JP7484608B2 - 光学フィルター、及び電子機器 - Google Patents
光学フィルター、及び電子機器 Download PDFInfo
- Publication number
- JP7484608B2 JP7484608B2 JP2020156505A JP2020156505A JP7484608B2 JP 7484608 B2 JP7484608 B2 JP 7484608B2 JP 2020156505 A JP2020156505 A JP 2020156505A JP 2020156505 A JP2020156505 A JP 2020156505A JP 7484608 B2 JP7484608 B2 JP 7484608B2
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- filter
- refractive index
- optical
- reflective film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 160
- 238000013461 design Methods 0.000 claims description 134
- 238000013459 approach Methods 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 5
- 239000010408 film Substances 0.000 description 235
- 239000000758 substrate Substances 0.000 description 87
- 238000005259 measurement Methods 0.000 description 80
- 238000001514 detection method Methods 0.000 description 65
- 239000012788 optical film Substances 0.000 description 26
- 230000003595 spectral effect Effects 0.000 description 23
- 239000000463 material Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000002834 transmittance Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 7
- 238000004611 spectroscopical analysis Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/26—Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0229—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/001—Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/284—Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J2003/1226—Interference filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J2003/2859—Peak detecting in spectrum
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Description
特許文献1に記載の波長可変干渉フィルターは、固定基板に設けられた固定ミラーと、可動基板に設けられた可動ミラーとを、ギャップを介して対向して配置したフィルターである。この波長可変干渉フィルターでは、静電アクチュエーターによって、固定ミラーと可動ミラーとの間のギャップ寸法が可変となり、ギャップ寸法を変更することで、波長可変干渉フィルターを透過する光が変化する。
また、特許文献1の波長可変干渉フィルターでは、固定ミラー及び可動ミラーとして、誘電体多層膜を用いたもの、金属合金膜を用いたもの、金属膜を用いたものが例示されている。
以下、第一実施形態について説明する。
図1は、第一実施形態の分光測定装置1の概略構成を示す図である。
[分光測定装置1の全体構成]
分光測定装置1は、測定対象から入射される測定光を分光して、測定対象の分光スペクトルや色度等を測定する電子機器である。この分光測定装置1は、図1に示すように、光学フィルター10と、受光部40と、制御部50とを備えて構成されている。
また、光学フィルター10は、図1に示すように、第一フィルター20と、第二フィルター30とを備えている。
図2は、第一フィルター20の概略構成を模式的に示す断面図である。
第一フィルター20は、ファブリーペロー型の波長可変干渉フィルターであり、透光性の第一可動基板21と、透光性の第一固定基板22とを備える。第一可動基板21及び第一固定基板22は、受光部40の光軸Oに沿って配置されている。
第一可動基板21には、一対の第一反射膜の一方である第一可動反射膜23が設けられ、第一固定基板22には、一対の第一反射膜の他方である第一固定反射膜24が設けられている。また、第一フィルター20は、第一可動反射膜23と第一固定反射膜24との間の寸法を変更する第一ギャップ変更部としての第一アクチュエーター25を備えている。この第一アクチュエーター25は、第一可動基板21に設けられる第一電極251と、第一固定基板22に設けられる第二電極252により構成された静電アクチュエーターである。
そして、この可動部211の第二面21Bに、第一可動反射膜23が設けられている。なお、第一可動反射膜23の詳細な構成については後述する。
さらに、第一可動基板21の第二面21Bには、第一可動反射膜23を囲うように、第一電極251が配置されている。第一電極251は、可動部211に設けられていてもよく、ダイアフラム部212に設けられていてもよい。本実施形態では、第一電極251が、可動部211に設けられる構成を例示する。
第一可動基板21のダイアフラム部212の外側は、ダイアフラム部212よりも光軸Oに沿った厚みが大きい外周部213を構成する。この外周部213は、図示略の接合部材を介して第一固定基板22に接合される。
第一固定基板22は、第三面22Aがエッチング処理等によって加工されることで、可動部211に対向するミラー台221と、ミラー台221の外側に設けられる溝部222と、溝部222の外側に設けられる基台部223とが形成されている。
また、第一固定反射膜24の第一ギャップG1側には、透明電極である第二検出電極262が設けられている。この第二検出電極262は、第一ギャップG1を介して、第一検出電極261に対向し、第一検出電極261とともに、第一容量検出部26を構成する。つまり、本実施形態では、第一検出電極261及び第二検出電極262で保持される電荷が変化することで、第一ギャップG1の寸法を検出することが可能となる。
なお、図示は省略するが、第一フィルター20には、第一アクチュエーター25の第一電極251及び第二電極252のそれぞれに電気接続された駆動端子と、第一検出電極261及び第二検出電極262のそれぞれに電気接続された検出端子とが設けられている。これらの端子が制御部50に接続され、制御部50の制御によって、第一アクチュエーター25への駆動電圧の印加や、容量検出部を用いた第一ギャップG1の寸法の検出が実施される。
なお、本実施形態では、第一アクチュエーター25として、静電アクチュエーターを例示するが、これに限定されない。第一アクチュエーター25として、第一可動基板21及び第一固定基板22の間に圧電素子を配置し、圧電素子に電圧を印加することで、第一可動基板21及び第一固定基板22の間の寸法、つまり、第一可動反射膜23及び第一固定反射膜24の間の第一ギャップG1が変更される構成などとしてもよい。
