. At that time, each of the multiple support members 4 is fixed to the support shaft 3 via a connecting and fixing member 30 (not shown in FIG. 2) formed, for example, in a ring shape or flange shape. In addition, each of the multiple support members 4 is fixed to a pair of pressure-receiving members 5 arranged therebetween by any fixing method (details will be described later).

なお、複数の支持部材4のうち、少なくとも両端に配置された支持部材4(図1の例では、下から1つ目及び4つ目の支持部材4)が、連結固定部材30を介して支持軸3に固定されていればよく、両端の間に配置された中間の支持部材4の一部又は全て(図1の例では、下から2つ目及び3つ目の支持部材4)は、連結固定部材30を介して支持軸3に固定されていてもよいし、固定されていなくてもよい。その際、支持軸3に固定されていない中間の支持部材4は、受圧部材5同士を軸方向Daに連結するとともに、受圧部材5を補強する連結補強部材として機能し、例えば、支持軸3が支持部材4に形成された貫通孔を通過するようにしてもよいし、支持軸3と支持部材4の貫通孔との間の隙間を塞ぐように、例えば、ゴム等の弾性材料でリング状に形成された連結弾性部材が配置されていてもよい。In addition, among the multiple support members 4, at least the support members 4 arranged at both ends (in the example of FIG. 1, the first and fourth support members 4 from the bottom) may be fixed to the support shaft 3 via the connecting and fixing members 30, and some or all of the intermediate support members 4 arranged between both ends (in the example of FIG. 1, the second and third support members 4 from the bottom) may or may not be fixed to the support shaft 3 via the connecting and fixing members 30. In this case, the intermediate support members 4 that are not fixed to the support shaft 3 connect the pressure-receiving members 5 to each other in the axial direction Da and function as connecting and reinforcing members that reinforce the pressure-receiving members 5. For example, the support shaft 3 may pass through a through hole formed in the support member 4, or a connecting elastic member formed in a ring shape of an elastic material such as rubber may be arranged to close the gap between the support shaft 3 and the through hole of the support member 4.

複数の支持部材4の各々は、その平面視形状として、軸方向Daに垂直な平面視(図3参照)において、一対の受圧部材5がそれぞれ有する外側壁面部50(詳細は後述)に沿って形成された一対の外側壁面外形部40と、一対の外側壁面外形部40同士を直線状に結ぶように形成された一対の直線外形部41とを備える。Each of the multiple support members 4 has a planar shape, in a planar view perpendicular to the axial direction Da (see Figure 3), which includes a pair of outer wall surface contour portions 40 formed along the outer wall surface portions 50 (details of which will be described later) that each of the pair of pressure-receiving members 5 has, and a pair of linear contour portions 41 formed to linearly connect the pair of outer wall surface contour portions 40.

一対の受圧部材5の各々は、軸方向Daに垂直な平面視(図3参照)において、径方向外側Dr1に配置される外側端53と、支持軸3に対して外側端53の反対側で外側端53よりも径方向内側Dr2に配置される内側端54との間に延設される壁面部50~52として、外側壁面部50と、中間壁面部51と、内側壁面部52とを有するとともに、外側壁面部50及び中間壁面部51の境界部分に配置される外側境界部55と、中間壁面部51及び内側壁面部52の境界部分に配置される内側境界部56とを有する。また、一対の受圧部材5の各々は、受圧部材5の軸方向Daの両端を支持部材4にそれぞれ取り付けるための取付部57~59として、外側取付部57と、中間取付部58と、内側取付部59とを有する。Each of the pair of pressure-receiving members 5 has an outer wall surface portion 50, an intermediate wall surface portion 51, and an inner wall surface portion 52 as wall surface portions 50-52 extending between an outer end 53 arranged on the radially outer side Dr1 in a plan view perpendicular to the axial direction Da (see FIG. 3) and an inner end 54 arranged on the opposite side of the outer end 53 with respect to the support shaft 3 and radially inner than the outer end 53. The outer wall surface portion 50 has an outer boundary portion 55 arranged at the boundary portion between the outer wall surface portion 50 and the intermediate wall surface portion 51, and an inner boundary portion 56 arranged at the boundary portion between the intermediate wall surface portion 51 and the inner wall surface portion 52. Each of the pair of pressure-receiving members 5 also has an outer mounting portion 57, an intermediate mounting portion 58, and an inner mounting portion 59 as mounting portions 57-59 for respectively mounting both ends of the pressure-receiving member 5 in the axial direction Da to the support member 4.

外側壁面部50は、外側端53から進行方向側Dtかつ支持軸3寄りに延設されて、径方向外側Dr1に膨出する凸面状に形成された壁面部である。外側壁面部50は、風の流れを阻害しない凸面状であればよく、例えば、平面視形状が円弧、楕円弧、その他の曲線等となる曲面状でもよいし、平面視形状が内角が鈍角の多角形等となる多角面状でもよいし、曲面状及び多角面状を組み合わせたものでもよい。なお、外側壁面部50が円弧の曲面状である場合、その円弧の中心角は、例えば、75度から135度の範囲が好ましく、さらに、90度から120度の範囲がより好ましい。また、外側壁面部50が円弧以外の平面視形状である場合には、円弧の場合と同程度の範囲に延設されるようにすればよい。The outer wall surface portion 50 is a wall surface portion that is extended from the outer end 53 toward the traveling direction side Dt and the support shaft 3, and is formed in a convex shape that bulges outward in the radial direction Dr1. The outer wall surface portion 50 may be a convex shape that does not obstruct the flow of air, and may be, for example, a curved surface shape whose planar shape is an arc, an elliptical arc, or other curved line, or a polygonal surface shape whose planar shape is a polygon with obtuse interior angles, or a combination of a curved surface shape and a polygonal surface shape. In addition, when the outer wall surface portion 50 is a curved surface shape of an arc, the central angle of the arc is preferably, for example, in the range of 75 degrees to 135 degrees, and more preferably in the range of 90 degrees to 120 degrees. In addition, when the outer wall surface portion 50 has a planar shape other than an arc, it is sufficient that it is extended to a range similar to that of an arc.

中間壁面部51は、外側壁面部50から外側境界部55を介して進行方向側Dtかつ支持軸3寄りに延設されて、外側壁面部50よりも緩やかに径方向外側Dr1に膨出する凸面状又は平面状に形成された壁面部である。中間壁面部51は、外側壁面部50とは異なる平面視形状を有するものであればよく、例えば、凸面状として、平面視形状が円弧、楕円弧、その他の曲線等となる曲面状でもよいし、平面視形状が内角が鈍角の多角形等となる多角面状でもよいし、曲面状及び多角面状を組み合わせたものでもよい。また、中間壁面部51は、平面視形状が直線となる平面状でもよい。なお、外側壁面部50の平面視形状が円弧又は楕円弧のような曲面状である場合、中間壁面部51は、その外側壁面部50の外側境界部55側の端部から延長された接線上に配置される平面状とし、外側境界部55は、その外側壁面部50(円弧又は楕円弧)と、その中間壁面部51(円弧又は楕円弧に対する接線)との境界に位置するようにしてもよい。これにより、外側壁面部50から中間壁面部51に向かう風の流れを円滑にすることができる。The intermediate wall surface portion 51 is a wall surface portion that extends from the outer wall surface portion 50 through the outer boundary portion 55 toward the traveling direction side Dt and the support shaft 3, and is formed in a convex or flat shape that bulges outward in the radial direction Dr1 more gently than the outer wall surface portion 50. The intermediate wall surface portion 51 may have a different planar shape from the outer wall surface portion 50. For example, the convex shape may be a curved shape whose planar shape is an arc, an elliptical arc, or other curved line, or a polygonal shape whose planar shape is a polygon with obtuse interior angles, or a combination of a curved shape and a polygonal shape. The intermediate wall surface portion 51 may also be a flat shape whose planar shape is a straight line. When the planar shape of the outer wall surface portion 50 is a curved surface such as a circular arc or an elliptical arc, the intermediate wall surface portion 51 may be a planar surface disposed on a tangent extended from an end portion of the outer wall surface portion 50 on the outer boundary portion 55 side, and the outer boundary portion 55 may be located at the boundary between the outer wall surface portion 50 (circular arc or elliptical arc) and the intermediate wall surface portion 51 (tangent to the circular arc or elliptical arc). This can smooth the flow of air from the outer wall surface portion 50 toward the intermediate wall surface portion 51.

内側壁面部52は、中間壁面部51から内側境界部56を介して中間壁面部51よりも進行方向側Dtに配置された内側端54に延設されて、径方向外側Dr1に膨出する凸面状又は平面状に形成された壁面部である。内側壁面部52は、例えば、凸面状として、平面視形状が円弧、楕円弧、その他の曲線等となる曲面状でもよいし、平面視形状が内角が鈍角の多角形等となる多角面状でもよい。また、内側壁面部52は、平面視形状が直線となる平面状でもよい。The inner wall surface portion 52 is a wall surface portion that extends from the intermediate wall surface portion 51 through the inner boundary portion 56 to the inner end 54 that is disposed on the traveling direction side Dt of the intermediate wall surface portion 51, and is formed in a convex or flat shape that bulges outward in the radial direction Dr1. For example, the inner wall surface portion 52 may be convex in shape, and may be a curved surface whose planar shape is a circular arc, an elliptical arc, or other curved line, or may be a polygonal surface whose planar shape is a polygon with obtuse interior angles. The inner wall surface portion 52 may also be flat in shape, and may be straight in planar shape.

中間壁面部51と、内側壁面部52とは、軸方向Daに垂直な平面視において、内側境界部56を介して径方向外側Dr1に凸状となるように配置されることで、中間壁面部51と内側壁面部52とは、支持軸3側に鈍角を形成する。なお、外側壁面部50と、中間壁面部51とについても、軸方向Daに垂直な平面視において、外側境界部55を介して径方向外側Dr1に凸状となるように配置されることで、外側壁面部50と、中間壁面部51とは、支持軸3側に鈍角を形成するようにしてもよい。The intermediate wall surface portion 51 and the inner wall surface portion 52 are arranged so as to be convex toward the radially outer side Dr1 via the inner boundary portion 56 in a plan view perpendicular to the axial direction Da, so that the intermediate wall surface portion 51 and the inner wall surface portion 52 form an obtuse angle on the support shaft 3 side. The outer wall surface portion 50 and the intermediate wall surface portion 51 may also be arranged so as to be convex toward the radially outer side Dr1 via the outer boundary portion 55 in a plan view perpendicular to the axial direction Da, so that the outer wall surface portion 50 and the intermediate wall surface portion 51 form an obtuse angle on the support shaft 3 side.

外側境界部55及び内側境界部56は、湾曲状又は屈曲状に形成される。なお、外側境界部55及び内側境界部56の形状は、同一でもよいし、異なっていてもよい。また、外側境界部55が湾曲状とする場合には、外側壁面部50又は中間壁面部51と同一の曲面状として形成されてもよいし、内側境界部56が湾曲状とする場合には、中間壁面部51と同一の曲面状として形成されてもよい。The outer boundary 55 and the inner boundary 56 are formed in a curved or bent shape. The shapes of the outer boundary 55 and the inner boundary 56 may be the same or different. If the outer boundary 55 is curved, it may be formed in the same curved shape as the outer wall surface 50 or the intermediate wall surface 51, and if the inner boundary 56 is curved, it may be formed in the same curved shape as the intermediate wall surface 51.

壁面部50~52は、各部分(外側壁面部50、外側境界部55、中間壁面部51、内側境界部56及び内側壁面部52)のうち隣接する各部分の一部又は全体が一体的に形成されてもよいし、複数の部品を接合することで形成されてもよい。例えば、壁面部50~52の全体(外側壁面部50、外側境界部55、中間壁面部51、内側境界部56及び内側壁面部52)を一体的に形成する場合には、平板状の金属板や樹脂板等に対して、各部分に相当する範囲に曲げ加工を施すことで製作されるようにしてもい。これにより、壁面部50~52に継ぎ目や留め具がなくなるため、受圧部材5の流体抵抗を低減することができる。The wall surface portions 50-52 may be formed integrally with adjacent portions or the entirety of each portion (outer wall surface portion 50, outer boundary portion 55, intermediate wall surface portion 51, inner boundary portion 56, and inner wall surface portion 52), or may be formed by joining multiple parts. For example, when the entirety of the wall surface portions 50-52 (outer wall surface portion 50, outer boundary portion 55, intermediate wall surface portion 51, inner boundary portion 56, and inner wall surface portion 52) is formed integrally, they may be manufactured by bending a flat metal plate or resin plate in an area corresponding to each portion. This eliminates seams and fasteners in the wall surface portions 50-52, thereby reducing the fluid resistance of the pressure-receiving member 5.

また、壁面部50~52は、別々の部品として形成された外側壁面部50、中間壁面部51及び内側壁面部52を、任意の固定方法(溶接、接着、ねじ固定、圧入、リベット、ピン結合、継手等)による固定部を介して固定することで製作されるようにしてもよい。この場合には、外側壁面部50及び中間壁面部51の固定部が、屈曲状の外側境界部55に対応し、中間壁面部51及び内側壁面部52の固定部が、屈曲状の内側境界部56に対応する。 The wall portions 50-52 may also be manufactured by fixing the outer wall portion 50, the intermediate wall portion 51, and the inner wall portion 52, which are formed as separate parts, via fixing portions using any fixing method (welding, adhesive, screw fixing, press fitting, rivet, pin connection, joint, etc.). In this case, the fixing portions of the outer wall portion 50 and the intermediate wall portion 51 correspond to the curved outer boundary portion 55, and the fixing portions of the intermediate wall portion 51 and the inner wall portion 52 correspond to the curved inner boundary portion 56.

本実施形態では、一対の受圧部材5の各々は、図3に示すように、壁面部50~52の全体が一体的にそれぞれ形成されるとともに、外側壁面部50が、平面視形状が曲率半径Rの円弧となる円弧曲面状に形成され、中間壁面部51及び内側壁面部52は、平面状にそれぞれ形成され、外側境界部55及び内側境界部56は、湾曲状(円弧曲面状)に形成されたものである。また、一対の受圧部材5は、支持軸3の径方向Dr1,Dr2に離間した状態で支持軸3の周囲にて180度ずらした状態で対称的に配置される。そのため、一方の受圧部材5の中間壁面部51と、他方の受圧部材5の内側壁面部52とが対向する位置に配置されるとともに、一対の受圧部材5の各々の内側境界部56と支持軸3の外周面とに間に、間隙がそれぞれ形成される。また、一対の受圧部材5の各々は、中間壁面部51と、内側壁面部52とは、内側境界部56を介して径方向外側Dr1に凸状となるように配置されることで、軸方向Daに垂直な平面視における一対の受圧部材5同士の間隔として、内側端54側では相対的に狭く、内側境界部56側では相対的に広くなるように配置される。したがって、一対の受圧部材5は、支持軸3側に近づくほど一対の受圧部材5同士の間隔が広くなる。In this embodiment, as shown in FIG. 3, the wall surface portions 50-52 of each of the pair of pressure receiving members 5 are integrally formed, and the outer wall surface portion 50 is formed in an arc-shaped curved surface shape with a radius of curvature R in a plan view, the intermediate wall surface portion 51 and the inner wall surface portion 52 are formed in a planar shape, and the outer boundary portion 55 and the inner boundary portion 56 are formed in a curved shape (arc-shaped curved surface shape). The pair of pressure receiving members 5 are symmetrically arranged around the support shaft 3, shifted by 180 degrees, while being spaced apart in the radial directions Dr1 and Dr2 of the support shaft 3. Therefore, the intermediate wall surface portion 51 of one pressure receiving member 5 and the inner wall surface portion 52 of the other pressure receiving member 5 are arranged in opposing positions, and a gap is formed between the inner boundary portion 56 of each of the pair of pressure receiving members 5 and the outer circumferential surface of the support shaft 3. Moreover, each of the pair of pressure-receiving members 5 is disposed such that the intermediate wall surface portion 51 and the inner wall surface portion 52 are convex toward the radially outward side Dr1 via the inner boundary portion 56, so that the distance between the pair of pressure-receiving members 5 in a plan view perpendicular to the axial direction Da is relatively narrow on the inner end 54 side and relatively wide on the inner boundary portion 56 side. Therefore, the distance between the pair of pressure-receiving members 5 becomes wider as they approach the support shaft 3 side.

また、一対の受圧部材5が対称的に配置される際、一方の受圧部材5の内側端54は、軸方向Daに垂直な平面視において、他方の受圧部材5の外側端53と支持軸3の回転中心軸O1とを結ぶ線に対して進行方向側Dtに配置されるのが好ましく、他方の受圧部材5の外側端53と内側境界部56とを結ぶ線(後述の図4における破線)に対して進行方向側Dtに配置されるのがより好ましい。これにより、一対の受圧部材5の間に形成される通路の幅を適切に設定することができる。In addition, when a pair of pressure-receiving members 5 are arranged symmetrically, the inner end 54 of one pressure-receiving member 5 is preferably arranged on the traveling direction side Dt of a line connecting the outer end 53 of the other pressure-receiving member 5 and the central axis of rotation O1 of the support shaft 3 in a plan view perpendicular to the axial direction Da, and more preferably arranged on the traveling direction side Dt of a line connecting the outer end 53 of the other pressure-receiving member 5 and the inner boundary portion 56 (dashed line in Figure 4 described below). This allows the width of the passage formed between the pair of pressure-receiving members 5 to be appropriately set.

さらに、本実施形態では、複数の支持部材4の各々は、その平面視形状として、円弧曲面状の外側壁面部50に沿って形成された一対の外側壁面外形部40と、一対の外側壁面外形部40同士を結ぶように形成された一対の直線外形部41とを備える。したがって、複数の支持部材4の各々は、平面視において、平行に配置された2つの直線部分と、それら2つの直線部分の両端を半円状で接続する2つの曲線部分とで形成される。Furthermore, in this embodiment, each of the multiple support members 4 has, as its planar shape, a pair of outer wall surface contour portions 40 formed along the arc-shaped outer wall surface portion 50, and a pair of straight line contour portions 41 formed to connect the pair of outer wall surface contour portions 40. Therefore, each of the multiple support members 4 is formed, in planar view, with two straight line portions arranged in parallel and two curved line portions connecting both ends of the two straight line portions in a semicircular shape.

外側取付部57、中間取付部58及び内側取付部59は、外側壁面部50、中間壁面部51及び内側壁面部52に対して垂直に径方向外側Dr1に向かうようにそれぞれ形成されて、支持部材4の平板面と面接触し、任意の固定方法(溶接、接着、ねじ固定、リベット、継手等)により支持部材4に固定される。なお、取付部57~59は、壁面部50~52に対して、例えば、曲げ加工を施すことで一体的に形成されてもよいし、壁面部50~52とは別々の部品として形成されてもよい。また、外側取付部57は外側壁面部50に対して垂直に径方向内側Dr2に向かうように形成してもよい。本実施形態では、一対の受圧部材5の各々は、外側取付部57が、外側壁面部50とは別々の部品として形成されるとともに、中間取付部58及び内側取付部59が、中間取付部58及び内側取付部59と一体的に形成されたものである。The outer mounting portion 57, the intermediate mounting portion 58, and the inner mounting portion 59 are formed so as to face the radially outer side Dr1 perpendicularly to the outer wall surface portion 50, the intermediate wall surface portion 51, and the inner wall surface portion 52, respectively, and are in surface contact with the flat plate surface of the support member 4, and are fixed to the support member 4 by any fixing method (welding, adhesive, screw fixing, rivet, joint, etc.). The mounting portions 57-59 may be integrally formed with the wall surface portions 50-52, for example, by bending, or may be formed as separate parts from the wall surface portions 50-52. The outer mounting portion 57 may be formed so as to face the radially inner side Dr2 perpendicularly to the outer wall surface portion 50. In this embodiment, the outer mounting portion 57 of each of the pair of pressure-receiving members 5 is formed as a separate part from the outer wall surface portion 50, and the intermediate mounting portion 58 and the inner mounting portion 59 are formed integrally with the intermediate mounting portion 58 and the inner mounting portion 59.

上記の構成を有する垂直軸抗力型風力発電機1Aは、所定の方向(風上)から風を受けると、その風が、風下側の受圧部材5の外側端53と風上側の受圧部材5の内側端54との間を通過して、風下側の受圧部材5の外側壁面部50に沿って一対の受圧部材5の間に流れ込むことで、風下側の受圧部材5には、進行方向側Dtに回転させるように回転力(抗力)が作用する。そして、一対の受圧部材5の間に流れ込んだ風が、風下側の受圧部材5の中間壁面部51と風上側の受圧部材5の内側壁面部52との間、風上側及び風下側の受圧部材5の内側境界部56と支持軸3の外周面との間、風下側の受圧部材5の内側壁面部52と風上側の受圧部材5の中間壁面部51との間を順に通過した後、風上側の受圧部材5の外側壁面部50に沿って流れ出る。また、風上側の受圧部材5が、風上からの風を直接受けることで、その受圧部材5の外側壁面部50及び中間壁面部51を風下方向(進行方向反対側)に押圧するような回転力が発生する。一方、一対の受圧部材5の間に流れ込んだ風が風上側の受圧部材5の外側壁面部50に沿って流れ出るときに、その風を風上側の受圧部材5の外側壁面部50が受けることで、その受圧部材5の外側壁面部50を風上方向(進行方向側Dt)に押圧するような回転力が発生するため、進行方向反対側に作用する回転力の一部が、進行方向側Dtに作用する回転力により相殺される。When the vertical axis drag type wind power generator 1A having the above configuration receives wind from a predetermined direction (windward), the wind passes between the outer end 53 of the leeward pressure receiving member 5 and the inner end 54 of the windward pressure receiving member 5, and flows between the pair of pressure receiving members 5 along the outer wall surface portion 50 of the leeward pressure receiving member 5, so that a rotational force (resistance force) acts on the leeward pressure receiving member 5 to rotate it in the direction of travel Dt. Then, the wind that flows between the pair of pressure receiving members 5 passes between the intermediate wall surface portion 51 of the leeward pressure receiving member 5 and the inner wall surface portion 52 of the windward pressure receiving member 5, between the inner boundary portion 56 of the windward and leeward pressure receiving members 5 and the outer peripheral surface of the support shaft 3, and between the inner wall surface portion 52 of the leeward pressure receiving member 5 and the intermediate wall surface portion 51 of the windward pressure receiving member 5, in this order, and then flows out along the outer wall surface portion 50 of the windward pressure receiving member 5. Furthermore, when the windward-side pressure-receiving member 5 directly receives wind from upwind, a rotational force is generated that presses the outer wall surface portion 50 and the intermediate wall surface portion 51 of the pressure-receiving member 5 in the downwind direction (opposite the traveling direction). On the other hand, when the wind that has flowed in between the pair of pressure-receiving members 5 flows out along the outer wall surface portion 50 of the windward-side pressure-receiving member 5, the outer wall surface portion 50 of the windward-side pressure-receiving member 5 receives the wind, generating a rotational force that presses the outer wall surface portion 50 of the pressure-receiving member 5 in the upwind direction (traveling direction side Dt), so that a part of the rotational force acting in the opposite direction to the traveling direction is offset by the rotational force acting in the traveling direction side Dt.