図3は、第一実施形態の第一フィルター20における第一可動反射膜23及び第一固定反射膜24の概略構成を示す図である。
第一可動反射膜23は、第一可動基板21から第一ギャップG1に向かって複数の積層体(光学体)が積層されることで構成されている。また、第一固定反射膜24も、第一可動反射膜23と同様の構成を有し、第一固定基板22から第一ギャップG1に向かって複数の積層体(光学体)が積層されることで構成されている。
図3に示す例では、複数の積層体として、第一積層体61、第二積層体62、及び第三積層体63を備えている。第一積層体61は、第一可動基板21または第一固定基板22に積層される積層体である。第三積層体63は、第一可動反射膜23及び第一固定反射膜24において、第一ギャップG1に最も近い位置に配置される積層体である。第二積層体62は、第一積層体61及び第三積層体63の間に配置される積層体である。
なお、図3の例では、上記のように、第一可動反射膜23及び第一固定反射膜24が3つの積層体を備えて構成される例を示すが、4つ以上の積層体を備える構成や、2つの積層体を備える構成などとしてもよい。
以降の説明にあたり、第一高屈折層61Hの屈折率をn1H、第一高屈折層61Hの厚みをd1H、第一低屈折層61Lの屈折率をn1L、第一低屈折層61Lの厚みをd1Lとする。第二高屈折層62Hの屈折率をn2H、第二高屈折層62Hの厚みをd2H、第二低屈折層62Lの屈折率をn2L、第二低屈折層62Lの厚みをd2Lとする。第三高屈折層63Hの屈折率をn3H、第三高屈折層63Hの厚みをd3H、第三低屈折層63Lの屈折率をn3L、第三低屈折層63Lの厚みをd3Lとする。
第二積層体62は、第二設計中心波長λ2を中心とした光を反射する誘電体多層膜である。つまり、第二積層体62における第二高屈折層62H及び第二低屈折層62Lの光学膜厚(第二光学膜厚)は同じ光学膜厚を有する。具体的には、第二高屈折層62H及び第二低屈折層62Lは、n2H×d2H=n2L×d2L=λ2/4を満たす第二光学膜厚を有する。ここで、第二設計中心波長λ2は、λ1>λ2の関係を満たす。
同様に、第三積層体63は、第三設計中心波長λ3を中心とした光を反射する誘電体多層膜である。つまり、第三積層体63における第三高屈折層63H及び第三低屈折層63Lの光学膜厚(第三光学膜厚)は同じ光学膜厚を有する。具体的には、第三高屈折層63H及び第三低屈折層63Lは、n3H×d3H=n3L×d3L=λ3/4を満たす第三光学膜厚を有する。ここで、第三設計中心波長λ3は、λ1>λ2>λ3の関係を満たす。
第一設計中心波長λ1、第二設計中心波長λ2、及び第三設計中心波長λ3は、分光測定装置1による測定対象となる波長域(以降、測定波長域と称する)に応じて設定される。例えば、可視光域から近赤外広域までを測定波長域(400nm~1000nm)とする場合の一例として、λ1=950nm、λ2=600nm、λ3=400nmに設定される。なお、第一設計中心波長λ1と第二設計中心波長λ2との波長間隔が、第二設計中心波長λ2と第三設計中心波長λ3との波長間隔より大きくなる例を示すが、これに限定されない。例えば、第一設計中心波長λ1と第二設計中心波長λ2との波長間隔と、第二設計中心波長λ2と第三設計中心波長λ3との波長間隔とを等間隔にしてもよい。詳細は後述するが、本実施形態の第一フィルター20は、測定波長域に複数のピーク波長を含む光を透過させる。第一設計中心波長λ1と第二設計中心波長λ2との波長間隔と、第二設計中心波長λ2と第三設計中心波長λ3との波長間隔は、これらのピーク波長の間隔が略均一となるように設定されていればよい。
第一接続層67Aは、屈折率n7a、膜厚d7aを有し、第一接続層67Aの光学膜厚は、第一設計中心波長と第二設計中心波長の平均に基づいた光学膜厚となる。つまり、第一接続層67Aの設計中心波長をλ7aとすると、当該設計中心波長λ7aは、λ7a=(λ1+λ2)/2であり、n7a×d7a=λ7a/4を満たしている。
第二接続層67Bは、屈折率n7b、膜厚d7bを有し、第二接続層67Bの光学膜厚は、第二設計中心波長と第三設計中心波長の平均に基づいた光学膜厚となる。つまり、第二接続層67Bの設計中心波長をλ7bとすると、当該設計中心波長λ7bは、λ7b=(λ2+λ3)/2であり、n7b×d7b=λ7b/4を満たしている。
また、本実施形態では、第一積層体61の最も第二積層体62側に配置される層は第一高屈折層61Hであり、第二積層体62の最も第一積層体61側に配置される層は第二高屈折層62Hである。同様に、第二積層体62の最も第三積層体63側に配置される層は第二高屈折層62Hであり、第三積層体63の最も第二積層体62側に配置される層は第三高屈折層63Hである。この場合、第一接続層67A及び第二接続層67Bとして、低屈折層を用いることが好ましく、例えば第一低屈折層61L、第二低屈折層62L、及び第三低屈折層63Lと同じ素材を用いることができる。
この場合、n1H=n2H=n3H、かつ、n1L=n2L=n3L=n7a=n7bとなるので、各層の厚みのみにより、各積層体61,62,63及び接続層67A,67Bの光学膜厚を設定することができる。
なお、第一可動反射膜23上に設けられる第一検出電極261や、第一固定反射膜24上に設けられる第二検出電極262の光学膜厚は、各積層体61,62,63を構成する各層の光学膜厚に対して十分に小さい。例えば、本実施形態では、第一検出電極261及び第二検出電極262をIGOにより構成し、例えば、光学膜厚を20nmとして、約10nmの膜厚となるように形成する。
図4は、第二フィルター30の概略構成を模式的に示す断面図である。
第二フィルター30は、ファブリーペロー型の波長可変干渉フィルターであり、第一フィルター20と略同様の構成を有する。すなわち、第二フィルター30は、透光性の第二可動基板31と、透光性の第二固定基板32とを備える。これらの第二可動基板31及び第二固定基板32は、受光部40の光軸Oに沿って配置されている。
第二可動基板31には、一対の第二反射膜のうちの一方である第二可動反射膜33が設けられ、第二固定基板32には、一対の第二反射膜のうちの他方である第二固定反射膜34が設けられている。また、第二フィルター30は、第二可動反射膜33と第二固定反射膜34との間の寸法を変更する第二ギャップ変更部としての第二アクチュエーター35を備えている。この第二アクチュエーター35は、第一アクチュエーター25と同様、静電アクチュエーターにより構成され、第二可動基板31に設けられる第三電極351と、第二固定基板32に設けられる第四電極352を備えている。
また、第二可動基板31の第六面31Bには、第二可動反射膜33を囲うように、第二アクチュエーター35を構成する第三電極351が配置されている。
第二可動基板31の第二ダイアフラム部312の外側は、第二ダイアフラム部312よりも光軸Oに沿った厚みが大きい第二外周部313が構成され、図示略の接合部材を介して第二固定基板32に接合されている。
第二固定基板32は、第七面32Aがエッチング処理等によって加工されることで、第一固定基板22と同様、第二ミラー台321と、第二溝部322と、第二基台部323とが形成されている。
第二ミラー台321は、第二可動反射膜33に対して第二ギャップG2を介して対向する第二固定反射膜34が設けられる部位である。第二固定反射膜34は、第二可動反射膜33、第一可動反射膜23、及び第一固定反射膜24と同様、複数の積層体(光学体)が積層されることで構成されている。
第二固定反射膜34の第二ギャップG2側には、透明電極である第四検出電極362が設けられている。この第四検出電極362は、第二ギャップG2を介して、第三検出電極361に対向し、第三検出電極361とともに、第二容量検出部36を構成する。つまり、本実施形態では、第三検出電極361及び第四検出電極362で保持される電荷が変化することで、第二ギャップG2の寸法を検出することが可能となる。