このようにして、風下側の受圧部材5に対して進行方向側Dtに回転させるような回転力が作用し、その回転力(回転エネルギー)が支持部材4を介して支持軸3に伝達されて、支持軸3が回転される。そして、一対の受圧部材5は、風下側と風上側とを交互に入れ替えながら、一連の動作を繰り返し行うことで、支持軸3が連続的に回転されて、支持軸3に連結された発電ユニット20にて発電される。In this way, a rotational force acts on the leeward pressure-receiving member 5 to rotate it in the direction of travel Dt, and this rotational force (rotational energy) is transmitted to the support shaft 3 via the support member 4, causing the support shaft 3 to rotate. The pair of pressure-receiving members 5 then repeat a series of operations while alternating between the leeward and windward sides, causing the support shaft 3 to rotate continuously, and electricity to be generated by the power generation unit 20 connected to the support shaft 3.

(受圧部材5のパラメータ範囲)
図4は、第1の実施形態に係る垂直軸抗力型風力発電機1Aの配置例と各パラメータを示す概要図である。
(Parameter range of pressure-receiving member 5)
FIG. 4 is a schematic diagram showing an example of the layout and each parameter of the vertical axis drag type wind power generator 1A according to the first embodiment.

支持軸3の軸方向Daに垂直な平面視において、垂直軸抗力型風力発電機1Aの各部の配置や形状を特定するための各パラメータとして、
Dは、支持軸3の回転中心軸O1を中心とする外側端53の外接円の直径(外側端直径)、
dは、支持軸3の直径(支持軸直径)、
Rは、外側壁面部50の曲率半径、
sは、一方の受圧部材5の中間壁面部51と、他方の受圧部材5の内側端54との最短距離(第1の最短距離)、
tは、受圧部材5と、支持軸3の外周面との最短距離(第2の最短距離)、
θは、中間壁面部51と内側壁面部52とがなす角度、
であるものと定義する。上記の各パラメータ(D、d、R、s、t)は、各部の寸法に相当するため、正の値を取り得るものである。なお、曲率半径Rは、外側壁面部50が円弧曲面状である場合には、外側壁面部50の曲率半径に対応するパラメータであるが、外側壁面部50が多角面状である場合には、外側壁面部50の外接円弧の曲率半径に対応するパラメータとして扱うようにしてもよい。
In a plan view perpendicular to the axial direction Da of the support shaft 3, the parameters for specifying the arrangement and shape of each part of the vertical axis drag type wind power generator 1A are as follows:
D is the diameter (outer end diameter) of a circumscribing circle of the outer end 53 centered on the rotation central axis O1 of the support shaft 3,
d is the diameter of the support shaft 3 (support shaft diameter),
R is the radius of curvature of the outer wall portion 50,
s is the shortest distance (first shortest distance) between the intermediate wall surface portion 51 of one pressure-receiving member 5 and the inner end 54 of the other pressure-receiving member 5,
t is the shortest distance between the pressure-receiving member 5 and the outer circumferential surface of the support shaft 3 (second shortest distance),
θ is the angle between the intermediate wall portion 51 and the inner wall portion 52,
The above parameters (D, d, R, s, t) correspond to the dimensions of each part, and therefore can take positive values. Note that, when the outer wall surface portion 50 is a circular arc curved surface, the radius of curvature R is a parameter corresponding to the radius of curvature of the outer wall surface portion 50. However, when the outer wall surface portion 50 is a polygonal surface, the radius of curvature R may be treated as a parameter corresponding to the radius of curvature of the circumscribed arc of the outer wall surface portion 50.

図5A~図5Fは、受圧部材5のパラメータを変化させたときの出力係数Cpを示す分布図である。図6A~図6Fは、受圧部材5のパラメータを変化させたときの出力係数比Cp_ratioを示す分布図である。 Figures 5A to 5F are distribution diagrams showing the output coefficient Cp when the parameters of the pressure-receiving member 5 are changed. Figures 6A to 6F are distribution diagrams showing the output coefficient ratio Cp_ratio when the parameters of the pressure-receiving member 5 are changed.

垂直軸抗力型風力発電機1Aの出力係数Cpは、以下のように定義する。
Cp=P/(0.5×ρ×U3×D)
ただし、
Pは、垂直軸抗力型風力発電機1Aの高さ方向の単位幅あたりの出力、
ρは、空気密度、
Uは、風速である。
The output coefficient Cp of the vertical axis drag type wind power generator 1A is defined as follows.
Cp = P / (0.5 x ρ x U 3 x D)
however,
P is the output per unit width in the height direction of the vertical axis drag type wind turbine 1A,
ρ is the air density,
U is the wind speed.

垂直軸抗力型風力発電機1Aの出力係数比Cp_ratioは、以下のように定義する。
Cp_ratio=Cp/Cp_max
ただし、Cp_maxは、特定の条件でパラメータを変化させたときの出力係数Cpの最大値である。
The power coefficient ratio Cp_ratio of the vertical axis drag type wind power generator 1A is defined as follows.
Cp_ratio=Cp/Cp_max
Here, Cp_max is the maximum value of the output coefficient Cp when the parameters are changed under a specific condition.

垂直軸抗力型風力発電機1Aの周速比λは、以下のように定義する。
λ=V/U
ただし、Vは、外側端53の回転速度(周速)である。
The peripheral speed ratio λ of the vertical axis drag type wind power generator 1A is defined as follows.
λ=V/U
where V is the rotational speed (circumferential speed) of the outer end 53.

図5A~図5F及び図6A~図6Fに示す各分布図は、周速比λが0.8である場合の出力係数Cp及び出力係数比Cp_ratioをシミュレーションによりそれぞれ算出したものである。シミュレーションの実施条件として、外側端直径D、支持軸直径d及び曲率半径Rの比率(D:d:R)が、以下の6つの設定比率をそれぞれ満たす場合において、2つのパラメータである第1の最短距離s、第2の最短距離tをそれぞれ変化させたときの出力係数Cp及び出力係数比Cp_ratioを算出したものである。
(1)第1の設定比率: D=1、d/D=0.1、 R/D=0.15
(2)第2の設定比率: D=1、d/D=0.1、 R/D=0.20
(3)第3の設定比率: D=1、d/D=0.1、 R/D=0.25
(4)第4の設定比率: D=1、d/D=0.05、R/D=0.15
(5)第5の設定比率: D=1、d/D=0.05、R/D=0.20
(6)第6の設定比率: D=1、d/D=0.05、R/D=0.25
5A to 5F and 6A to 6F are distribution diagrams obtained by simulating the power coefficient Cp and the power coefficient ratio Cp_ratio when the peripheral speed ratio λ is 0.8. The power coefficient Cp and the power coefficient ratio Cp_ratio were calculated when the two parameters, the first shortest distance s and the second shortest distance t, were changed under the conditions for implementing the simulation, in which the ratio (D:d:R) of the outer end diameter D, the support shaft diameter d, and the curvature radius R satisfied the following six set ratios:
(1) First set ratio: D=1, d/D=0.1, R/D=0.15
(2) Second set ratio: D=1, d/D=0.1, R/D=0.20
(3) Third set ratio: D=1, d/D=0.1, R/D=0.25
(4) Fourth preset ratio: D=1, d/D=0.05, R/D=0.15
(5) Fifth preset ratio: D=1, d/D=0.05, R/D=0.20
(6) Sixth preset ratio: D=1, d/D=0.05, R/D=0.25

第1乃至第6の設定比率では、外側端直径Dを基準として、外側端直径D以外の他のパラメータ(支持軸直径d、曲率半径R)を正規化(1:d/D:R/D)している。例えば、第1の設定比率の場合、支持軸直径dは外側端直径Dに対して10%の比率となり、曲率半径Rは外側端直径Dに対して15%の比率となる。In the first to sixth set ratios, the outer end diameter D is used as the reference and the other parameters (support shaft diameter d, radius of curvature R) are normalized (1:d/D:R/D). For example, in the first set ratio, the support shaft diameter d is 10% of the outer end diameter D, and the radius of curvature R is 15% of the outer end diameter D.

図5A~図5F及び図6A~図6Fでは、横軸に第1のパラメータ比率s/Rを割り当て、縦軸に第2のパラメータ比率(d+2t)/Dを割り当てるとともに、色の薄い部分では、出力係数Cp及び出力係数比Cp_ratioが大きく、色の濃い部分では、出力係数Cp及び出力係数比Cp_ratioが小さいことを示す。したがって、第1のパラメータ比率s/R及び第2のパラメータ比率(d+2t)/Dが、以下の条件式(A1)、(B)、(C)及び(D)(好ましくは(A2)、(B)、(C)及び(D)、より好ましくは(A3)、(B)(C)及び(D))を満たす場合に出力係数Cp及び出力係数比Cp_ratioが安定的に大きくなることが分かった。 In Figures 5A to 5F and 6A to 6F, the first parameter ratio s/R is assigned to the horizontal axis and the second parameter ratio (d+2t)/D is assigned to the vertical axis, with lighter colored areas indicating larger output coefficient Cp and output coefficient ratio Cp_ratio and darker colored areas indicating smaller output coefficient Cp and output coefficient ratio Cp_ratio. Therefore, it was found that the output coefficient Cp and output coefficient ratio Cp_ratio become stably large when the first parameter ratio s/R and the second parameter ratio (d+2t)/D satisfy the following conditional expressions (A1), (B), (C) and (D) (preferably (A2), (B), (C) and (D), more preferably (A3), (B), (C) and (D)).

第1のパラメータ比率s/R及び第2のパラメータ比率(d+2t)/Dに対する条件式(A1)、(B)、(C)及び(D)は、以下のように定められる。条件式(A1)、(B)、(C)及び(D)により定まる領域Z1は、図5A~図5F及び図6A~図6Fの枠線で示すように、上記の6つの設定比率に対してそれぞれ特定される。
0.2≦(s/R)≦0.9 (A1)
(d+2t)/D≦(R/D)×(s/R)-(R/D)×0.5+0.2 (B)
(d+2t)/D>(R/D)×(s/R) (C)
(d+2t)/D>d/D (D)
The conditional expressions (A1), (B), (C) and (D) for the first parameter ratio s/R and the second parameter ratio (d+2t)/D are determined as follows: The region Z1 determined by the conditional expressions (A1), (B), (C) and (D) is specified for each of the six set ratios as shown by the frame lines in Figures 5A to 5F and 6A to 6F.
0.2≦(s/R)≦0.9 (A1)
(d+2t)/D≦(R/D)×(s/R)−(R/D)×0.5+0.2 (B)
(d+2t)/D>(R/D)×(s/R) (C)
(d+2t)/D>d/D (D)

好ましい条件式として、第1のパラメータ比率s/R及び第2のパラメータ比率(d+2t)/Dに対する条件式(A2)、(B)、(C)及び(D)は、以下のように定められる。条件式(A2)、(B)、(C)及び(D)により定まる領域Z2は、図5A~図5F及び図6A~図6Fの枠線で示すように、上記の6つの設定比率に対してそれぞれ特定される。
0.2≦(s/R)≦0.8 (A2)
(d+2t)/D≦(R/D)×(s/R)-(R/D)×0.5+0.2 (B)
(d+2t)/D>(R/D)×(s/R) (C)
(d+2t)/D>d/D (D)
As preferred conditional expressions, the conditional expressions (A2), (B), (C) and (D) for the first parameter ratio s/R and the second parameter ratio (d+2t)/D are defined as follows: The region Z2 defined by the conditional expressions (A2), (B), (C) and (D) is specified for each of the six set ratios described above, as shown by the frame lines in Figures 5A to 5F and 6A to 6F.
0.2≦(s/R)≦0.8 (A2)
(d+2t)/D≦(R/D)×(s/R)−(R/D)×0.5+0.2 (B)
(d+2t)/D>(R/D)×(s/R) (C)
(d+2t)/D>d/D (D)

より好ましい条件式として、第1のパラメータ比率s/R及び第2のパラメータ比率(d+2t)/Dに対する条件式(A3)、(B)、(C)及び(D)は、以下のように定められる。条件式(A3)、(B)、(C)及び(D)により定まる領域Z3は、図5A~図5F及び図6A~図6Fの枠線で示すように、上記の6つの設定比率に対してそれぞれ特定される。
0.4≦(s/R)≦0.6 (A3)
(d+2t)/D≦(R/D)×(s/R)-(R/D)×0.5+0.2 (B)
(d+2t)/D>(R/D)×(s/R) (C)
(d+2t)/D>d/D (D)
As more preferable conditional expressions, the conditional expressions (A3), (B), (C) and (D) for the first parameter ratio s/R and the second parameter ratio (d+2t)/D are defined as follows: The region Z3 defined by the conditional expressions (A3), (B), (C) and (D) is specified for each of the six set ratios described above, as shown by the frame lines in Figures 5A to 5F and 6A to 6F.
0.4≦(s/R)≦0.6 (A3)
(d+2t)/D≦(R/D)×(s/R)−(R/D)×0.5+0.2 (B)
(d+2t)/D>(R/D)×(s/R) (C)
(d+2t)/D>d/D (D)

上記の条件式(B)、(C)及び(D)は、以下の条件式(B1)、(C1)及び(D1)からそれぞれ変形されたものである。したがって、領域Z1~Z3は、条件式(B)、(C)及び(D)に代えて、条件式(B)、(C)及び(D)と等価な条件式(B1)、(C1)及び(D1)を用いて定めることができる。
d+2t≦s-0.5×R+0.2×D (B1)
d+2t>s (C1)
t>0 (D1)
The above conditional expressions (B), (C), and (D) are modifications of the following conditional expressions (B1), (C1), and (D1), respectively. Therefore, the regions Z1 to Z3 can be determined using conditional expressions (B1), (C1), and (D1) that are equivalent to the conditional expressions (B), (C), and (D), instead of the conditional expressions (B), (C), and (D).
d + 2t ≦ s − 0.5 × R + 0.2 × D (B1)
d+2t>s (C1)
t>0 (D1)

上記の条件式(C1)は、一方の受圧部材5の中間壁面部51と、他方の受圧部材5の内側端54との間の距離sが、支持軸直径dと、受圧部材5と支持軸3との間の距離tの2倍とを加算した値(d+2t)よりも小さいことを示す。これは、一対の受圧部材5の各々において、中間壁面部51と、内側壁面部52とは、内側境界部56を介して径方向外側Dr1に凸状となるように配置されることで、中間壁面部51と内側壁面部52とが、支持軸3側に鈍角(90°<θ<180°)を形成していることから、軸方向Daに垂直な平面視における一対の受圧部材5同士の間隔として、内側端54側では相対的に狭く、内側境界部56側では相対的に広くなることを特定するものである。言い換えると、一対の受圧部材5の各々は、中間壁面部51と内側壁面部52とが支持軸3側に鈍角(90°<θ<180°)を形成するように配置されるとともに、内側端54側の間隔(=s)よりも内側境界部56側の間隔(=d+2t)が広いことを特定するものである。これにより、支持軸3により装置の強度を確保しながら、一対の受圧部材5が、出力係数Cpの低下を招くことなく支持軸3を避けるように配置されるので、装置の性能と強度の向上を両立させることができる。また、上記の条件式(D1)は、第2の最短距離tが正の値であることを示す。The above conditional formula (C1) indicates that the distance s between the intermediate wall surface portion 51 of one pressure receiving member 5 and the inner end 54 of the other pressure receiving member 5 is smaller than the value (d + 2t) obtained by adding the support shaft diameter d and twice the distance t between the pressure receiving member 5 and the support shaft 3. This specifies that in each of the pair of pressure receiving members 5, the intermediate wall surface portion 51 and the inner wall surface portion 52 are arranged so as to be convex toward the radially outer side Dr1 via the inner boundary portion 56, and the intermediate wall surface portion 51 and the inner wall surface portion 52 form an obtuse angle (90° < θ < 180°) toward the support shaft 3 side, so that the distance between the pair of pressure receiving members 5 in a plan view perpendicular to the axial direction Da is relatively narrow on the inner end 54 side and relatively wide on the inner boundary portion 56 side. In other words, each of the pair of pressure-receiving members 5 is arranged such that the intermediate wall surface portion 51 and the inner wall surface portion 52 form an obtuse angle (90°<θ<180°) on the support shaft 3 side, and the distance (=d+2t) on the inner boundary portion 56 side is wider than the distance (=s) on the inner end 54 side. As a result, the pair of pressure-receiving members 5 are arranged to avoid the support shaft 3 without causing a decrease in the output coefficient Cp, while ensuring the strength of the device by the support shaft 3, thereby achieving both improved performance and strength of the device. Moreover, the above conditional formula (D1) indicates that the second shortest distance t is a positive value.

なお、第1のパラメータ比率s/R及び第2のパラメータ比率(d+2t)/Dに対する条件式は、条件式(B1)、(C1)及び(D1)(条件式(B)、(C)及び(D)でもよい)を満たしつつ、条件式(A1)~(A3)における下限値及び上限値の組み合わせを適宜変更してもよく、例えば、条件式(A1)~(A3)に代えて、以下の条件式(A4)、(A5)及び(A6)のいずれかを組み合わせるようにしてもよい。また、条件式(A1)~(A6)において、その下限値を0.3に変更してもよいし、その上限値を0.7に変更してもよい。
0.2≦(s/R)≦0.6 (A4)
0.4≦(s/R)≦0.9 (A5)
0.4≦(s/R)≦0.8 (A6)
The conditional expressions for the first parameter ratio s/R and the second parameter ratio (d+2t)/D may be such that the combination of the lower limit values and the upper limit values in the conditional expressions (A1) to (A3) is changed as appropriate while satisfying the conditional expressions (B1), (C1), and (D1) (or the conditional expressions (B), (C), and (D)). For example, instead of the conditional expressions (A1) to (A3), any of the following conditional expressions (A4), (A5), and (A6) may be combined. Also, in the conditional expressions (A1) to (A6), the lower limit values may be changed to 0.3 and the upper limit values may be changed to 0.7.
0.2≦(s/R)≦0.6 (A4)
0.4≦(s/R)≦0.9 (A5)
0.4≦(s/R)≦0.8 (A6)

また、第1のパラメータ比率s/R及び第2のパラメータ比率(d+2t)/Dに対する条件式は、以下の条件式(B2)をさらに組み合わせるようにしてもよい。
(d+2t)/D≦0.2 (B2)
Moreover, the conditional expression for the first parameter ratio s/R and the second parameter ratio (d+2t)/D may further include the following conditional expression (B2):
(d+2t)/D≦0.2 (B2)

さらに、外側端直径D、支持軸直径d及び曲率半径Rの比率は、上記の6つの設定比率に限られず適宜変更してもよく、例えば、外側端直径D(=1)を基準として正規化した場合において、第1のパラメータ比率s/R及び第2のパラメータ比率(d+2t)/Dが上記の条件式のいずれかを満たすとともに、支持軸直径dが、以下の条件式(E)の範囲内、及び、曲率半径Rが、以下の条件式(F)の範囲内である場合には、出力係数Cpの向上が見込まれる。その際、周速比λは、0.8に限られず、例えば、0.6~0.8のような範囲でも同様に、出力係数Cpの向上が見込まれる。
0.05≦d/D≦0.10 (E)
0.15≦R/D≦0.25 (F)
Furthermore, the ratios of the outer end diameter D, the support shaft diameter d, and the curvature radius R are not limited to the six set ratios described above and may be changed as appropriate. For example, when normalized with the outer end diameter D (=1) as a reference, if the first parameter ratio s/R and the second parameter ratio (d+2t)/D satisfy any of the above conditional expressions, and the support shaft diameter d is within the range of the following conditional expression (E) and the curvature radius R is within the range of the following conditional expression (F), an improvement in the power coefficient Cp is expected. In this case, the circumferential speed ratio λ is not limited to 0.8, and an improvement in the power coefficient Cp is also expected in the same manner, for example, in a range of 0.6 to 0.8.
0.05≦d/D≦0.10 (E)
0.15≦R/D≦0.25 (F)

ここでは、垂直軸抗力型風力発電機1Aにおける各パラメータ(D、d、R、s、t)として、外側端直径D(=1)により他のパラメータ(支持軸直径d、曲率半径R、第1の最短距離s、第2の最短距離t)が正規化されたものとして説明したが、各パラメータ(D、d、R、s、t)が条件式を満たすときの具体的な数値(実寸法)は、複数の実施例にて実現されるものある。例えば、各パラメータ(D、d、R、s、t)が、第2の設定比率において、図5A~図5Fの白抜きの黒丸で示す条件(s/R=0.5、(d+2t)/D=0.1)で規定されるとき、各パラメータは、以下の(S)で特定されるとともに、実寸法としては、例えば、以下の(S1)~(S3)に示すように、複数の実施例が含まれる。
(S)D=1、d/D=0.1、R/D=0.2、s/D=0.1、t/D=0.025
(S1)D= 1m、d=0.1m、R=0.2m、s=0.1m、t=0.025m
(S2)D= 5m、d=0.5m、R= 1m、s=0.5m、t=0.125m
(S3)D=10m、d= 1m、R= 2m、s= 1m、t=0.25m
Here, the parameters (D, d, R, s, t) of the vertical axis drag type wind power generator 1A are normalized by the outer end diameter D (=1) while the other parameters (support shaft diameter d, radius of curvature R, first shortest distance s, second shortest distance t) are normalized by the outer end diameter D (=1). However, the specific numerical values (actual dimensions) when the parameters (D, d, R, s, t) satisfy the conditional expressions are realized in a number of examples. For example, when the parameters (D, d, R, s, t) are defined by the conditions (s/R=0.5, (d+2t)/D=0.1) shown by the open black circles in Figures 5A to 5F in the second set ratio, the parameters are specified by the following (S), and the actual dimensions include a number of examples as shown in the following (S1) to (S3).
(S) D = 1, d/D = 0.1, R/D = 0.2, s/D = 0.1, t/D = 0.025
(S1) D = 1 m, d = 0.1 m, R = 0.2 m, s = 0.1 m, t = 0.025 m
(S2) D = 5 m, d = 0.5 m, R = 1 m, s = 0.5 m, t = 0.125 m
(S3) D = 10 m, d = 1 m, R = 2 m, s = 1 m, t = 0.25 m