なお、図示は省略するが、第二フィルター30には、第一フィルター20と同様に、第二アクチュエーター35の第三電極351及び第四電極352のそれぞれに電気接続された駆動端子と、第三検出電極361及び第四検出電極362のそれぞれに電気接続された検出端子とが設けられている。これらの端子が制御部50に接続され、制御部50の制御によって、第二アクチュエーター35への駆動電圧の印加や、第二容量検出部36を用いた第二ギャップG2の寸法の検出が実施される。
また、第一固定基板22と第二固定基板32とが同一構成であってもよい。つまり、第一固定基板22と第二固定基板32とが1つの基板により構成され、当該基板のうち第一可動基板21に対向する面に、ミラー台221や溝部222が設けられ、当該基板のうち第二可動基板31に対向する面に、第二ミラー台321や第二溝部322が設けられる構成としてもよい。
図5は、第一実施形態の第二フィルター30における第二可動反射膜33及び第二固定反射膜34の概略構成を示す図である。
上述したように、第二可動反射膜33、及び第二固定反射膜34は、第一可動反射膜23及び第一固定反射膜24と略同様の構成を有する。
すなわち、第二可動反射膜33は、第二可動基板31から第二ギャップG2に向かって複数の積層体(光学体)が積層されることで構成されている。また、第二固定反射膜34は、第二固定基板32から第二ギャップG2に向かって複数の積層体(光学体)が積層されることで構成されている。
図5に示す例では、複数の積層体として、第四積層体64、第五積層体65、及び第六積層体66を備えている。第四積層体64は、第二可動基板31または第二固定基板32に積層される積層体である。第六積層体66は、第二可動反射膜33及び第二固定反射膜34において、第二ギャップG2に最も近い位置に配置される積層体である。第五積層体65は、第四積層体64及び第六積層体66の間に配置される積層体である。
なお、図5の例では、上記のように、第二可動反射膜33及び第二固定反射膜34が3つの積層体を備えて構成される例を示すが、4つ以上の積層体を備える構成や、2つの積層体を備える構成などとしてもよい。
以降の説明にあたり、第四高屈折層64Hの屈折率をn4H、第四高屈折層64Hの厚みをd4H、第四低屈折層64Lの屈折率をn4L、第四低屈折層64Lの厚みをd4Lとする。第五高屈折層65Hの屈折率をn5H、第五高屈折層65Hの厚みをd5H、第五低屈折層65Lの屈折率をn5L、第五低屈折層65Lの厚みをd5Lとする。第六高屈折層66Hの屈折率をn6H、第六高屈折層66Hの厚みをd6H、第六低屈折層66Lの屈折率をn6L、第六低屈折層66Lの厚みをd6Lとする。
第五積層体65は、第五設計中心波長λ5を中心とした光を反射する誘電体多層膜である。つまり、第五積層体65における第五高屈折層65H及び第五低屈折層65Lの光学膜厚(第五光学膜厚)は同じ光学膜厚を有する。具体的には、第五高屈折層65H及び第五低屈折層65Lは、n5H×d5H=n5L×d5L=λ5/4を満たす第五光学膜厚を有する。ここで、第五設計中心波長λ5は、λ5≠λ1,λ5≠λ2,λ5≠λ3、かつ、λ4>λ5の関係を満たす。
同様に、第六積層体66は、第六設計中心波長λ6を中心とした光を反射する誘電体多層膜である。つまり、第六積層体66における第六高屈折層66H及び第六低屈折層66Lの光学膜厚(第六光学膜厚)は同じ光学膜厚を有する。具体的には、第六高屈折層66H及び第六低屈折層66Lは、n6H×d6H=n6L×d6L=λ6/4を満たす第六光学膜厚を有する。ここで、第六設計中心波長λ6は、λ6≠λ1,λ6≠λ2,λ6≠λ3、かつ、λ4>λ5>λ6の関係を満たす。
第四設計中心波長λ4、第五設計中心波長λ5、及び第六設計中心波長λ6は、第一設計中心波長λ1、第二設計中心波長λ2、及び第三設計中心波長λ3と同様に、分光測定装置1による測定対象となる波長域(以降、測定波長域と称する)に応じて設定される。例えば、可視光域から近赤外広域までを対象波長域(400nm~1000nm)とする場合の一例として、λ4=850nm、λ5=500nm、λ6=350nmに設定される。
なお、第四設計中心波長λ4と第五設計中心波長λ5との波長間隔が、第五設計中心波長λ5と第六設計中心波長λ6との波長間隔より大きくなる例を示すが、これに限定されない。例えば、第五設計中心波長λ5と第六設計中心波長λ6との波長間隔と、第五設計中心波長λ5と第六設計中心波長λ6との波長間隔とを等間隔にしてもよい。
第三接続層68Aは、屈折率n8a、膜厚d8aを有し、第三接続層68Aの光学膜厚は、第四設計中心波長λ4と第五設計中心波長λ5の平均に基づいた光学膜厚となる。つまり、第三接続層68Aの設計中心波長をλ8aとすると、当該設計中心波長λ8aは、λ8a=(λ4+λ5)/2であり、n8a×d8a=λ8a/4を満たしている。
第四接続層68Bは、屈折率n8b、膜厚d8bを有し、第四接続層68Bの光学膜厚は、第五設計中心波長λ5と第六設計中心波長λ6の平均に基づいた光学膜厚となる。つまり、第四接続層68Bの設計中心波長をλ8bとすると、当該設計中心波長λ8bは、λ8b=(λ5+λ6)/2であり、n8b×d8b=λ8b/4を満たしている。
また、本実施形態では、第四積層体64の最も第五積層体65側に配置される層は第四高屈折層64Hであり、第五積層体65の最も第四積層体64側に配置される層は第五高屈折層65Hである。同様に、第五積層体65の最も第六積層体66側に配置される層は第五高屈折層65Hであり、第六積層体66の最も第五積層体65側に配置される層は第六高屈折層66Hである。この場合、第三接続層68A及び第四接続層68Bとして、低屈折層を用いることが好ましく、例えば第四低屈折層64L、第五低屈折層65L、及び第六低屈折層66Lと同一の素材を用いることができる。
この場合、n4H=n5H=n6H、かつ、n4L=n5L=n6L=n8a=n8bとなるので、各層の厚みのみにより、各積層体64,65,66及び接続層68A,68Bの光学膜厚を設定することができる。
なお、第二可動反射膜33上に設けられる第三検出電極361や、第二固定反射膜34上に設けられる第四検出電極362の光学膜厚は、各積層体64,65,66を構成する各層の光学膜厚に対して十分に小さい。例えば、本実施形態では、第三検出電極361及び第四検出電極362をIGOにより構成し、例えば、光学膜厚を20nmとして、約10nmの膜厚となるように形成する。
受光部40は、光学フィルター10を透過した光を受光するセンサーである。受光部40としては、例えば、CCDやCMOS等のイメージセンサーを用いることができる。受光部40は、光学フィルター10を透過した光を受光すると、受光量に応じた受光信号を制御部50に出力する。
制御部50は、図1に示すように、フィルター駆動回路51、受光制御回路52、分光測定部53等を備えて構成されている。
フィルター駆動回路51は、光学フィルター10の駆動を制御する回路である。フィルター駆動回路51は、光学フィルター10を設置する回路基板に設けられていてもよく、当該回路基板とは別体として設けられてもよい。
第一駆動回路511は、マイコン516の制御に基づいて、第一フィルター20の第一アクチュエーター25に第一駆動電圧を印加する回路である。
第二駆動回路512は、マイコン516の制御に基づいて、第二フィルター30の第二アクチュエーター35に第二駆動電圧を印加する回路である。
第一容量検出回路513は、第一フィルター20の第一容量検出部26で保持される電荷に応じた検出信号を受信する。当該検出信号は、第一ギャップG1の寸法に応じて変化する信号である。第一容量検出回路513は、当該検出信号を第一駆動回路511に出力する。
第二容量検出回路514は、第一容量検出回路513と同様であり、第二フィルター30の第二容量検出部36で保持される電荷に応じた検出信号を受信し、当該検出信号を第二駆動回路512に出力する。
そして、第一駆動回路511は、第一容量検出回路513で検出された第一ギャップG1の寸法に応じて、第一アクチュエーター25への印加電圧をフィードバック制御する。同様に、第二駆動回路512は、第二容量検出回路514で検出された第二ギャップG2の寸法に応じて、第二アクチュエーター35への印加電圧をフィードバック制御する。
なお、第一フィルター20及び第二フィルター30を透過する光の波長、光学フィルター10を透過する光の波長、及び光学フィルター10の制御方法についての説明は、後述する。
なお、本実施形態では、制御部50に、分光測定部53が含まれる構成を例示するが、例えば、分光測定装置1とは別体に、分光測定部53が設けられていてもよい。この場合、例えば、分光測定装置1と通信可能に接続されるパーソナルコンピューターやタブレット端末等のコンピューターを分光測定部53として機能させることができる。
次に、本実施形態の分光測定装置1を用いた分光測定方法、及び、光学フィルター10の第一フィルター20及び第二フィルター30の光学特性について説明する。
図6は、本実施形態の分光測定装置1における分光測定方法を示すフローチャートである。
本実施形態の分光測定装置1では、例えばユーザーにより、分光測定処理を実施する旨の操作信号が分光測定部53に入力されると、分光測定部53から、フィルター駆動回路51及び受光制御回路52に、分光測定を指令する指令信号が出力される。
ここでは、一例として、特定の1つの波長を目標波長として分光測定処理を実施する旨の指令信号が出力された場合を例示する。
そして、マイコン516は、第一駆動回路511に、第一目標値に基づいた駆動を指令する駆動指令を出力し、第二駆動回路512に、第二目標値に基づいた駆動を指令する駆動指令を出力する(ステップS3)。
図7から図10は、本実施形態における第一フィルター20の分光特性、第二フィルター30の分光特性、及び光学フィルター10を透過する光の透過特性を示す図である。図7は、光学フィルター10から700nmの光が透過するように、第一ギャップG1及び第二ギャップG2を制御した図である。図8は、光学フィルター10から600nmの光が透過するように、第一ギャップG1及び第二ギャップG2を制御した図である。図9は、光学フィルター10から500nmの光が透過するように、第一ギャップG1及び第二ギャップG2を制御した図である。図10は、光学フィルター10から400nmの光が透過するように、第一ギャップG1及び第二ギャップG2を制御した図である。
本実施形態における第一フィルター20では、第一積層体61、第二積層体62及び第三積層体63が順に積層されることで構成された第一可動反射膜23及び第一固定反射膜24を有する。このような第一フィルター20では、1つの設計中心波長に基づいて高屈折層と低屈折層の層厚が設計された誘電体多層膜を用いた通常の波長可変干渉フィルターと比べて、広い測定波長域を持つ。つまり、誘電体多層膜を用いた通常の波長可変干渉フィルターでは、測定波長域が100nm~200nm程度の狭帯域となり、当該帯域外では、分光特性が得られず、高い透過率で光を透過してしまう。これに対して、本実施形態の第一フィルター20では、図7~図10に示すように、可視光域から近赤外域の約600nmに亘る広い測定波長域内に対して、分光特性を有する。
同様に、第二フィルター30も、第四積層体64、第五積層体65、及び第六積層体66が順に積層されることで構成された第二可動反射膜33及び第二固定反射膜34を有する。これにより、第一フィルター20と同様、可視光域から近赤外域の約600nmに亘る広い測定波長域内に対して、分光特性を有する。
ここで、第一フィルター20の第一積層体61、第二積層体62及び第三積層体63の設計中心波長と、第二フィルター30の第四積層体64、第五積層体65及び第六積層体66の設計中心波長とは、それぞれ異なる。このため、第一フィルター20での各ピーク波長の波長間隔と、第二フィルター30の各ピーク波長の波長間隔とは、それぞれ異なる間隔になる。したがって、第一フィルター20の第一ピーク波長を目標波長に設定し、第二フィルター30の第二ピーク波長を目標波長に設定した場合、その他のピーク波長は互いに重なり合わない。
また、その他の波長においても同様であり、光学フィルター10から600nmの光を透過させる場合では、例えば、図8のように、第一フィルター20において長波長側から2つ目のピーク波長を第一ピーク波長、第二フィルター30において長波長側から3つ目のピーク波長を第二ピーク波長として、それぞれ、目標波長である600nmとなるように制御する。光学フィルター10から500nmの光を透過させる場合では、例えば図9のように、第一フィルター20において長波長側から4つ目のピーク波長を第一ピーク波長とし、第二フィルター30において長波長側から5つ目のピーク波長を第二ピーク波長として、それぞれ、目標波長である500nmとなるように制御する。光学フィルター10から400nmの光を透過させる場合では、例えば図10のように、第一フィルター20において長波長側から5つ目のピーク波長を第一ピーク波長とし、第二フィルター30において長波長側から6つ目のピーク波長を第二ピーク波長として、それぞれ、目標波長である400nmとなるように制御する。
つまり、メモリー515に、各目標波長と、目標波長に対する第一アクチュエーター25を制御するための第一目標値と、目標波長に対する第二アクチュエーター35を制御するための第二目標値とを記録しておく。この第一目標値及び第二目標値は、第一ピーク波長及び第二ピーク波長を目標波長とした場合に、第一フィルター20を透過する第一ピーク波長以外のピーク波長と、第二フィルター30を透過する第二ピーク波長以外のピーク波長とが異なる波長となる目標値である。そして、マイコン516が、目標波長に対する第一目標値及び第二目標値を読み出し、第一駆動回路511及び第二駆動回路512に出力することで、上記図7から図10に示すように、目標波長の光を光学フィルター10から透過させることができる。
図11の例では、目標波長が400nmである場合の例であり、第一ピーク波長を400nmとし、第二ピーク波長を400nmからずらした場合の光学フィルター10を透過する光の透過率を示している。
図11に示すように、第一ピーク波長と第二ピーク波長との差の絶対値が10nmを超えると、光学フィルター10を透過する光の透過率が10%を下回るため、分光測定装置1での目標波長の光の測定精度が低下する。
一方、第一ピーク波長と第二ピーク波長との差の絶対値を10nm以下にすることで、10%以上の透過率で光学フィルター10から目標波長の光を透過させることができる。つまり、ステップS3において、第一駆動回路511及び第二駆動回路512は、目標波長を中心とした±5nmの目標波長域内に、第一ピーク波長及び第二ピーク波長が含まれるように、第一フィルター20の第一アクチュエーター25及び第二フィルター30の第二アクチュエーター35を制御することが好ましい。
より好ましくは、第一駆動回路511及び第二駆動回路512は、第一ピーク波長と第二ピーク波長との差の絶対値が5nm以下となるように、第一アクチュエーター25及び第二アクチュエーター35を制御する。この場合、図11に示すように、30%以上の透過率で目標波長の光を透過させることが可能となる。
したがって、本実施形態では、第一駆動回路511及び第二駆動回路512は、上述のように、第一ギャップG1及び第二ギャップG2が目標波長に対応する寸法となり、かつ、第一ギャップG1に基づく第一ピーク波長と、第二ギャップG2に基づく第二ピーク波長との差の絶対値が10nm以下となるように、より好ましくは、5nm以下となるように、フィードバック制御を行う。この際、第一駆動回路511が、第一容量検出回路513の検出信号に加え、第二容量検出回路514からの検出信号を参照するようにしてもよく、第二駆動回路512が、第二容量検出回路514の検出信号に加え、第一容量検出回路513からの検出信号を参照するようにしてもよい。また、第一駆動回路511及び第二駆動回路512が、第一容量検出回路513及び第二容量検出回路514のそれぞれの検出信号を参照してもよい。
本実施形態の光学フィルター10は、第一フィルター20と第二フィルター30とを備える。第一フィルター20は、第一ギャップG1を介して対向する第一可動反射膜23及び第一固定反射膜24と、第一可動反射膜23及び第一固定反射膜24の間隔を変更する第一アクチュエーター25を含む。第二フィルター30は、第二ギャップG2を介して対向する第二可動反射膜33及び第二固定反射膜34と、第二可動反射膜33及び第二固定反射膜34の間隔を変更する第二アクチュエーター35を含み、第一フィルター20を透過した光の光路上に配置される。そして、第一可動反射膜23、第一固定反射膜24、第二可動反射膜33、及び第二固定反射膜34は、それぞれ、複数の積層体(光学体)を積層することで構成されており、各積層体は、所定の設計中心波長を中心とした光を反射する反射特性を有し、当該設計中心波長が各積層体でそれぞれ異なる。