以上のように、本実施形態に係る垂直軸抗力型風力発電機1Aによれば、複数の受圧部材5の各々が、支持軸3の軸方向Daに垂直な平面視において、径方向外側Dr1に配置される外側端53と、支持軸3に対して外側端53の反対側で外側端53よりも径方向内側Dr2に配置される内側端54との間に延設される壁面部50~52として、外側端53から、進行方向側Dtかつ支持軸3寄りに延設されて、径方向外側Dr1に膨出する凸面状に形成された外側壁面部50と、外側壁面部50から、進行方向側Dtかつ支持軸3寄りに延設されて、外側壁面部50よりも緩やかに径方向外側Dr1に膨出する凸面状又は平面状に形成された中間壁面部51と、中間壁面部51から、中間壁面部51よりも進行方向側Dtに配置された内側端54に延設されて、径方向外側Dr1に膨出する凸面状又は平面状に形成された内側壁面部52とを有する。As described above, according to the vertical-axis drag-type wind power generator 1A of this embodiment, each of the multiple pressure-receiving members 5 is, in a plan view perpendicular to the axial direction Da of the support shaft 3, an outer end 53 arranged on the radially outer side Dr1, and an inner end 54 arranged on the opposite side of the outer end 53 with respect to the support shaft 3 and radially inner than the outer end 53 Dr2, as wall surface portions 50-52 that extend from the outer end 53 toward the traveling direction side Dt and the support shaft 3, and are arranged on the radially outer side D The shaft 50 has an outer wall surface portion 50 formed in a convex shape bulging in the direction r1, an intermediate wall surface portion 51 extending from the outer wall surface portion 50 toward the travel direction side Dt and toward the support shaft 3, and formed in a convex or flat shape bulging radially outward Dr1 more gently than the outer wall surface portion 50, and an inner wall surface portion 52 extending from the intermediate wall surface portion 51 to an inner end 54 positioned on the travel direction side Dt of the intermediate wall surface portion 51, and formed in a convex or flat shape bulging radially outward Dr1.

これにより、複数の受圧部材5は、支持軸3に固定された複数の支持部材4により支持されることにより、装置全体では、モノコック構造をなすように構成されるとともに、支持軸3と複数の受圧部材5との間に間隙を形成するように配置される。そして、所定の方向から流体の流れを受けたとき、その流体は、外側端53から外側壁面部50に沿って流れ込み、支持軸3と中間壁面部51及び内側壁面部52との間を通過し、内側端54から流れ出る。そのため、装置の性能と強度の向上を両立させることができる。 As a result, the multiple pressure-receiving members 5 are supported by the multiple support members 4 fixed to the support shaft 3, so that the entire device is configured to form a monocoque structure and is arranged to form gaps between the support shaft 3 and the multiple pressure-receiving members 5. When a fluid flows from a predetermined direction, the fluid flows in from the outer end 53 along the outer wall surface portion 50, passes between the support shaft 3 and the intermediate wall surface portion 51 and inner wall surface portion 52, and flows out from the inner end 54. This makes it possible to achieve both improved performance and strength of the device.

また、支持部材4が、一対の直線外形部41により平行な直線状に形成されるので、例えば、垂直軸抗力型風力発電機1Aの製作時や搬送時に、直線外形部41を仮置面として横置きしたり、複数の垂直軸抗力型風力発電機1Aがそれぞれ有する支持部材4の直線外形部41同士を対向させることで縦積みしたりすることができる。In addition, since the support member 4 is formed in a parallel straight line by a pair of straight outer portions 41, for example, when manufacturing or transporting the vertical axis resistance type wind power generator 1A, the straight outer portion 41 can be placed horizontally as a temporary placement surface, or multiple vertical axis resistance type wind power generators 1A can be stacked vertically by arranging the straight outer portions 41 of the support members 4 of each generator facing each other.

(第2の実施形態)
図7は、第2の実施形態に係る垂直軸抗力型風力発電機1Bの一例を示す全体斜視図である。図8は、第2の実施形態に係る垂直軸抗力型風力発電機1Bの一例を示す部分分解斜視図である。図9は、第2の実施形態に係る垂直軸抗力型風力発電機1Bの一例を示す横断面図である。
Second Embodiment
Fig. 7 is an overall perspective view showing an example of a vertical axis drag type wind power generator 1B according to the second embodiment. Fig. 8 is a partially exploded perspective view showing an example of a vertical axis drag type wind power generator 1B according to the second embodiment. Fig. 9 is a cross-sectional view showing an example of a vertical axis drag type wind power generator 1B according to the second embodiment.

本実施形態に係る垂直軸抗力型風力発電機1Bは、支持部材4の平面視形状が第1の実施形態と相違し、その他の基本的な構成は、第1の実施形態と同様である。以下では、本実施形態の特徴を中心に説明する。The vertical axis drag type wind power generator 1B according to this embodiment differs from the first embodiment in the planar shape of the support member 4, but the other basic configurations are the same as those of the first embodiment. The following mainly describes the features of this embodiment.

複数の支持部材4の各々は、その平面視形状として、軸方向Daに垂直な平面視(図9参照)において、一対の受圧部材5がそれぞれ有する外側壁面部50に沿って形成された一対の外側壁面外形部40と、一対の受圧部材5がそれぞれ有する中間壁面部51に沿って形成された一対の中間壁面外形部42と、一対の受圧部材5材がそれぞれ有する内側壁面部52に沿って形成された一対の内側壁面外形部43と、一対の外側壁面外形部40と一対の内側壁面外形部43とをそれぞれを結ぶように形成された一対の直線外形部44とを備える。Each of the multiple support members 4 has a planar shape, in a planar view perpendicular to the axial direction Da (see Figure 9), which includes a pair of outer wall surface contour portions 40 formed along the outer wall surface portions 50 of each of the pair of pressure-receiving members 5, a pair of intermediate wall surface contour portions 42 formed along the intermediate wall surface portions 51 of each of the pair of pressure-receiving members 5, a pair of inner wall surface contour portions 43 formed along the inner wall surface portions 52 of each of the pair of pressure-receiving members 5, and a pair of straight line contour portions 44 formed to connect the pair of outer wall surface contour portions 40 and the pair of inner wall surface contour portions 43, respectively.

以上のように、本実施形態に係る垂直軸抗力型風力発電機1Bによれば、支持部材4が、外側壁面部50、中間壁面部51及び内側壁面部52に沿うように形成されるので、平面視における支持部材4の面積を小さくすることができる。そのため、装置の軽量化を図るとともに、支持部材4への積雪を小さくすることができ、積雪による破損の防止を図ることができる。As described above, in the vertical axis drag type wind power generator 1B according to this embodiment, the support member 4 is formed to fit along the outer wall surface portion 50, the intermediate wall surface portion 51, and the inner wall surface portion 52, so that the area of the support member 4 in a plan view can be reduced. This makes it possible to reduce the weight of the device and reduce snow accumulation on the support member 4, thereby preventing damage due to snow accumulation.

(第3の実施形態)
図10は、第3の実施形態に係る垂直軸抗力型風力発電機1Cの一例を示す全体斜視図である。
Third Embodiment
FIG. 10 is an overall perspective view showing an example of a vertical axis resistance type wind power generator 1C according to the third embodiment.

本実施形態に係る垂直軸抗力型風力発電機1Cは、複数の支持部材4(本実施形態では、4つ)として、異なる平面視形状を有する支持部材4A、4Bを備える点で第1及び第2の実施形態と相違し、その他の基本的な構成は、第1及び第2の実施形態と同様である。以下では、本実施形態の特徴を中心に説明する。The vertical axis drag type wind power generator 1C according to this embodiment differs from the first and second embodiments in that it includes support members 4A and 4B having different shapes in plan view as the multiple support members 4 (four in this embodiment), but the other basic configurations are the same as those of the first and second embodiments. The following mainly describes the features of this embodiment.

4つの支持部材4のうち、軸方向Daの両端に配置される2つの支持部材4Aは、第1の実施形態と同一の支持部材4で構成され、それら支持部材4Aの間に配置される2つの支持部材4Bは、第2の実施形態と同一の支持部材4で構成される。Of the four support members 4, the two support members 4A arranged at both ends of the axial direction Da are composed of the same support members 4 as in the first embodiment, and the two support members 4B arranged between these support members 4A are composed of the same support members 4 as in the second embodiment.

以上のように、本実施形態に係る垂直軸抗力型風力発電機1Cによれば、異なる平面視形状を有する支持部材4A、4Bを組み合わせて構成することができる。As described above, the vertical axis resistance type wind turbine 1C of this embodiment can be configured by combining support members 4A and 4B having different planar shapes.

(第4の実施形態)
図11は、第4の実施形態に係る垂直軸抗力型風力発電機1Dの一例を示す全体斜視図である。図12は、第4の実施形態に係る垂直軸抗力型風力発電機1Dの一例を示す横断面図である。
Fourth Embodiment
Fig. 11 is an overall perspective view showing an example of a vertical axis drag type wind power generator 1D according to the fourth embodiment. Fig. 12 is a cross-sectional view showing an example of a vertical axis drag type wind power generator 1D according to the fourth embodiment.

本実施形態に係る垂直軸抗力型風力発電機1Dは、複数の受圧部材5(本実施形態では、2つ)の各々が、中間壁面部51に対して回動可動な内側壁面部52を有する点で第1の実施形態と相違し、その他の基本的な構成は、第1の実施形態と同様である。以下では、本実施形態の特徴を中心に説明する。The vertical axis drag type wind power generator 1D according to this embodiment differs from the first embodiment in that each of the multiple pressure receiving members 5 (two in this embodiment) has an inner wall surface portion 52 that can rotate relative to the intermediate wall surface portion 51, but the other basic configuration is the same as that of the first embodiment. The following mainly describes the features of this embodiment.

一対の受圧部材5の各々は、図11及び図12に示すように、外側壁面部50、外側境界部55及び中間壁面部51が一体的に形成されるとともに、外側取付部57及び中間取付部58を介して複数の支持部材4に固定される。また、その一体的に形成された外側壁面部50、外側境界部55及び中間壁面部51は、内側境界部56を介して内側壁面部52を支持する。11 and 12, each of the pair of pressure-receiving members 5 has an outer wall surface portion 50, an outer boundary portion 55, and an intermediate wall surface portion 51 that are integrally formed, and is fixed to a plurality of support members 4 via an outer mounting portion 57 and an intermediate mounting portion 58. The integrally formed outer wall surface portion 50, outer boundary portion 55, and intermediate wall surface portion 51 support the inner wall surface portion 52 via the inner boundary portion 56.