本実施形態の光学フィルター10では、第一フィルター20の複数のピーク波長の1つが目標波長となるように第一ギャップG1を調整し、第二フィルター30の複数のピーク波長の1つが目標波長となるように第二ギャップG2を調整する。これにより、第一フィルター20と第二フィルター30とでの目標波長以外のピーク波長が重なり合わず、これらのピーク波長の光は光学フィルター10を透過しない。つまり、目標波長を中心とした光のみが光学フィルター10から透過されることになる。
また、本実施形態では、第一フィルター20及び第二フィルター30の分光特性において、各ピーク波長での半値幅は、金属膜を反射膜としたファブリーペローエタロンに比べて十分に小さく、波長分解能が非常に高い。したがって、光学フィルター10から、高い分解能で、目標波長の光を透過させることができる。
以上のように、本実施形態の光学フィルター10は、広い測定波長域から、所望の目標波長の光を高精度に分光させて透過させることができる。
これにより、図7から図10に示すように、広い測定波長域に対して、複数のピーク波長が均等に表れる分光特性の第一フィルター20及び第二フィルター30を構成することができる。
これにより、各積層体の間の設計中心波長の差を、接続層により均すことができ、複数のピーク波長が略均等に位置する分光特性が得られる。
これにより、第一フィルター20を透過する光のピーク波長と、第二フィルター30を透過する光のピーク波長がそれぞれ異なる波長となる。したがって、第一フィルター20の複数のピーク波長のうちの1つと、第二フィルター30の複数のピーク波長の1つとが目標波長となるように、第一ギャップG1及び第二ギャップG2を変更すると、目標波長の光以外のピーク波長は透過されず、目標波長を中心とした狭帯域の光のみを透過させることができる。
これにより、第一フィルター20を透過する光のピーク波長が、測定波長域内で略均一に現れ、第二フィルター30を透過する光のピーク波長が、測定波長域内で略均一に現れるようになる。
つまり、ギャップに向かうに従って、設計中心波長が長くなるように積層体を積層した波長可変干渉フィルターを比較例として説明すると、比較例の波長可変干渉フィルターの分光特性は、長波長側でのピーク波長における半値幅が大きくなり、かつ、隣り合うピーク波長の間の波長域で光の透過率が高くなる。よって、このような波長可変干渉フィルターでは、本実施形態に比べて、長波長側での分光精度が悪化する。
また、比較例の波長可変干渉フィルターでは、複数のピーク波長の波長間隔が大きくなり、反射膜間のギャップを変更しても分光できない波長が生じるおそれがある。なお、ギャップの可変距離を拡大することで、ピーク波長のシフト量を増大させることもできるが、この場合、波長可変干渉フィルターの大型化を招き、かつ、可動部の傾斜や撓みが生じやすくなることで、分光精度も悪化する。
さらに、比較例の波長可変干渉フィルターでは、短波長側での複数のピーク波長の間隔が、本実施形態に比べて短くなる。このため、目標波長以外のピーク波長で、第二フィルター30のピーク波長と重なり合う波長が生じるおそれがあり、光学フィルター10から複数のピーク波長の光が透過されるおそれがある。
これに対して、本実施形態では、測定波長域内において、略均一に複数のピーク波長が現れるので、上記のような問題が生じにくく、高分解能、かつ高精度に、目標波長の光を光学フィルター10から透過させることができる。
これにより、第一フィルター20及び第二フィルター30を透過した目標波長の光を、高い波長分解能で透過させることができ、かつ、可視光域から近赤外域に亘る広い測定波長域内で、目標波長を選択することができる。
本実施形態では、第一ピーク波長及び第二ピーク波長を目標波長とする場合に、両者が厳密に目標波長に一致していなくてもよく、少なくとも目標波長を中心とした所定の波長域である目標波長域内に含まれればよい。この際、第一ピーク波長と第二ピーク波長との差が、10nm以下となることで、光学フィルター10から目標波長の光を10%以上の透過率で透過させることができ、第一ピーク波長と第二ピーク波長との差を5nm以下にすることで、透過率を30%以上とすることができる。
次に、第二実施形態について説明する。
上記第一実施形態では、同一の設計中心波長に基づいて高屈折層と低屈折層とを交互に積層して積層体を構成し、かつ、設計中心波長が異なる複数の積層体を積層することで第一可動反射膜23、第一固定反射膜24、第二可動反射膜33、及び第二固定反射膜34を構成した。これに対して、第二実施形態では、設計中心波長が同一となる層により構成される積層体が設けられず、高屈折層及び低屈折層の各々において、設計中心波長が異なる点で上記第一実施形態と相違する。
なお、以降の説明にあたり、既に説明した事項については同符号を付し、その説明を省略または簡略化する。
本実施形態と、第一実施形態との相違点は、上述のように、第一可動反射膜23、第一固定反射膜24、第二可動反射膜33、及び第二固定反射膜34の膜構成であり、分光測定装置1の基本構成は第一実施形態と同じである。つまり、本実施形態の分光測定装置1も、第一実施形態と同様、第一フィルター20及び第二フィルター30を備えた光学フィルター10と、受光部40と、制御部50とを備えるものであり、これらの詳細な説明は省略する。
本実施形態では、第一可動反射膜23、第一固定反射膜24、第二可動反射膜33、及び第二固定反射膜34は、複数の層71が積層された多層膜により構成されており、各層71のそれぞれが本開示の光学体を構成する。具体的には、各層71は、高屈折層71Hと、低屈折層71Lとを備え、これらの高屈折層71Hと低屈折層71Lとが交互に積層されることで構成されている。例えば、図12の例では、高屈折層71H1,低屈折層71L2、及び高屈折層71H3が基板上に順に積層され、図13の例では、高屈折層71H4,低屈折層71L5、及び高屈折層71H6が基板上に積層される。
なお、図12及び図13では、説明の簡略化のため、第一可動反射膜23、第一固定反射膜24、第二可動反射膜33、及び第二固定反射膜34が3層の誘電体多層膜により構成される例を示すが、より多くの層が積層されることで構成されていてもよい。また、基板上に、高屈折層、低屈折層、高屈折層の順に各層71が積層される例を示すが、例えば、低屈折層、高屈折層、低屈折層の順に積層される構成としてもよい。
例えば、本実施形態では、第一設計中心波長λ1を950nm、第二設計中心波長λ2を600nm、第三設計中心波長λ3を400nm、第四設計中心波長λ4を850nm、第五設計中心波長λ5を500nm、第六設計中心波長λ6を350nmとする。
第一可動反射膜23及び第一固定反射膜24の高屈折層71H1の層厚dH1、低屈折層71L2の層厚dL2、及び高屈折層71H3の層厚dH3は、高屈折層71H1,71H3の屈折率をnHとし、低屈折層71L2の屈折率をnLとして、nH×dH1=λ1/4、nL×dL2=λ2/4、nH×dH3=λ3/4を満たす。
第二可動反射膜33及び第二固定反射膜34の高屈折層71H4の層厚dH4、低屈折層71L5の層厚dL5、及び高屈折層71H6の層厚dH6は、nH×dH4=λ4/4、nL×dL5=λ5/4、nH×dH6=λ6/4を満たす。
本実施形態の第一フィルター20は、第一実施形態と同様に、第一ギャップG1を介して対向する第一可動反射膜23及び第一固定反射膜24と、第一ギャップG1の寸法を変更する第一アクチュエーター25とを有する。そして、本実施形態の第一可動反射膜23、第一固定反射膜24、第二可動反射膜33、及び第二固定反射膜34は、高屈折率を有する高屈折層71Hと、高屈折層71Hよりも屈折率が低い低屈折層71Lとが交互に積層されることにより構成されている。
これにより、第一実施形態と同様に、第一フィルター20及び第二フィルター30は、第一ギャップG1及び第二ギャップG2の寸法に応じた複数のピーク波長の光を透過させることができ、かつ、当該複数のピーク波長が、例えば可視光域から近赤外域に亘る広い測定波長域に現れる。したがって、第一フィルター20から出力される複数のピーク波長の1つである第一ピーク波長と、第二フィルター30から出力される複数のピーク波長の1つである第二ピーク波長とを目標波長に設定することで、広い測定波長域から所望の目標波長の光を高精度に分光させて透過させることができる。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
第一実施形態では、光学体が積層体であり、第一可動反射膜23、第一固定反射膜24、第二可動反射膜33、及び第二固定反射膜34が、設計中心波長がそれぞれ異なる積層体を積層させて構成される例を示した。また、第二実施形態では、光学体が1層の誘電体の層71であり、第一可動反射膜23、第一固定反射膜24、第二可動反射膜33、及び第二固定反射膜34が、設計中心波長がそれぞれ異なる層71を積層させて構成される例を示した。
これに対して、第一フィルター20を構成する第一可動反射膜23及び第一固定反射膜24を積層体により構成し、第二フィルター30を構成する第二可動反射膜33及び第二固定反射膜34を誘電体の層71により構成してもよい。または、第一フィルター20を構成する第一可動反射膜23及び第一固定反射膜24を誘電体の層71により構成し、第二フィルター30を構成する第二可動反射膜33及び第二固定反射膜34を積層体により構成してもよい。
上記実施形態では、第一フィルター20の第一可動反射膜23及び第一固定反射膜24を構成する積層体または層71の設計中心波長と、第二フィルター30の第二可動反射膜33及び第二固定反射膜34を構成する積層体または層71の設計中心波長と、が異なる例を示した。
これに対して、第一可動反射膜23及び第一固定反射膜24を構成する積層体または層71の設計中心波長と、第二可動反射膜33及び第二固定反射膜34を構成する積層体または層71の設計中心波長とが同一であってもよい。例えば、第一可動反射膜23及び第一固定反射膜24が、設計中心波長が900nm、600nm、及び400nmの3つの積層体により構成され、第二可動反射膜33及び第二固定反射膜34が、設計中心波長が900nm、600nm、及び400nmの3つの積層体により構成されてもよい。
この場合では、制御部50は、目標波長に合わせ込むピーク波長を、第一フィルター20と第二フィルター30とで異ならせる。例えば、700nmの光を光学フィルター10から透過させる場合、制御部50は、第一フィルター20の透過特性における1つ目のピーク波長を第一ピーク波長とし、第二フィルター30の透過特性における2つ目のピーク波長を第二ピーク波長として、第一ピーク波長及び第二ピーク波長が目標波長である700nmとなるように、第一ギャップG1及び第二ギャップG2を調整する。これにより、第一フィルター20を透過する目標波長以外のピーク波長と、第二フィルター30を透過する目標波長以外のピーク波長とが、それぞれ異なる波長となり、上記実施形態と同様、光学フィルター10から目標波長を中心とした光のみを透過させることができる。
第一実施形態において、第一高屈折層61H、第二高屈折層62H、及び第三高屈折層63Hが同一素材により構成され、第一低屈折層61L、第二低屈折層62L、第三低屈折層63L、第一接続層67A、及び第二接続層67Bが同一素材により構成される例を示した。これに対して、第一高屈折層61H、第二高屈折層62H、及び第三高屈折層63Hが異なる素材により構成され、第一低屈折層61L、第二低屈折層62L、第三低屈折層63L、第一接続層67A、及び第二接続層67Bが異なる素材により構成されていてもよい。
また、第一積層体61を構成する2つの第一高屈折層61Hが異なる素材により構成されていてもよい。第二積層体62及び第三積層体63においても同様であり、2つの第二高屈折層62Hが異なる素材により構成されていてもよく、2つの第三高屈折層63Hが異なる素材により構成されていてもよい。
さらに、第一積層体61が2つの第一高屈折層61Hと、1つの第一低屈折層61Lとにより構成される例を示したが、例えば、第一低屈折層61Lが複数設けられていてもよい。この場合、各第一低屈折層61Lがそれぞれ異なる素材により構成されていてもよい。なお、第二積層体62及び第三積層体63においても同様である。
すなわち、第一積層体61、第二積層体62、及び第三積層体63が、高屈折層と、高屈折層よりも低い屈折率の低屈折層とが交互に積層される構成を有し、各層の光学膜厚が、積層体61,62,63毎に設定された設計中心波長(第一設計中心波長λ1、第二設計中心波長λ2、第三設計中心波長λ3)の1/4となる膜厚に設定されていれば、積層体を構成する誘電体層の数や素材は特に限定されない。
なお、第二可動反射膜33及び第二固定反射膜34を構成する第四高屈折層64H、第五高屈折層65H、第六高屈折層66H、第四低屈折層64L、第五低屈折層65L、第六低屈折層66L、第三接続層68A、及び第四接続層68Bに関しても同様である。
第一実施形態において、積層体の間を接続する接続層(第一接続層67A、第二接続層67B、第三接続層68A、第四接続層68B)を例示した。これに対して、接続層が設けられず、積層体上に直接積層体を積層する構成としてもよい。
上記第一実施形態において、光学フィルター10は、測定光の入射側に第一フィルター20が配置され、受光部40に対向して第二フィルター30が配置される構成を例示したが、これに限定されない。
例えば、光学フィルター10は、第二フィルター30が測定光の入射側に位置し、受光部40に対向して第一フィルター20が配置される構成としてもよい。
上記第一実施形態及び第二実施形態では、電子機器として、光学フィルター10を透過した光を受光部40で受光する分光測定装置1を例示したがこれに限定されない。例えば、電子機器は、光学フィルター10で分光した光を対象物に向かって照射する光源装置であってもよい。
本開示の第一態様の光学フィルターは、第一ギャップを介して対向する一対の第一反射膜、及び、一対の前記第一反射膜の間隔を変更する第一ギャップ変更部を含む第一フィルターと、第二ギャップを介して対向する一対の第二反射膜、及び、一対の前記第二反射膜の間隔を変更する第二ギャップ変更部を含み、一対の前記第一反射膜を透過した光の光路上に一対の前記第二反射膜が配置される第二フィルターと、を備え、前記第一反射膜及び前記第二反射膜は、それぞれ、複数の光学体を積層することで構成され、前記光学体は、所定の設計中心波長を中心とした光を反射する反射特性を有し、当該設計中心波長が各前記光学体でそれぞれ異なる。
したがって、第一フィルターの複数のピーク波長の1つが目標波長となるように第一ギャップを調整し、第二フィルターの複数のピーク波長の1つが目標波長となるように第二ギャップを調整する。これにより、第一フィルターと第二フィルターとでの目標波長以外のピーク波長が重なり合わないため、光学フィルターを透過せず、目標波長を中心とした光のみが光学フィルターを透過することになる。
また、本態様では、第一フィルター及び第二フィルターの分光特性において、各ピーク波長での半値幅は、金属膜を反射膜としたファブリーペローエタロンを用いる場合に比べて十分に小さく、波長分解能が非常に高い。したがって、光学フィルターから、高い分解能で、目標波長の光を透過させることができる。
以上のように、本態様の光学フィルターは、広い測定波長域から、所望の目標波長の光を高精度に分光させて透過させることができる。
このように光学体として積層体を用いることで、広い測定波長域に対して、複数のピーク波長が均等に表れる分光特性の第一フィルター及び第二フィルターを構成することができる。
これにより、各積層体の間の設計中心波長の差を、接続層により均すことができ、複数のピーク波長が略均等に位置する分光特性が得られる。