内側境界部56は、支持軸3と平行な内側壁面部回動軸O2を中心にして内側壁面部52を回動可能に支持する回動支持機構部560を備える。回動支持機構部560は、軸方向Daに垂直な平面視において、内側壁面部回動軸O2を中心にして内側端54の位置を変更可能とする部品で構成され、例えば、蝶番や弾性部品等で構成される。また、回動支持機構部560は、内側壁面部52を進行方向側Dtに回動させるように付勢する付勢部材561と、付勢部材561により付勢された内側壁面部52の回動を規制するストッパ部材562とを備える。付勢部材561は、内側壁面部52を付勢するときの付勢力により、内側端54の位置を調節する調節部として機能する。The inner boundary portion 56 includes a pivot support mechanism 560 that supports the inner wall portion 52 rotatably around the inner wall portion pivot axis O2 that is parallel to the support shaft 3. The pivot support mechanism 560 is composed of parts that allow the position of the inner end 54 to be changed around the inner wall portion pivot axis O2 in a plan view perpendicular to the axial direction Da, and is composed of, for example, hinges and elastic parts. The pivot support mechanism 560 also includes a biasing member 561 that biases the inner wall portion 52 to rotate toward the traveling direction side Dt, and a stopper member 562 that restricts the rotation of the inner wall portion 52 biased by the biasing member 561. The biasing member 561 functions as an adjustment part that adjusts the position of the inner end 54 by the biasing force when biasing the inner wall portion 52.

内側壁面部52は、回動支持機構部560を介して中間壁面部51に支持される。内側端54は、内側壁面部52が付勢部材561により付勢されてストッパ部材562に当接することで初期位置P1に位置決めされる。そして、付勢部材561の付勢力を超える遠心力が内側壁面部52に作用したとき、内側壁面部52は、進行方向反対側に回動されることで、内側端54は、その遠心力の大きさに応じて、例えば、中間壁面部51の延長線上に位置する中間位置P2や、中間壁面部51の延長線よりも進行方向反対側に位置する開位置P3に移動される。開位置P3は、内側壁面部52が進行方向反対側に回動されたときの内側端54の限界位置であり、図12のように、支持部材4の内側に設定されてもよいし、支持部材4の外側に設定されてもよい。その際、開位置P3は、例えば、内側壁面部52と中間壁面部51とがなす角度が90度になる位置に設定されてもよい。また、回動支持機構部560は、内側端54が開位置P3を超えて移動しないように規制する規制部材(不図示)を備えていてもよい。さらに、回動支持機構部560は、内側壁面部52に作用する遠心力を調整するために、内側壁面部52の内側端54側、かつ径方向内側Dr2側にウェイト部材(錘)を備えていてもよい。The inner wall surface portion 52 is supported by the intermediate wall surface portion 51 via the pivot support mechanism portion 560. The inner end 54 is positioned at the initial position P1 when the inner wall surface portion 52 is biased by the biasing member 561 and abuts against the stopper member 562. When a centrifugal force exceeding the biasing force of the biasing member 561 acts on the inner wall surface portion 52, the inner wall surface portion 52 is rotated in the opposite direction to the traveling direction, and the inner end 54 is moved to, for example, an intermediate position P2 located on the extension line of the intermediate wall surface portion 51 or an open position P3 located on the opposite side to the traveling direction from the extension line of the intermediate wall surface portion 51, depending on the magnitude of the centrifugal force. The open position P3 is the limit position of the inner end 54 when the inner wall surface portion 52 is rotated in the opposite direction to the traveling direction, and may be set inside the support member 4 or outside the support member 4 as shown in FIG. 12. In this case, the open position P3 may be set to a position where the angle between the inner wall surface portion 52 and the intermediate wall surface portion 51 is 90 degrees, for example. The rotation support mechanism 560 may also include a restricting member (not shown) that restricts the inner end 54 from moving beyond the open position P3. Furthermore, the rotation support mechanism 560 may also include a weight member (weight) on the inner end 54 side of the inner wall surface portion 52 and on the radially inner side Dr2 side in order to adjust the centrifugal force acting on the inner wall surface portion 52.

なお、回動支持機構部560は、内側端54の位置調節部として、付勢部材561に代えて又は加えて、モータやシリンダ等のアクチュエータを備えることにより自動で調節するものでもよい。また、回動支持機構部560は、付勢部材561に代えて又は加えて、内側壁面部52又はストッパ部材562に磁石を備えることにより、磁力によって内側壁面部52が初期位置P1に位置決めされる構成としてもよい。この場合、磁石の磁力を超える遠心力が内側壁面部52に作用したとき、内側壁面部52は、進行方向反対側に回動されることで、内側端54は、その遠心力の大きさに応じて、中間位置P2や開位置P3に移動される。また、回動支持機構部560は、付勢部材561、アクチュエータ及び磁石の有無に関わらず、内側端54の位置を手動で調節し、例えば、内側端54の位置を初期位置P1、中間位置P2又は開位置P3に固定されるものでもよいし、初期位置P1と開位置P3との間の任意の位置に固定されるものでもよい。The pivot support mechanism 560 may be configured to automatically adjust the position of the inner end 54 by providing an actuator such as a motor or cylinder instead of or in addition to the biasing member 561. The pivot support mechanism 560 may also be configured to provide a magnet on the inner wall portion 52 or the stopper member 562 instead of or in addition to the biasing member 561, so that the inner wall portion 52 is positioned at the initial position P1 by magnetic force. In this case, when a centrifugal force exceeding the magnetic force of the magnet acts on the inner wall portion 52, the inner wall portion 52 is pivoted in the opposite direction to the traveling direction, and the inner end 54 is moved to the intermediate position P2 or the open position P3 depending on the magnitude of the centrifugal force. In addition, the pivoting support mechanism 560, regardless of whether or not a biasing member 561, an actuator, and a magnet are included, allows the position of the inner end 54 to be manually adjusted, and may, for example, fix the position of the inner end 54 to the initial position P1, the intermediate position P2, or the open position P3, or may fix the position of the inner end 54 to any position between the initial position P1 and the open position P3.

以上のように、本実施形態に係る垂直軸抗力型風力発電機1Dによれば、回動支持機構部560が、内側壁面部回動軸O2を中心にして内側壁面部52を回動可能に支持するので、内側端54の位置を調節することができる。そのため、内側端54の位置に応じて、受圧部材5に発生する回転力を変更することができ、内側端54の位置が中間位置P2又は開位置P3に近づくほど受圧部材5に発生する回転力は小さくなるので、垂直軸抗力型風力発電機1Dの空力的ブレーキとして機能させることができる。As described above, according to the vertical axis drag type wind power generator 1D of this embodiment, the pivotal support mechanism 560 rotatably supports the inner wall surface portion 52 around the inner wall surface portion pivot axis O2, so that the position of the inner end 54 can be adjusted. Therefore, the rotational force generated in the pressure-receiving member 5 can be changed according to the position of the inner end 54, and the closer the position of the inner end 54 is to the intermediate position P2 or the open position P3, the smaller the rotational force generated in the pressure-receiving member 5 becomes, so that the vertical axis drag type wind power generator 1D can function as an aerodynamic brake.

また、垂直軸抗力型風力発電機1Dのフェザリング時のように、所定の方向から風を受けたときの回転トルクを最小にして垂直軸抗力型風力発電機1Dの回転を停止させる場合に、内側壁面部52を中間位置P2又は開位置P3に移動させることで、受圧部材5に発生する回転力を抑制することができるので、フェザリング時の姿勢を安定させることができる。 In addition, when the rotation of the vertical axis drag type wind generator 1D is stopped by minimizing the rotational torque when receiving wind from a specified direction, such as when the vertical axis drag type wind generator 1D is feathering, the rotational force generated in the pressure-receiving member 5 can be suppressed by moving the inner wall portion 52 to the intermediate position P2 or the open position P3, thereby stabilizing the posture during feathering.

さらに、回動支持機構部560が、内側壁面部52を付勢する付勢部材561を備えるので、例えば、強風や暴風により、付勢部材561の付勢力を超える遠心力が内側壁面部52に作用すると、内側端54の位置は、進行方向反対側に回動されて、中間位置P2又は開位置P3に近づくため、受圧部材5に発生する回転力を小さくすることができる。そのため、垂直軸抗力型風力発電機1Dの過回転を防止することができる。Furthermore, since the pivoting support mechanism 560 includes a biasing member 561 that biases the inner wall surface 52, when a centrifugal force exceeding the biasing force of the biasing member 561 acts on the inner wall surface 52 due to, for example, a strong wind or storm, the position of the inner end 54 is rotated to the opposite side of the traveling direction and approaches the intermediate position P2 or the open position P3, thereby reducing the rotational force generated in the pressure-receiving member 5. This makes it possible to prevent over-rotation of the vertical axis drag type wind turbine 1D.

(第5の実施形態)
図13は、第5の実施形態に係る垂直軸抗力型風力発電機1Eの一例を示す全体斜視図である。
Fifth Embodiment
FIG. 13 is an overall perspective view showing an example of a vertical axis resistance type wind power generator 1E according to the fifth embodiment.

本実施形態に係る垂直軸抗力型風力発電機1Eは、支持軸3、複数の支持部材4(本実施形態では、3つ)及び複数の受圧部材5(本実施形態では、4つ(二対))を1つの抗力型タービンユニット10として、複数の抗力型タービンユニット10を備えることで、タンデム構造を有する点で第1の実施形態と相違し、その他の基本的な構成は、第1の実施形態と同様である。以下では、本実施形態の特徴を中心に説明する。The vertical axis drag type wind turbine generator 1E according to this embodiment differs from the first embodiment in that it has a tandem structure with multiple drag type turbine units 10, with a support shaft 3, multiple support members 4 (three in this embodiment), and multiple pressure-receiving members 5 (four (two pairs) in this embodiment) forming one drag type turbine unit 10. The other basic configuration is the same as that of the first embodiment. The following will focus on the features of this embodiment.

支持軸3は、複数の抗力型タービンユニット10がそれぞれ備える支持軸3が同軸上に配置されたときに隣接される支持軸3同士を着脱可能に連結する連結機構部31を備える。また、支持部材4は、複数の抗力型タービンユニット10がそれぞれ備える支持軸3が同軸上に配置されたときに隣接される支持部材4同士を着脱可能に連結する連結機構部45を備える。支持軸3の連結機構部31及び支持部材4の連結機構部45は、例えば、任意の連結方法(ねじ固定、リベット、ピン結合、継手等)により支持軸3同士又は支持部材4同士を連結するものであり、例えば、工具により着脱可能とするものでもよいし、工具が不要なワンタッチで着脱可能とするものでもよい。なお、支持軸3の連結機構部31及び支持部材4の連結機構部45の一方は省略されてもよい。The support shaft 3 is provided with a coupling mechanism 31 that detachably couples adjacent support shafts 3 when the support shafts 3 of the drag turbine units 10 are arranged coaxially. The support member 4 is provided with a coupling mechanism 45 that detachably couples adjacent support members 4 when the support shafts 3 of the drag turbine units 10 are arranged coaxially. The coupling mechanism 31 of the support shaft 3 and the coupling mechanism 45 of the support member 4 couple the support shafts 3 or the support members 4 by any coupling method (screw fixing, rivet, pin coupling, joint, etc.), and may be, for example, detachable with a tool or detachable with one touch without the need for tools. One of the coupling mechanism 31 of the support shaft 3 and the coupling mechanism 45 of the support member 4 may be omitted.