これにより、上記態様と同様、第一フィルター及び第二フィルターは、第一ギャップ及び第二ギャップの寸法に応じた複数のピーク波長の光を透過させることができ、かつ、当該複数のピーク波長が、例えば可視光域から近赤外域に亘る広い測定波長域に現れる分光特性を得ることができる。
これにより、第一フィルターを透過する光のピーク波長と、第二フィルターを透過する光のピーク波長がそれぞれ異なる波長となる。したがって、第一フィルターの複数のピーク波長のうちの1つと、第二フィルターの複数のピーク波長の1つとが目標波長となるように、第一ギャップ及び第二ギャップを変更すると、目標波長の光以外のピーク波長は透過されず、目標波長を中心とした狭帯域の光のみを透過させることができる。
これにより、第一フィルターを透過する光のピーク波長が、測定波長域内で略均一に現れ、第二フィルターを透過する光のピーク波長が、測定波長域内で略均一に現れるようになり、広い測定波長域における所望の波長に光を光学フィルターから透過させることができる。
これにより、第一フィルター及び第二フィルターを透過した目標波長の光を、高い波長分解能で透過させることができ、かつ、可視光域から近赤外域に亘る広い測定波長域内で、目標波長を選択することができる。
このように、第一ピーク波長と第二ピーク波長との差が、10nm以下となることで、光学フィルター10から目標波長の光を10%以上の透過率で透過させることができる。
Claims (8)
- 第一ギャップを介して対向する一対の第一反射膜、及び、一対の前記第一反射膜の間隔を変更する第一ギャップ変更部を含む第一フィルターと、
第二ギャップを介して対向する一対の第二反射膜、及び、一対の前記第二反射膜の間隔を変更する第二ギャップ変更部を含み、一対の前記第一反射膜を透過した光の光路上に一対の前記第二反射膜が配置される第二フィルターと、を備え、
前記第一反射膜及び前記第二反射膜は、それぞれ、複数の光学体を積層することで構成され、
前記第一反射膜の前記光学体は、所定の設計中心波長を中心とした光を反射する反射特性を有し、当該設計中心波長が前記第一反射膜を構成する各前記光学体でそれぞれ異なり、
前記第二反射膜の前記光学体は、所定の設計中心波長を中心とした光を反射する反射特性を有し、当該設計中心波長が前記第二反射膜を構成する各前記光学体でそれぞれ異なる
ことを特徴とする光学フィルター。 - 請求項1に記載の光学フィルターにおいて、
前記第一反射膜及び前記第二反射膜を構成する前記光学体は、高屈折層と、前記高屈折層よりも屈折率が小さい低屈折層とが交互に積層された積層体により構成され、前記高屈折層の光学膜厚、及び、前記低屈折層の光学膜厚が、前記光学体毎に設定された前記設計中心波長に基づいた膜厚である
ことを特徴とする光学フィルター。 - 請求項2に記載の光学フィルターにおいて、
隣り合う一対の前記積層体を接続する接続層をさらに備え、
前記接続層の光学膜厚は、当該接続層を挟む一対の前記積層体の前記設計中心波長の平均に基づいた膜厚である
ことを特徴とする光学フィルター。 - 請求項1に記載の光学フィルターにおいて、
前記第一反射膜及び前記第二反射膜は、高屈折率を有する高屈折層により構成される前記光学体と、前記高屈折層よりも屈折率が低い低屈折層により構成される前記光学体とが、交互に積層されることで構成される
ことを特徴とする光学フィルター。 - 請求項1から請求項4のいずれか1項に記載の光学フィルターにおいて、
前記第一反射膜を構成する各前記光学体の前記設計中心波長と、前記第二反射膜を構成する各前記光学体の前記設計中心波長とは、それぞれ異なる
ことを特徴とする光学フィルター。 - 請求項1から請求項5のいずれか1項に記載の光学フィルターにおいて、
前記第一反射膜を構成する前記光学体の前記設計中心波長は、前記第一ギャップに近づくにしたがって短くなり、
前記第二反射膜を構成する前記光学体の前記設計中心波長は、前記第二ギャップに近づくにしたがって短くなる
ことを特徴とする光学フィルター。 - 請求項1から請求項6のいずれか1項に記載の光学フィルターと、
前記第一ギャップ変更部及び前記第二ギャップ変更部を制御する制御部と、を備え、
前記制御部は、
前記第一フィルターを透過する複数のピーク波長のうちの1つである第一ピーク波長が、所望の目標波長を中心とした目標波長域内に含まれるように、前記第一ギャップ変更部を制御し、
前記第二フィルターを透過する複数のピーク波長のうちの1つである第二ピーク波長が、前記目標波長域内に含まれ、かつ、前記第一フィルターを透過する前記第一ピーク波長以外のピーク波長と、前記第二フィルターを透過する前記第二ピーク波長以外のピーク波長と、が異なる波長となるように、前記第二ギャップ変更部を制御する
ことを特徴とする電子機器。 - 請求項7に記載の電子機器において、
前記制御部は、前記第一ピーク波長と前記第二ピーク波長との差が、10nm以下となるように、前記第一ギャップ変更部及び前記第二ギャップ変更部を制御する
ことを特徴とする電子機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020156505A JP7484608B2 (ja) | 2020-09-17 | 2020-09-17 | 光学フィルター、及び電子機器 |
CN202111075370.8A CN114200565B (zh) | 2020-09-17 | 2021-09-14 | 光学滤波器及电子设备 |
US17/476,542 US20220082744A1 (en) | 2020-09-17 | 2021-09-16 | Optical Filter and Electronic Device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020156505A JP7484608B2 (ja) | 2020-09-17 | 2020-09-17 | 光学フィルター、及び電子機器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022050102A JP2022050102A (ja) | 2022-03-30 |
JP7484608B2 true JP7484608B2 (ja) | 2024-05-16 |
Family
ID=80626554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020156505A Active JP7484608B2 (ja) | 2020-09-17 | 2020-09-17 | 光学フィルター、及び電子機器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220082744A1 (ja) |
JP (1) | JP7484608B2 (ja) |
CN (1) | CN114200565B (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090236525A1 (en) | 2008-03-18 | 2009-09-24 | Drs Sensors & Targeting Systems, Inc. | Spectrally Tunable Infrared Image Sensor Having Multi-Band Stacked Detectors |
JP2012108370A (ja) | 2010-11-18 | 2012-06-07 | Denso Corp | 波長選択フィルタ |
JP2013083685A (ja) | 2011-10-06 | 2013-05-09 | Seiko Epson Corp | 光学フィルターデバイス、光学モジュールおよび電子機器 |
JP2015018280A (ja) | 2014-10-01 | 2015-01-29 | セイコーエプソン株式会社 | 光フィルター、光フィルターモジュール、分光測定器および光機器 |
JP2015206901A (ja) | 2014-04-21 | 2015-11-19 | リコーイメージング株式会社 | 光分岐光学素子及びそれを用いた撮影装置 |