なお、本実施形態では、垂直軸抗力型風力発電機1Eは、図13に示すように、2組の抗力型タービンユニット10を備える場合について説明するが、抗力型タービンユニット10の組数は、3組以上でもよい。また、複数の抗力型タービンユニット10が、支持軸3の連結機構部31及び支持部材4の連結機構部45の少なくと一方を介して連結されたとき、複数の抗力型タービンユニット10がそれぞれ備える受圧部材5は、図11に示すように、同一の向きに配置されるようにしてもよいし、異なる向きに配置されてもよく、その場合、例えば、90度ずつずらすようにしてもよいし、螺旋状にずらすようにしてもよい。また、抗力型タービンユニット10を構成する支持部材4及び受圧部材5の数は適宜変更してもよく、例えば、抗力型タービンユニット10を、2つの支持部材4と、2つ(一対)の受圧部材5とで構成するようにしてもよい。さらに、支持部材4及び受圧部材5の少なくとも一方の数が異なるような複数種類の抗力型タービンユニット10を連結するようにしてもよい。In this embodiment, the vertical axis drag type wind power generator 1E is described as having two drag type turbine units 10 as shown in FIG. 13, but the number of drag type turbine units 10 may be three or more. When multiple drag type turbine units 10 are connected via at least one of the connection mechanism part 31 of the support shaft 3 and the connection mechanism part 45 of the support member 4, the pressure receiving members 5 of each of the multiple drag type turbine units 10 may be arranged in the same direction as shown in FIG. 11, or in different directions. In that case, for example, they may be shifted by 90 degrees or may be shifted in a spiral shape. The number of support members 4 and pressure receiving members 5 constituting the drag type turbine unit 10 may be changed as appropriate. For example, the drag type turbine unit 10 may be composed of two support members 4 and two (a pair) pressure receiving members 5. Furthermore, multiple types of drag type turbine units 10 in which the number of at least one of the support members 4 and the pressure receiving members 5 is different may be connected.

以上のように、本実施形態に係る垂直軸抗力型風力発電機1Eによれば、複数の抗力型タービンユニット10が連結することで、1つの垂直軸抗力型風力発電機1Eが構成されるので、抗力型タービンユニット10のユニット数に応じて、垂直軸抗力型風力発電機1Eとしての発電出力を変更することができる。As described above, according to the vertical axis drag type wind generator 1E of this embodiment, a single vertical axis drag type wind generator 1E is formed by connecting multiple drag type turbine units 10, so that the power generation output of the vertical axis drag type wind generator 1E can be changed depending on the number of drag type turbine units 10.

(他の実施形態)
上記のように、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で適宜変更可能である。
Other Embodiments
As described above, the embodiment of the present invention has been described, but the present invention is not limited to the above embodiment, and can be modified as appropriate without departing from the technical concept of the present invention.

上記実施形態では、各実施形態の垂直軸抗力型風力発電機1A~1Eが有する特徴をそれぞれ説明したが、各実施形態の特徴を適宜組み合わせてもよく、第1乃至第5の実施形態のうち、任意の2つ以上を適宜組み合わせてもよいし、全てを組み合わせてもよい。例えば、第2又は第3の実施形態に係る垂直軸抗力型風力発電機1B、1Cが、第4の実施形態に係る回動支持機構部560を備えるようにしてもよいし、第2乃至第4の実施形態に係る垂直軸抗力型風力発電機1B~1Dが、第5の実施形態に係るタンデム構造を採用してもよい。In the above embodiment, the features of the vertical axis drag wind power generators 1A to 1E of each embodiment have been described, but the features of each embodiment may be appropriately combined, and any two or more of the first to fifth embodiments may be appropriately combined, or all of them may be combined. For example, the vertical axis drag wind power generators 1B and 1C of the second or third embodiment may be equipped with the pivot support mechanism 560 of the fourth embodiment, and the vertical axis drag wind power generators 1B to 1D of the second to fourth embodiments may adopt the tandem structure of the fifth embodiment.

上記実施形態では、複数の支持部材4として、3つ又は4つの支持部材4を備える場合について説明したが、支持部材4の数は、2つでもよいし、5つ以上でもよい。In the above embodiment, a case has been described in which the multiple support members 4 include three or four support members 4, but the number of support members 4 may be two or five or more.

上記実施形態では、受圧部材5が、回転中心軸O1を中心として時計回りに回転する場合について説明したが、反時計回りに回転するようにしてもよく、その場合には、支持部材4及び受圧部材5の形状を反転させればよい。In the above embodiment, the pressure-receiving member 5 rotates clockwise around the central rotation axis O1, but it may also rotate counterclockwise, in which case the shapes of the support member 4 and the pressure-receiving member 5 can be inverted.

上記実施形態では、複数の受圧部材5として、一対(2つ)の受圧部材5を備える場合について説明したが、受圧部材5の数は、3つ以上でもよく、その場合には、支持軸3の周囲に等間隔に、かつ、支持軸3に対して対称的に配置すればよい。In the above embodiment, a pair (two) of pressure-receiving members 5 is provided as the multiple pressure-receiving members 5, but the number of pressure-receiving members 5 may be three or more, in which case they may be arranged at equal intervals around the support shaft 3 and symmetrically with respect to the support shaft 3.

上記実施形態では、支持部材4は、例えば、平板材で構成される場合について説明したが、支持部材4は、その一部を貫通するような任意の形状の貫通孔を備えるものでもよい。貫通孔の数は、複数でもよく、その場合には、支持軸3に対して対称的に配置されるようにすればよい。これにより、装置の軽量化を図るとともに、支持部材4への積雪を小さくすることができ、積雪による破損の防止を図ることができる。In the above embodiment, the support member 4 is described as being made of, for example, a flat plate material, but the support member 4 may have a through hole of any shape that passes through a portion of it. The number of through holes may be multiple, and in that case, they may be arranged symmetrically with respect to the support shaft 3. This reduces the weight of the device and reduces the amount of snow that accumulates on the support member 4, preventing damage caused by snow accumulation.

上記実施形態では、支持軸3(回転中心軸O1)を、設置面に対して垂直(鉛直)に配置した、すなわち、鉛直方向に対して平行に配置したものとして説明したが、鉛直方向に対して斜めに配置してもよいし、鉛直方向に対して直角に、すなわち、水平方向に配置してもよい。In the above embodiment, the support axis 3 (rotation center axis O1) is described as being arranged perpendicular (vertical) to the installation surface, i.e., parallel to the vertical direction, but it may be arranged diagonally to the vertical direction, or perpendicular to the vertical direction, i.e., horizontally.

上記実施形態では、抗力型タービン装置の適用例の1つとして、抗力型タービン装置を用いた垂直軸抗力型風力発電機1A~1Eについて説明したが、支持軸3を発電ユニット20に連結することに代えて、支持軸3をポンプ等の回転機械に連結することにより、抗力型タービン装置を用いた風力回転装置としてもよい。In the above embodiment, the vertical axis drag type wind generators 1A to 1E using a drag type turbine device have been described as one application example of a drag type turbine device. However, instead of connecting the support shaft 3 to the power generation unit 20, the support shaft 3 may be connected to a rotating machine such as a pump to create a wind power rotating device using a drag type turbine device.

上記実施形態では、抗力型タービン装置の適用例の1つとして、抗力型タービン装置を用いた垂直軸抗力型風力発電機1A~1Eについて説明したが、エネルギー源として、風(空気流)を用いることに代えて、水流、波、潮流等を用いることにより、抗力型タービン装置を用いた水力発電機又は潮力発電機としてもよいし、さらに支持軸3を発電ユニット20に連結することに代えて、支持軸3をポンプ等の回転機械に連結することにより、抗力型タービン装置を用いた水力回転装置又は潮力回転装置としてもよい。In the above embodiment, the vertical axis drag type wind generators 1A to 1E using a drag type turbine device have been described as one application example of a drag type turbine device. However, instead of using wind (air flow) as the energy source, water currents, waves, tides, etc. may be used to create a hydroelectric generator or a tidal power generator using a drag type turbine device. Furthermore, instead of connecting the support shaft 3 to the power generation unit 20, the support shaft 3 may be connected to a rotating machine such as a pump to create a hydroelectric rotating device or a tidal power rotating device using a drag type turbine device.

1A~1E…垂直軸抗力型風力発電機(抗力型タービン装置)、2…支持筐体、
3…支持軸、4、4A、4B…支持部材、5…受圧部材、
10…抗力型タービンユニット、20…発電ユニット、
30…連結固定部材、31…連結機構部、
40…外側壁面外形部、41…直線外形部、42…中間壁面外形部、
43…内側壁面外形部、44…直線外形部、45…連結機構部
50…外側壁面部、51…中間壁面部、52…内側壁面部
53…外側端、54…内側端、55…外側境界部、56…内側境界部、
57…外側取付部、58…中間取付部、59…内側取付部、
560…回動支持機構部、561…付勢部材、562…ストッパ部材
1A to 1E: Vertical axis drag type wind power generator (drag type turbine device), 2: Support housing,
3...support shaft; 4, 4A, 4B...support member; 5...pressure-receiving member;
10...drag type turbine unit, 20...power generation unit,
30...connecting and fixing member, 31...connecting mechanism part,
40: outer wall surface contour portion, 41: straight line contour portion, 42: intermediate wall surface contour portion,
43: Inner wall surface contour portion, 44: Straight line contour portion, 45: Connection mechanism portion, 50: Outer wall surface portion, 51: Intermediate wall surface portion, 52: Inner wall surface portion, 53: Outer end, 54: Inner end, 55: Outer boundary portion, 56: Inner boundary portion,
57: outer mounting portion, 58: intermediate mounting portion, 59: inner mounting portion,
560: Rotation support mechanism, 561: Pressing member, 562: Stopper member

Claims (8)

回転可能に軸支される支持軸と、
前記支持軸の軸方向に対して所定の間隔を空けて前記支持軸に固定される複数の支持部材と、
複数の前記支持部材の間を前記軸方向に沿って、かつ、前記支持軸の径方向に離間した状態で前記支持軸の周囲に配置されて、複数の前記支持部材により支持される複数の受圧部材とを備え、
複数の前記支持部材の各間には、前記支持軸に対して対称的に一対の前記受圧部材が配置されており、
複数の前記受圧部材の各々は、
前記軸方向に垂直な平面視において、前記径方向外側に配置される外側端と、前記支持軸に対して前記外側端の反対側で前記外側端よりも前記径方向内側に配置される内側端との間に延設される壁面部として、
前記外側端から、前記受圧部材が流体圧を受けて前記支持軸が回転するときの進行方向側かつ前記支持軸寄りに延設されて、前記径方向外側に膨出する曲面状に形成された外側壁面部と、
前記外側壁面部から、湾曲状又は屈曲状の外側境界部を介して前記進行方向側かつ前記支持軸寄りに延設されて、平面状に形成された中間壁面部と、
前記中間壁面部から、湾曲状又は屈曲状の内側境界部を介して前記中間壁面部よりも前記進行方向側に配置された前記内側端に延設されて、平面状に形成された内側壁面部とを有する、
抗力型タービン装置。
A support shaft that is rotatably supported;
A plurality of support members fixed to the support shaft at predetermined intervals in the axial direction of the support shaft;
a plurality of pressure-receiving members that are disposed around the support shaft in a state spaced apart from each other along the axial direction and in a radial direction of the support shaft and are supported by the plurality of support members;
A pair of the pressure-receiving members is disposed between each of the plurality of support members symmetrically with respect to the support shaft,
Each of the plurality of pressure-receiving members includes
In a plan view perpendicular to the axial direction, a wall surface portion is provided extending between an outer end disposed radially outward and an inner end disposed radially inward relative to the outer end on the opposite side of the outer end with respect to the support shaft,
an outer wall surface portion extending from the outer end toward a direction of travel of the pressure-receiving member when the pressure-receiving member receives fluid pressure and the support shaft and toward the support shaft, the outer wall surface portion being formed in a curved shape that bulges outward in the radial direction;
an intermediate wall portion extending from the outer wall portion toward the traveling direction and the support shaft via a curved or bent outer boundary portion and formed in a flat shape;
an inner wall surface portion that is formed in a flat shape and extends from the intermediate wall surface portion through a curved or bent inner boundary portion to the inner end that is disposed on the traveling direction side of the intermediate wall surface portion;
Drag type turbine device.
前記中間壁面部と、前記内側壁面部とは、
前記平面視において、前記内側境界部を介して前記径方向外側に凸状となるように配置されることで、前記支持軸側に鈍角を形成し、
一対の前記受圧部材は、
前記平面視における一対の前記受圧部材同士の間隔として、前記内側端側では相対的に狭く、前記内側境界部側では相対的に広くなるように配置される、
請求項1に記載の抗力型タービン装置。
The intermediate wall portion and the inner wall portion are
In the plan view, the inner boundary portion is disposed so as to be convex toward the radially outward side, thereby forming an obtuse angle toward the support shaft,
The pair of pressure-receiving members include
The pressure-receiving members are disposed such that a distance between the pair of pressure-receiving members in the plan view is relatively narrow on the inner end side and relatively wide on the inner boundary portion side.
2. The drag turbine arrangement of claim 1.
一対の前記受圧部材の各々は、
前記平面視において、以下の条件式(A1)、(B1)及び(C1)を満たす、
請求項2に記載の抗力型タービン装置。
0.2≦(s/R)≦0.9 (A1)
d+2t≦s-0.5×R+0.2×D (B1)
d+2t>s (C1)
ただし、
Dは、前記外側端の外接円の直径、
dは、前記支持軸の直径、
Rは、前記外側壁面部の曲率半径、
sは、一方の前記受圧部材の前記中間壁面部と、他方の前記受圧部材の前記内側端との最短距離、
tは、前記受圧部材と、前記支持軸の外周面との最短距離、
である。
Each of the pair of pressure-receiving members is
In the plan view, the following conditional expressions (A1), (B1), and (C1) are satisfied:
3. A drag type turbine arrangement as claimed in claim 2.
0.2≦(s/R)≦0.9 (A1)
d + 2t ≦ s − 0.5 × R + 0.2 × D (B1)
d+2t>s (C1)
however,
D is the diameter of the circumscribing circle of the outer end,
d is the diameter of the support shaft,
R is the radius of curvature of the outer wall portion,
s is the shortest distance between the intermediate wall surface portion of one of the pressure-receiving members and the inner end of the other pressure-receiving member,
t is the shortest distance between the pressure-receiving member and the outer circumferential surface of the support shaft,
It is.
前記内側境界部は、
前記支持軸と平行な内側壁面部回動軸を中心にして前記内側壁面部を回動可能に支持する回動支持機構部を備え、
前記内側壁面部は、
前記回動支持機構部を介して前記中間壁面部に支持される、
請求項1乃至請求項3のいずれか一項に記載の抗力型タービン装置。
The inner boundary portion is
a rotation support mechanism that supports the inner wall portion rotatably around an inner wall portion rotation axis that is parallel to the support axis,
The inner wall portion is
The pivot support mechanism is supported by the intermediate wall surface portion.
A drag type turbine arrangement according to any one of claims 1 to 3.
前記回動支持機構部は、
前記内側壁面部を前記進行方向側に回動させるように付勢する付勢部材を備え、
前記内側壁面部は、
前記付勢部材により付勢されることで前記内側壁面部の初期位置に位置決めされるとともに、
前記付勢部材の付勢力を超える遠心力が前記内側壁面部に作用したとき、前記初期位置から前記進行方向反対側に回動される、
請求項4に記載の抗力型タービン装置。
The rotation support mechanism includes:
a biasing member that biases the inner wall surface portion so as to rotate in the traveling direction,
The inner wall portion is
The inner wall surface portion is positioned at an initial position by being biased by the biasing member,
When a centrifugal force exceeding the biasing force of the biasing member acts on the inner wall surface portion, the inner wall surface portion is rotated from the initial position in the opposite direction to the traveling direction.
5. A drag type turbine arrangement as claimed in claim 4.
前記外側壁面部、前記外側境界部及び前記中間壁面部は、
一体的に形成された、
請求項4に記載の抗力型タービン装置。
The outer wall portion, the outer boundary portion, and the intermediate wall portion are
Formed integrally,
5. A drag type turbine arrangement as claimed in claim 4.
前記支持軸、複数の前記支持部材及び複数の前記受圧部材を1つの抗力型タービンユニットとして、複数の前記抗力型タービンユニットを備え、
前記支持部材及び前記支持軸の少なくとも一方は、
複数の前記抗力型タービンユニットがそれぞれ備える前記支持軸が同軸上に配置されたときに隣接される前記支持部材同士及び前記支持軸同士の少なくとも一方を着脱可能に連結する連結機構部を備える、
請求項1乃至請求項3のいずれか一項に記載の抗力型タービン装置。
a plurality of the drag type turbine units, each of the support shaft, the plurality of the support members, and the plurality of the pressure-receiving members being regarded as one drag type turbine unit;
At least one of the support member and the support shaft is
a coupling mechanism that detachably couples at least one of the support members and the support shafts that are adjacent to each other when the support shafts of each of the drag type turbine units are coaxially arranged,
A drag type turbine arrangement according to any one of claims 1 to 3.
複数の前記支持部材のうち、前記軸方向の両端に配置される2つの前記支持部材は、それら2つの前記支持部材の間に配置される他の前記支持部材とは前記平面視において異なる形状を有する、
請求項1乃至請求項3のいずれか一項に記載の抗力型タービン装置。
Among the plurality of support members, two support members arranged at both ends in the axial direction have a shape different from that of the other support member arranged between the two support members in the plan view.
A drag type turbine arrangement according to any one of claims 1 to 3.
JP2023574211A 2022-06-30 2023-04-19 Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device Active JP7475101B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022106379 2022-06-30
JP2022106379 2022-06-30
PCT/JP2023/015637 WO2024004347A1 (en) 2022-06-30 2023-04-19 Drag-type turbine device, and wind power rotating device, hydropower rotating device, tidal power rotating device using drag-type turbine device, and wind power generator, hydropower generator and tidal power generator using drag-type turbine device

Publications (3)

Publication Number Publication Date
JPWO2024004347A1 JPWO2024004347A1 (en) 2024-01-04
JP7475101B1 true JP7475101B1 (en) 2024-04-26
JPWO2024004347A5 JPWO2024004347A5 (en) 2024-06-05

Family

ID=89381887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023574211A Active JP7475101B1 (en) 2022-06-30 2023-04-19 Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device

Country Status (2)

Country Link
JP (1) JP7475101B1 (en)
WO (1) WO2024004347A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183640A (en) 2002-12-04 2004-07-02 Tokiwa Kogyo Kk Wind mill blade having flap
CN106677991A (en) 2017-02-08 2017-05-17 常州信息职业技术学院 Vertical axis wind turbine with protective sleeve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183640A (en) 2002-12-04 2004-07-02 Tokiwa Kogyo Kk Wind mill blade having flap
CN106677991A (en) 2017-02-08 2017-05-17 常州信息职业技术学院 Vertical axis wind turbine with protective sleeve

Also Published As

Publication number Publication date
JPWO2024004347A1 (en) 2024-01-04
WO2024004347A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US20120051939A1 (en) Structure and accelerator platform placement for a wind turbine tower
WO2003027497A1 (en) Three-bladed vertical wind mill equipment
BR112015005281B1 (en) lattice tower
WO2017115565A1 (en) Vertical wind power generation system, vertical hydropower generation system, and control method therefor
JP4184847B2 (en) Windmill device and wind power generator using the same
CN201433854Y (en) Helical flexible blade turbine
JP7475101B1 (en) Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device
JP6954739B2 (en) Rotor for generator
CN107646072B (en) Horizontal axis guy rope tensioned vane fluid turbine
WO2013028172A1 (en) Structure and accelerator platform placement for a wind turbine tower
KR101612238B1 (en) Spiral blade unit and wind generator
JP7486246B1 (en) Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device
JP7555151B1 (en) Drag-type turbine device, wind-powered rotating device, hydro-powered rotating device, and tidal-powered rotating device using said drag-type turbine device, and wind-powered generator, hydro-powered generator, and tidal-powered generator using said drag-type turbine device
WO2018168746A1 (en) Vertical-axis wind turbine and wind power generation device
EP2761167B1 (en) Wind turbine rotor with improved hub system
US12078142B2 (en) Turbine with secondary rotors
JP7186445B2 (en) Magnus-type thrust generator, wind power generator using the Magnus-type thrust generator, hydraulic power generator, tidal power generator, and wind power generator, hydraulic power generator, and tidal power generator using the Magnus-type thrust generator machine
JP6904766B2 (en) Vertical axis wind turbines and wind power generators
JP7094018B2 (en) Magnus type thrust generator, wind power generator using the Magnus type thrust generator, hydraulic power rotation device, tidal power rotation device, and wind power generator, hydroelectric power generator, tidal power generation using the Magnus type thrust generator. Machine
JP5757617B2 (en) Darius vertical axis wind turbine, Darius vertical axis wind turbine blades, and Darius vertical axis wind turbine rotor
JP7492262B2 (en) Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device
JP7421221B2 (en) Magnus type thrust generator, a wind rotation device using the Magnus type thrust generator, a hydraulic rotation device, a tidal power rotation device, and a wind power generator, a hydraulic power generator, and a tidal power generator using the Magnus type thrust generator.
JP7548572B2 (en) Magnus type thrust generating device, wind power rotating device, water power rotating device, tidal power rotating device using said Magnus type thrust generating device, and wind power generator, water power generator, tidal power generator using said Magnus type thrust generating device
JP2005054757A (en) Hybrid type wind mill
JP2018155128A (en) Vertical axis wind turbine and wind power generator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231207

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20231207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240409

R150 Certificate of patent or registration of utility model

Ref document number: 7475101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150