JP2020056983A (ja) | 2018-09-27 | 2020-04-09 | セイコーエプソン株式会社 | 光学装置、及び電子機器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5073004A (en) * | 1990-05-18 | 1991-12-17 | At&T Bell Laboratories | Tunable optical filter |
JP3801099B2 (ja) * | 2002-06-04 | 2006-07-26 | 株式会社デンソー | チューナブルフィルタ、その製造方法、及びそれを使用した光スイッチング装置 |
JP2006350125A (ja) * | 2005-06-17 | 2006-12-28 | Seiko Epson Corp | 光学デバイス |
JP4379457B2 (ja) * | 2006-01-19 | 2009-12-09 | セイコーエプソン株式会社 | 光学デバイス、波長可変フィルタ、波長可変フィルタモジュール、および光スペクトラムアナライザ |
CN101047463B (zh) * | 2006-10-25 | 2012-05-23 | 浙江大学 | 基于两端厚度递减结构的多通道波长空间解复用薄膜器件 |
JP5625614B2 (ja) * | 2010-08-20 | 2014-11-19 | セイコーエプソン株式会社 | 光フィルター、光フィルターモジュール、分光測定器および光機器 |
JP5641220B2 (ja) * | 2010-11-12 | 2014-12-17 | セイコーエプソン株式会社 | 波長可変干渉フィルター、光モジュール、及び光分析装置 |
JP5888002B2 (ja) * | 2012-02-28 | 2016-03-16 | セイコーエプソン株式会社 | 波長可変干渉フィルター、光学フィルターデバイス、光学モジュール、及び電子機器 |
JP6260076B2 (ja) * | 2012-09-19 | 2018-01-17 | セイコーエプソン株式会社 | 分光装置 |
JP6136356B2 (ja) * | 2013-02-25 | 2017-05-31 | セイコーエプソン株式会社 | 測定装置 |
JP6390117B2 (ja) * | 2014-02-26 | 2018-09-19 | セイコーエプソン株式会社 | 光学モジュール、及び電子機器 |
US10914961B2 (en) * | 2017-02-13 | 2021-02-09 | Viavi Solutions Inc. | Optical polarizing filter |
EP3640690B1 (en) * | 2018-09-27 | 2023-06-21 | Seiko Epson Corporation | Optical device and electronic apparatus |
-
2020
- 2020-09-17 JP JP2020156505A patent/JP7484608B2/ja active Active
-
2021
- 2021-09-14 CN CN202111075370.8A patent/CN114200565B/zh active Active
- 2021-09-16 US US17/476,542 patent/US20220082744A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090236525A1 (en) | 2008-03-18 | 2009-09-24 | Drs Sensors & Targeting Systems, Inc. | Spectrally Tunable Infrared Image Sensor Having Multi-Band Stacked Detectors |
JP2012108370A (ja) | 2010-11-18 | 2012-06-07 | Denso Corp | 波長選択フィルタ |
JP2013083685A (ja) | 2011-10-06 | 2013-05-09 | Seiko Epson Corp | 光学フィルターデバイス、光学モジュールおよび電子機器 |
JP2015206901A (ja) | 2014-04-21 | 2015-11-19 | リコーイメージング株式会社 | 光分岐光学素子及びそれを用いた撮影装置 |
JP2015018280A (ja) | 2014-10-01 | 2015-01-29 | セイコーエプソン株式会社 | 光フィルター、光フィルターモジュール、分光測定器および光機器 |
JP2020056983A (ja) | 2018-09-27 | 2020-04-09 | セイコーエプソン株式会社 | 光学装置、及び電子機器 |
Also Published As
Publication number | Publication date |
---|---|
US20220082744A1 (en) | 2022-03-17 |
CN114200565B (zh) | 2023-12-08 |
JP2022050102A (ja) | 2022-03-30 |
CN114200565A (zh) | 2022-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6272627B2 (ja) | 可変光学フィルターおよびそれに基づく波長選択型センサー | |
JP5668345B2 (ja) | 光フィルター、光フィルターモジュール、分光測定器および光機器 | |
JP5625614B2 (ja) | 光フィルター、光フィルターモジュール、分光測定器および光機器 | |
EP2118628B1 (en) | Optical detector device | |
JP2015018232A (ja) | ファブリペロー干渉計用のミラーおよびミラーを作製する方法 | |
CN110954981A (zh) | 光学装置及电子设备 | |
JP7484608B2 (ja) | 光学フィルター、及び電子機器 | |
JP5999159B2 (ja) | 光フィルター、光フィルターモジュール、分光測定器および光機器 | |
US20200271516A1 (en) | Optical sensing device and method for manufacturing an optical sensing device | |
JP7275946B2 (ja) | 光学フィルター、及び電子機器 | |
JP7200658B2 (ja) | 光学装置、及び電子機器 | |
US7508567B1 (en) | Metal etalon with enhancing stack | |
US12124025B2 (en) | Optical filter and electronic apparatus | |
CN114252947A (zh) | 光学滤波器、分光模块以及分光测定方法 | |
CN113302464B (zh) | 干涉仪装置和用于确定干涉仪装置中的第一镜装置和第二镜装置之间的第一间距的方法 | |
US11536884B2 (en) | Optical device and electronic device | |
KR102696279B1 (ko) | 파장 가변 광학필터 | |
WO2023062881A1 (ja) | 光検出システム及び電圧決定方法 | |
WO2022201714A1 (ja) | 光フィルタ、分光センサ、及び、光フィルタの製造方法 | |
JP5920411B2 (ja) | 光フィルター、光フィルターモジュール、分光測定器および光機器 | |
JP2023021702A (ja) | 光学フィルター、分光カメラおよび光学フィルター制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7484608 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |